• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Quasi-periodic Oscillation Analysis for the BL Lacertae Object 1823+568

    2022-05-24 06:34:20HuaiZhenLiQuanGuiGaoLongHuaQinTingFengYiandQiRuiChen

    Huai-Zhen Li ,Quan-Gui Gao ,Long-Hua Qin ,Ting-Feng Yi ,and Qi-Rui Chen

    1 Physics Department,Yuxi Normal University,Yuxi 653100,China;qggao@yxnu.edu.cn

    2 Department of Physics,Yunnan Normal University,Kunming 650092,China

    Abstract We studied the optical band periodic variability of 1823+568 using the Jurkevich method,the Lomb–Scargle periodogram and the REDFIT38 software,and found evidence of quasi-periodic oscillation.An unprecedented variability with perioddays was identified by three different analysis methods.This quasi-periodic variability most likely results from nonballistic helical jet motion driven by the orbital motion in a binary black hole system.Considering the light-travel time effect,the real physical period is Pd=67.1 yr.Moreover,we estimated that the primary black hole mass is M ?1.92×109 M⊙to 3.43×109 M⊙.

    Key words:blazars (1823+568)– relativistic jets– non-thermal sources

    1.Introduction

    Blazars are a special subclass of active galactic nuclei(AGNs) with rapid and violent variability in almost all bands.Blazars are usually categorized into two subclasses:BL Lacertae objects (BL Lacs) and flat spectrum radio quasars(FSRQs).In general,BL Lacs show weak or even no emission lines with equivalent width EW <5 ?,but FSRQs have strong ones(B?ttcher 2019).Variability is a common characteristic of blazars,and variability analysis is the most powerful tool to probe the radiation mechanism and constrain the parameters of the physical model (Sillanp?? et al.1988;Lainela et al.1999;Chandra et al.2014).The detection of periodicity in blazars would help us to locate relevant physical parameters,and would strongly limit physical models of blazars (Lainela et al.1999).The variability timescales of blazars cover a wide range from minutes to years (Fan 2005;Otero-Santos et al.2020).Based on the variability timescales,the variability can be roughly divided into three classes:intra-day variability (IDV),short timescale variability(STV)and long timescale variability(LTV).The timescales of IDV,STV and LTV refer to changes of the order of minutes or hours,days to weeks,and over months to years,respectively(Liu et al.1997;Fan 2005;Gupta et al.2008;Gaur et al.2012;Li et al.2015,2016;Otero-Santos et al.2020).The variabilities of many objects have been studied extensively,such as Mrk 421(Chen et al.2014;Li et al.2016),S5 0716+714 (Raiteri et al.2003;Zhang et al.2008;Poon et al.2009;Fan et al.2011;Dai et al.2015;Liu et al.2021),OJ 287(Sillanp?? et al.1988;Fan et al.2010),3C 454.3(Li et al.2006,2015;Qian et al.2007;Fan et al.2019,2021),3C 66A (Fan et al.2018),3C 273 (Liu et al.2021),3C 279(Xie et al.2002;Li et al.2009),PKS 1510-089 (Xie et al.2002,2008),etc.

    The emission variability of blazars can be explained within scenarios such as a binary black hole system(BBHS,Sillanp?? et al.1988;Lehto &Valtonen 1996;Romero et al.2000;Xie et al.2005,2008;Valtonen et al.2008;Caproni et al.2013;Graham et al.2015),accretion flow instabilities (Honma et al.1992;Kawaguchi et al.1998;Fan et al.2001;Liu et al.2006;Kharb et al.2008;Fan et al.2010;Karouzos et al.2012;McKinney et al.2012;Piner &Edwards 2014),a helical jet structure (Villata &Raiteri 1999;Ostorero et al.2004;Mohan&Mangalam 2015),rotation (Vlahakis &Tsinganos 1998;Hardee &Rosen 1999),precession (Romero et al.2000;Caproni et al.2013),etc.In the framework of a BBHS,the periodic change of radiation in a blazar is due to the Keplerian orbital motion of the BBHS,which would lead to periodic accretion perturbations,or jet nutation.The instabilities in an accretion disk may be related to disk perturbations,which could be caused by penetration of the accretion disk,as well as tidal action in the BBHS.The effect of instabilities in a slim accretion disk atmosphere around a supermassive black hole can cause the optical variability of AGNs (Kawaguchi et al.1998).The mechanism for variability caused by the jet’s helical structure,rotation or precession is referred to as geometric effects which are related to changes in the viewing angle or the observation of different emitting regions at different times.The variation produced by the geometric effects in different bands is usually correlated and exhibits quasi-periodicity.

    1823+568 was classified as a BL Lac with a redshift z=0.664±0.001 (Lawrence et al.1986;Roland et al.2013).Observation found that the host galaxy of 1823+568 is elliptical (Falomo et al.1997),and the jet morphology on kpc scales is complex(O’Dea et al.1988).Appreciable polarization structure (Gabuzda et al.1989),superluminal motions,and high and variable polarization (Perley 1982;Aller et al.1985)in 1823+568 were identified(Gabuzda et al.1989).Very Large Array(VLA)observations found there are wiggles of the jets in 1823+568 which can be caused by helical instabilities in the magnetic field structure,as well as by the precession of the central engine with ballistic motion of the ejecta (O’Dea et al.1988).The variability of 1823+568 was first investigated by Schramm et al.(1994) who identified some rapid variabilities>0.5 mag occurring within a few days.Based on the multiepoch Very Long Baseline Array (VLBA) MOJAVE 15 GHz data,a quasi-periodic flux variation with timescale about 7 yr,and a relation between the peak flux density and the position angle of the inner-jet were reported by Liu et al.(2012) who tried to explain the periodicity and correlation using ballistic jets with a precession nozzle model (B+P model).They found the B+P model can adequately interpret the correlation between the peak flux density and the position angle,but the origin of the periodic precession is not clear.On the other hand,the periodic variability of blazars may be related to the nonballistic helical motion driven by the orbital motion in a BBHS,jet precession or an internally rotating jet flow(Rieger 2004).For 1823+568,a BBHS existing in the center of the source was reported by Roland et al.(2013),and nonballistic motion was found by the MOJAVE program(Lister et al.2009).Therefore,the variability behavior and the driving mechanisms of variability need to be investigated.

    In this paper,based on optical band observation data of the Katzman Automatic Imaging Telescope (KAIT),we will analyze the variability timescale of 1823+568,and investigate the emission mechanisms.In the following,the observation data are described in Section 2.The periodicity analysis is shown in Section 3.Discussion and conclusion are given in Section 4.

    2.Observation Data and Variability Analysis of the Light Curves

    Observations of 1823+568 at optical band are performed with the 0.76 m KAIT at Lick Observatory which is a robotic telescope.Since August 2009,KAIT has been used to monitor γ-ray bright blazars (Cohen et al.2014).Now,a sample containing 163 blazars has been monitored.Unfiltered optical observations of KAIT were carried out,and the observed unfiltered photometry was transformed roughly to R-band (Li et al.2003;Wang &Jiang 2021).The strict transformation procedure considers the instrument magnitudes and the color terms of both the standard star and the target (Li et al.2003;Wang &Jiang 2021).However,the color term of the target is not considered in the pipeline of the transformation (Wang &Jiang 2021).The data“mag2”and“mag2err1”of KAIT are the best photometry obtained by Weidong Li3http://herculesii.astro.berkeley.edu/kait/agn/READMEand have considered the Galactic extinction of A=0.26 mag (Li et al.2003).

    In this work,the data “mag2” and “mag2err1” of KAIT are used,and the light curve is depicted in Figure 1,spanning 8.2 yr from July 2010 to September 2018 with 382 data points.During the monitoring,the variation of magnitude is ΔR=2.87 mag between 14.98 and 17.85 mag.Moreover,the variability index can indicate the activity level of the object,and it is defined by the following equation (Fan et al.2002)

    Figure 1.The optical band light curves of 1823+568.

    where Fmaxand Fminare the maximal and minimal flux,respectively.The flux density F can be converted from magnitude m by the following formula,

    where F0is the zero-point.Then,the variability index,as a function of magnitude m,is given by

    where mmaxand mminare the maximal and minimal magnitudes,respectively.During the monitoring,the maximum and minimum magnitudes aremag andmag,respectively.Therefore,the variability index V=0.87 which suggests that the object 1823+568 is an active object at optical band.

    3.Periodicity Analysis

    In order to reveal the properties of the emission variability of 1823+568,we will analyze the variability period of optical band light curves using three specialized techniques:the Jurkevich method(Jurkevich 1971),the Lomb–Scargle periodogram (LSP,Lomb 1976;Scargle 1982) and the REDFIT38 software (Schulz &Mudelsee 2002),respectively.These methods have different approaches,and can apply to uneven data samples to explore the variability property,which ensures the reliability of the results.

    The Jurkevich method is based on the expected mean square deviation,and tests a series of trial periods using the phase folding technique (Jurkevich 1971).This method can effectively analyze unequally spaced and non-sinusoidally modulated astronomy observation data.Based on the phases,all data are divided into a certain number of groups.Then,the varianceof the lth group and the sumsfor all groups are obtained by the following formulas,

    where xiand mlare an individual observation and the number of observations in the lth group,respectively.If the data sample contains a periodic signal,the sumswould reach their minimum value when a trial period is equal to an actual one.In order to test the reliability of the period,a quantitative criterion,f-test,was provided by Kidger et al.(1992).The parameter f can be estimated by the following formula,

    The parameter f ≥0.5 indicates that the period in the sample is strong,while f <0.25 implies that the obtained period is weak or even spurious.

    We employed the Jurkevich method to analyze the light curve of 1823+568 at optical band,and the results are displayed in Figure 2.Figure 2 shows that there is an obvious minimum ofat the timescaledays with f=0.62 (>0.5) which indicates it is a strong period.The uncertainties of the results are estimated with the half width at half maximum(HWHM)of the minimum(Jurkevich 1971).In addition,there are three other significant minimums at the timescalesdays with f=0.75,0.70 and 1.52,respectively.This suggests that P2,P3and P4are also strong periods.Moreover,one can find that there is a simple multiple relationship among the periods P1,P2,P3and P4,namely,P2≈2P1,P3≈3P1and P4≈4P1.This implies that the periods P2,P3and P4are most likely astronomical multiple frequencies of the period P1.This suggests that there exists a quasi-periodic signal in the optical band light curve of 1823+568 with the timescaledays.

    In order to test the reliability of the results of the Jurkevich method,we also analyzed the light curve of 1823+568 utilizing the LSP method.The LSP method is a widely used traditional technique in timescale analysis.The algorithm of the LSP method was described by Lomb (1976) and Scargle(1982).For a time series x(tk) (k=0,1,2,3...,N0),the periodogram is given by the following equation,

    Figure 2.The Jurkevich method results of 1823+568.

    Figure 3.The Lomb–Scargle periodogram results of 1823+568.

    In order to test the significance level of the results,we assessed the confidence level by simulating the multiwavelength variability as red noise with a simple power-law power spectral density model(PSD ∝f?β),and the confidence level is calculated by a Monte Carlo simulation (Yang et al.2020;Wang &Jiang 2021).Based on the algorithm recommended by Timmer &Koenig (1995),we simulated 10,000 artificial light curves with the slopes of power spectral density β=1.18 which was obtained by fitting the spectrum of the Lomb–Scargle periodogram using the linear least squares method (Yang et al.2020) (see Figure 4).Then,we resampled the artificial light curves considering the uneven sampling effect of the observation sample (Li et al.2015;Wang &Jiang 2021).Finally,we calculated the red noise confidence level by analyzing the 10,000 resampled light curves using the Lomb–Scargle periodogram.The 95%,99% and 99.7% confidence level curves are depicted in Figure 3 which reveals a higher significance level than 99.7% at the timescaledays.This suggests that the variability with the perioddays is significant.

    Figure 4.The fit results of PSD.

    To verify the significance level and the reliability of the Jurkevich and LSP results,we also calculated the red noise significance level using the REDFIT38 software.The REDFIT38 software was developed based on the first-order autoregressive(AR1)model,which is included in the generally used and more robust ARIMA(p,d,q)test with AR(p),MA(q)and d=0,1,...It is often performed to estimate the red noise spectrum from the data time series by fitting a first order autoregressive process.Moreover,the REDFIT38 software can calculate the significance of the result,and provide the FAP levels of the result with maximum 2.5σ (99%).The results of the REDFIT38 software are plotted in Figure 5 suggesting that there are three peaks at the timescale 166.1 (f=0.00602),284.7 (f=0.003512) and 1494.9 (f=0.0006689) days with a higher confidence level than 99%,respectively.The timescale 284.7 days is in good agreement with the results obtained by the Jurkevich and LSP methods,which suggests that the timescale is most likely the real variability period in the optical light curve of 1823+568.The timescale 1494.9 days may be a harmonic timescale of the 284.7 day one since it is about 5 times 284.7 days.The timescale of 166.1 days must be ruled out,and more observations are needed to confirm it,because it is only obtained by the REDFIT38 software (see Table 1).A summary of the results of the periodicity analysis is given in Table 1 which implies that the period of about 283 days is uniformly obtained by three different analysis methods.

    Table 1 Summary of the Results of the Periodicity Analysis

    4.Discussion and Conclusions

    Based on the optical band observation data of KAIT,we have studied the optical band variability period of 1823+568 using the Jurkevich method,LSP method and REDFIT38 software.An unprecedented variability period ofdays was confirmed by three different analysis methods.The periodic variability may be caused by some physical timescales such as the approximate length of large outbursts,a sum of intervals of smaller outbursts close in time or the observation gaps (Kartaltepe &Balonek 2007;Li et al.2015).From Figure 1,one can find that there is no obvious activity lasting for about 283 days.In addition,there are no regular observation intervals with a timescale of about 283 days in the light curve.This implies that theday periodic variability is not caused by those physical timescales.Thus,it can result from the nature of the intrinsic variability.Moreover,it is of interest to note that the variability period of T=7.0 yr obtained by Liu et al.(2012) is nine times our period P=283 days (T=9P).Therefore,a variability period with the timescale ofdays indeed exists in the R-band light curve of 1823+568.

    Figure 5.The results of 1823+568 calculated by the REDFIT38 software.

    For 1823+568,it was classified as a BL Lac object whose emission is usually correlated with the non-thermal emission of the relativistic jet.Moreover,the wiggles of the jet were observed by VLA (O’Dea et al.1988).Therefore,the optical variability of 1823+568 with timescaledays can be explained well under the framework of a geometrical model which includes jet precession,rotation,helical structure,etc.(Rieger 2004;Li et al.2009,2015,2016,2018;Ackermann et al.2015;Mohan et al.2016a,2016b).In the scenario of a geometrical model,the quasi-periodic variability is caused by a quasi-periodic change in the Doppler boosting factor δ(t).The change in δ(t) is related to the variability of viewing angle θ(t)which is the angle between the jet and the direction of the observer.The relation between δ(t),θ(t) and the velocity of radiation particles v is given by the following formula,

    For periodic variability caused by the nonballistic helical motion of the jet,the real physical period Pdis much larger than the observed period P due to the light-travel time effect(Rieger 2004;Li et al.2009,2015).The relation between Pdand P is Pd?Γ2P/(1+z),where Γ and z are the Lorentz factor and the redshift,respectively.For 1823+568,the observed period,the Lorentz factor Γ and the redshift z are P=283 days,Γ=12.0 (Jorstad et al.2005) and z=0.664 (Lawrence et al.1986),respectively.So,the physical period is Pd?67.1 yr.For a BBHS with a given value of the mass ratio M/m between the primary M and secondary black holes m,the mass of the primary black hole is(Begelman et al.1980;Ostorero et al.2004;Li et al.2015).Roland et al.(2013) suggested that the mass ratio M/m is 4 to 10.5.Then,the mass of the primary black hole is M ?1.92×109M⊙to M ?3.43×109M⊙which is consistent with the black hole masses MBH?1.26×109M⊙a(bǔ)nd 1.05×109M⊙reported by Wu et al.(2009) and Roland et al.(2013),respectively.Moreover,Liodakis et al.(2018) proposed that the Lorentz factor of 1823+568 is 8.7 to 54.13.The corresponding mass of the black hole is 6.87×108M⊙to 2.38×1011M⊙when the mass ratio M/m=4.However,the mass of the central black hole 2.38×1011M⊙is too large.The black hole mass based on Lorentz factor Γ=12.0 is in good agreement with the result reported by other authors(Wu et al.2009;Roland et al.2013).In addition,Lorentz factor Γ=12.0 is in the range of 8.7–54.13 reported by Liodakis et al.(2018).Therefore,it is reasonable to adopt Γ=12.0 to estimate the black hole mass.

    Acknowledgments

    We gratefully thank the anonymous referee for the very helpful comments which helped us to greatly improve this paper.This research has made use of data provided by the optical observations of KAIT.This work is supported by the National Natural Science Foundation of China (NSFC,Grant Nos.12063005,12063006,11863007 and 12063007),the Program for Innovative Research Team (in Science and Technology) in University of Yunnan Province (IRTSTYN)and Yunnan Local Colleges Applied Basic Research Projects(2019FH001-12,2019FH001-76,202001BA070001-031).

    ORCID iDs

    日本a在线网址| 国产激情偷乱视频一区二区| 亚洲欧美日韩卡通动漫| 成年版毛片免费区| 免费看a级黄色片| 国产精品美女特级片免费视频播放器| 无遮挡黄片免费观看| 一级av片app| 午夜精品在线福利| 三级毛片av免费| 亚洲欧美中文字幕日韩二区| 国产黄色视频一区二区在线观看 | 久久久久久国产a免费观看| 成年女人看的毛片在线观看| 青春草视频在线免费观看| 免费看av在线观看网站| 免费电影在线观看免费观看| av天堂中文字幕网| 一卡2卡三卡四卡精品乱码亚洲| 别揉我奶头~嗯~啊~动态视频| 日本黄色片子视频| 精品一区二区三区av网在线观看| 亚洲人成网站在线观看播放| 午夜激情欧美在线| 国产精品三级大全| 91在线观看av| 亚洲不卡免费看| 亚洲欧美成人精品一区二区| 日韩人妻高清精品专区| 床上黄色一级片| 91久久精品国产一区二区成人| 一进一出抽搐动态| 日韩欧美国产在线观看| 日韩国内少妇激情av| 成人特级黄色片久久久久久久| 日韩成人伦理影院| 又黄又爽又刺激的免费视频.| 亚洲最大成人手机在线| 69av精品久久久久久| 五月玫瑰六月丁香| 久久久久久伊人网av| 亚洲国产欧洲综合997久久,| 午夜爱爱视频在线播放| 大又大粗又爽又黄少妇毛片口| 国产亚洲精品综合一区在线观看| 少妇熟女aⅴ在线视频| 美女被艹到高潮喷水动态| 最新在线观看一区二区三区| 国产成人影院久久av| 91久久精品国产一区二区成人| 久久久久精品国产欧美久久久| 亚洲无线观看免费| 神马国产精品三级电影在线观看| 精品午夜福利在线看| 一级毛片久久久久久久久女| 日韩成人av中文字幕在线观看 | 久久精品夜夜夜夜夜久久蜜豆| 国产成人精品久久久久久| 亚洲专区国产一区二区| 一个人看视频在线观看www免费| 日本-黄色视频高清免费观看| 成人三级黄色视频| 91久久精品国产一区二区成人| 欧美色欧美亚洲另类二区| 久久99热6这里只有精品| 少妇人妻精品综合一区二区 | 中文字幕av在线有码专区| 国产在线精品亚洲第一网站| 好男人在线观看高清免费视频| 色吧在线观看| 亚洲av成人av| 久久6这里有精品| 给我免费播放毛片高清在线观看| 国产精品,欧美在线| 精品午夜福利在线看| 长腿黑丝高跟| 精品乱码久久久久久99久播| 熟女电影av网| 人人妻人人看人人澡| 桃色一区二区三区在线观看| 久久6这里有精品| 美女内射精品一级片tv| 1024手机看黄色片| 欧美在线一区亚洲| 色尼玛亚洲综合影院| 十八禁国产超污无遮挡网站| 少妇人妻精品综合一区二区 | 日本爱情动作片www.在线观看 | 亚洲精品国产成人久久av| 日日撸夜夜添| 男人舔奶头视频| 你懂的网址亚洲精品在线观看 | 男女下面进入的视频免费午夜| 男女那种视频在线观看| 哪里可以看免费的av片| 高清日韩中文字幕在线| 人妻夜夜爽99麻豆av| 天堂影院成人在线观看| 精品一区二区三区av网在线观看| 国产精品一区二区性色av| 国产黄a三级三级三级人| 午夜激情欧美在线| 极品教师在线视频| 少妇人妻精品综合一区二区 | 日韩强制内射视频| 亚洲不卡免费看| 精品一区二区三区av网在线观看| 99热6这里只有精品| 在线观看午夜福利视频| 久久久国产成人精品二区| 一个人看视频在线观看www免费| 日韩av不卡免费在线播放| 欧美日韩精品成人综合77777| 精品久久国产蜜桃| 国产一区亚洲一区在线观看| 一a级毛片在线观看| 不卡一级毛片| 在线国产一区二区在线| 国产又黄又爽又无遮挡在线| 麻豆精品久久久久久蜜桃| 午夜老司机福利剧场| 特大巨黑吊av在线直播| 黄色一级大片看看| 久久久久久久久大av| 夜夜爽天天搞| 亚洲美女搞黄在线观看 | 久久久久免费精品人妻一区二区| 麻豆精品久久久久久蜜桃| 91久久精品国产一区二区成人| av在线天堂中文字幕| 亚洲一级一片aⅴ在线观看| 一a级毛片在线观看| 听说在线观看完整版免费高清| 性插视频无遮挡在线免费观看| 中文字幕人妻熟人妻熟丝袜美| 免费一级毛片在线播放高清视频| 天堂网av新在线| 日本一本二区三区精品| 日韩欧美国产在线观看| 男女做爰动态图高潮gif福利片| 天天一区二区日本电影三级| 男人狂女人下面高潮的视频| 午夜亚洲福利在线播放| 久久精品国产亚洲av香蕉五月| 色在线成人网| 亚洲欧美日韩无卡精品| 亚洲最大成人av| а√天堂www在线а√下载| 亚洲精品久久国产高清桃花| 精品人妻一区二区三区麻豆 | 日韩,欧美,国产一区二区三区 | 毛片一级片免费看久久久久| 99riav亚洲国产免费| 国产黄色视频一区二区在线观看 | 草草在线视频免费看| 欧美日本视频| 非洲黑人性xxxx精品又粗又长| 老熟妇乱子伦视频在线观看| 91久久精品电影网| 亚洲精品亚洲一区二区| 午夜福利高清视频| 十八禁网站免费在线| 三级男女做爰猛烈吃奶摸视频| av在线蜜桃| 国产午夜精品久久久久久一区二区三区 | 99国产精品一区二区蜜桃av| 国产高潮美女av| 日日撸夜夜添| videossex国产| 精品无人区乱码1区二区| 毛片一级片免费看久久久久| 村上凉子中文字幕在线| 久久精品国产清高在天天线| 精华霜和精华液先用哪个| 久久精品久久久久久噜噜老黄 | 国产亚洲av嫩草精品影院| 黄片wwwwww| 日韩成人av中文字幕在线观看 | 国内少妇人妻偷人精品xxx网站| 亚洲经典国产精华液单| av天堂中文字幕网| 免费在线观看影片大全网站| 18禁黄网站禁片免费观看直播| 国国产精品蜜臀av免费| 久久精品夜色国产| 18+在线观看网站| 国产精品亚洲一级av第二区| 亚洲欧美日韩无卡精品| 丰满乱子伦码专区| 欧美xxxx性猛交bbbb| 国产久久久一区二区三区| 又爽又黄a免费视频| 成人高潮视频无遮挡免费网站| 国产亚洲精品久久久久久毛片| 亚洲真实伦在线观看| 国产一区亚洲一区在线观看| 高清毛片免费观看视频网站| 免费看日本二区| 国产免费男女视频| 九九爱精品视频在线观看| 伦精品一区二区三区| eeuss影院久久| 欧美性猛交黑人性爽| 最近2019中文字幕mv第一页| 夜夜夜夜夜久久久久| 国产精品久久电影中文字幕| 久久精品夜色国产| 免费无遮挡裸体视频| 国产精品99久久久久久久久| 黑人高潮一二区| 免费观看在线日韩| 国产成人91sexporn| 日本爱情动作片www.在线观看 | 亚洲精品影视一区二区三区av| 精品欧美国产一区二区三| 免费搜索国产男女视频| 国产精品女同一区二区软件| 亚洲最大成人中文| 亚洲av五月六月丁香网| 成人特级黄色片久久久久久久| av中文乱码字幕在线| 亚洲,欧美,日韩| 噜噜噜噜噜久久久久久91| 精品久久国产蜜桃| 亚洲美女视频黄频| 搡老妇女老女人老熟妇| 插阴视频在线观看视频| 校园人妻丝袜中文字幕| 99久久无色码亚洲精品果冻| 国产欧美日韩精品一区二区| 亚洲成人av在线免费| 色吧在线观看| 国产人妻一区二区三区在| 亚洲色图av天堂| 99热网站在线观看| 日本a在线网址| 一级毛片aaaaaa免费看小| 麻豆久久精品国产亚洲av| 国内揄拍国产精品人妻在线| 亚洲最大成人手机在线| 看免费成人av毛片| 欧美日本亚洲视频在线播放| 日韩av在线大香蕉| 在线播放国产精品三级| 亚洲精品日韩在线中文字幕 | 色吧在线观看| 美女 人体艺术 gogo| 黄色日韩在线| avwww免费| 精品免费久久久久久久清纯| 欧美另类亚洲清纯唯美| 欧美绝顶高潮抽搐喷水| 成人特级av手机在线观看| 亚洲图色成人| 午夜福利高清视频| 高清日韩中文字幕在线| 国产精品无大码| 国产精品免费一区二区三区在线| 最后的刺客免费高清国语| 色视频www国产| 精品久久久久久久久久免费视频| 亚洲av五月六月丁香网| 在线观看一区二区三区| 春色校园在线视频观看| 日本熟妇午夜| 成年女人永久免费观看视频| 久久精品国产亚洲av天美| 婷婷精品国产亚洲av在线| 久久久久九九精品影院| 亚洲,欧美,日韩| 色综合亚洲欧美另类图片| 亚洲国产精品成人综合色| 久久婷婷人人爽人人干人人爱| 一级毛片电影观看 | 国产女主播在线喷水免费视频网站 | 久久精品国产亚洲av香蕉五月| 在线观看av片永久免费下载| 久久6这里有精品| 日韩强制内射视频| 精品人妻偷拍中文字幕| 国产精品亚洲一级av第二区| 少妇人妻一区二区三区视频| 国产高清三级在线| 黄色欧美视频在线观看| 免费人成视频x8x8入口观看| 91在线精品国自产拍蜜月| 最近中文字幕高清免费大全6| 噜噜噜噜噜久久久久久91| 黑人高潮一二区| 麻豆久久精品国产亚洲av| 一个人看的www免费观看视频| 91狼人影院| 亚洲丝袜综合中文字幕| 一级毛片aaaaaa免费看小| 蜜桃久久精品国产亚洲av| 久久久色成人| 我要搜黄色片| 天堂网av新在线| 国产伦精品一区二区三区四那| 日韩成人伦理影院| 亚洲无线观看免费| 亚洲欧美日韩高清专用| 免费看美女性在线毛片视频| 免费高清视频大片| 婷婷六月久久综合丁香| 亚洲av免费在线观看| 国产一区二区三区在线臀色熟女| 一边摸一边抽搐一进一小说| 一区二区三区免费毛片| 日本免费a在线| 免费观看人在逋| 欧美zozozo另类| 国产精品久久视频播放| 午夜福利视频1000在线观看| 国产中年淑女户外野战色| 在线国产一区二区在线| 简卡轻食公司| 久久精品夜色国产| 老师上课跳d突然被开到最大视频| 最近最新中文字幕大全电影3| 日本在线视频免费播放| 午夜精品国产一区二区电影 | 免费观看人在逋| 男人舔女人下体高潮全视频| 国产精品一区二区三区四区久久| 国产精品久久久久久久电影| 亚洲国产高清在线一区二区三| 如何舔出高潮| 日本黄色片子视频| 亚洲成人久久爱视频| 午夜激情福利司机影院| av黄色大香蕉| 性欧美人与动物交配| 亚洲av成人精品一区久久| 欧美日韩综合久久久久久| 三级国产精品欧美在线观看| 九九在线视频观看精品| 特级一级黄色大片| 成人欧美大片| 搞女人的毛片| 12—13女人毛片做爰片一| 91午夜精品亚洲一区二区三区| 3wmmmm亚洲av在线观看| 国产一区二区三区在线臀色熟女| 国产精品久久久久久av不卡| 哪里可以看免费的av片| 嫩草影院入口| 嫩草影院新地址| 成人漫画全彩无遮挡| 黄片wwwwww| 18禁黄网站禁片免费观看直播| 国产男人的电影天堂91| 男人舔女人下体高潮全视频| 偷拍熟女少妇极品色| 狂野欧美激情性xxxx在线观看| 男插女下体视频免费在线播放| 午夜福利在线观看吧| 亚洲一区高清亚洲精品| 99热6这里只有精品| 成年av动漫网址| 精品无人区乱码1区二区| 又爽又黄a免费视频| 久久久久久久亚洲中文字幕| 天堂av国产一区二区熟女人妻| 午夜免费男女啪啪视频观看 | 啦啦啦啦在线视频资源| 晚上一个人看的免费电影| 欧美中文日本在线观看视频| 精品一区二区三区av网在线观看| 欧美日本视频| 欧美激情国产日韩精品一区| 国产亚洲精品久久久久久毛片| 变态另类成人亚洲欧美熟女| 亚洲国产精品sss在线观看| 91久久精品国产一区二区三区| videossex国产| 欧美国产日韩亚洲一区| 国内精品一区二区在线观看| 一级黄色大片毛片| 精品福利观看| 久久久欧美国产精品| 国产淫片久久久久久久久| 国产单亲对白刺激| 成年av动漫网址| 国产探花在线观看一区二区| 国产成人aa在线观看| 内地一区二区视频在线| 久久久久精品国产欧美久久久| 国产在线男女| 一个人看的www免费观看视频| 欧美又色又爽又黄视频| 美女黄网站色视频| 国产亚洲av嫩草精品影院| 内地一区二区视频在线| 久久精品国产亚洲av涩爱 | 精品午夜福利在线看| 18禁裸乳无遮挡免费网站照片| 色视频www国产| 欧美日韩综合久久久久久| 日韩中字成人| 少妇丰满av| 国产精品女同一区二区软件| 99在线视频只有这里精品首页| 久久精品国产99精品国产亚洲性色| 给我免费播放毛片高清在线观看| 一本久久中文字幕| 精品欧美国产一区二区三| 韩国av在线不卡| 精品久久久噜噜| 成人高潮视频无遮挡免费网站| 此物有八面人人有两片| 国产一区亚洲一区在线观看| 在线看三级毛片| 啦啦啦观看免费观看视频高清| 91久久精品电影网| 精品人妻视频免费看| 99在线人妻在线中文字幕| 久久久久久久久大av| 丰满乱子伦码专区| 我要搜黄色片| 午夜激情福利司机影院| 精品久久久久久久久久免费视频| 日产精品乱码卡一卡2卡三| 九九热线精品视视频播放| 精品欧美国产一区二区三| 亚洲在线自拍视频| 亚洲中文字幕日韩| 亚洲精品成人久久久久久| 深爱激情五月婷婷| 国产淫片久久久久久久久| 国产色爽女视频免费观看| 伦理电影大哥的女人| 美女免费视频网站| 搡老妇女老女人老熟妇| 性色avwww在线观看| 最近2019中文字幕mv第一页| 一进一出抽搐动态| 中文资源天堂在线| 99久久九九国产精品国产免费| 午夜a级毛片| 亚洲aⅴ乱码一区二区在线播放| 亚洲av不卡在线观看| 亚洲三级黄色毛片| 欧美三级亚洲精品| 大型黄色视频在线免费观看| 国产男人的电影天堂91| 亚洲av一区综合| 久久久色成人| 国产v大片淫在线免费观看| 久久久久性生活片| 蜜桃亚洲精品一区二区三区| 亚洲国产日韩欧美精品在线观看| 亚洲熟妇中文字幕五十中出| 99久久无色码亚洲精品果冻| 国内精品久久久久精免费| 男女啪啪激烈高潮av片| 久久人人爽人人爽人人片va| 欧美成人精品欧美一级黄| 全区人妻精品视频| 成人漫画全彩无遮挡| 国产精品一区二区免费欧美| 无遮挡黄片免费观看| 日本欧美国产在线视频| 日韩欧美国产在线观看| 国产成人freesex在线 | 成人亚洲精品av一区二区| 久久久久精品国产欧美久久久| 色5月婷婷丁香| 午夜福利在线观看免费完整高清在 | 波多野结衣高清无吗| 国产午夜福利久久久久久| 五月伊人婷婷丁香| 97超视频在线观看视频| 日本 av在线| 毛片一级片免费看久久久久| 国产精品嫩草影院av在线观看| 观看美女的网站| 午夜老司机福利剧场| 久久久国产成人精品二区| 99久久成人亚洲精品观看| 国产精品1区2区在线观看.| 三级国产精品欧美在线观看| 一区福利在线观看| 欧美激情在线99| 十八禁网站免费在线| 中国美女看黄片| 午夜亚洲福利在线播放| 精品欧美国产一区二区三| 99热这里只有是精品50| 国产久久久一区二区三区| 人人妻人人澡人人爽人人夜夜 | 亚洲成人中文字幕在线播放| 精华霜和精华液先用哪个| 小说图片视频综合网站| 精华霜和精华液先用哪个| av视频在线观看入口| 少妇的逼水好多| 午夜福利在线在线| 午夜福利在线观看吧| 淫妇啪啪啪对白视频| 日本免费一区二区三区高清不卡| 亚洲欧美日韩卡通动漫| 国产精品野战在线观看| 亚洲精品成人久久久久久| 可以在线观看的亚洲视频| 夜夜看夜夜爽夜夜摸| 亚洲精品影视一区二区三区av| 一个人看视频在线观看www免费| 国产精品女同一区二区软件| 波多野结衣巨乳人妻| 亚洲成人中文字幕在线播放| 成年免费大片在线观看| 国产免费一级a男人的天堂| 18禁在线无遮挡免费观看视频 | 国产不卡一卡二| 啦啦啦啦在线视频资源| 男女啪啪激烈高潮av片| 欧美色视频一区免费| 中文亚洲av片在线观看爽| 毛片一级片免费看久久久久| 黄色一级大片看看| 综合色丁香网| 麻豆一二三区av精品| 高清日韩中文字幕在线| 在线播放国产精品三级| 欧美bdsm另类| 国产v大片淫在线免费观看| 22中文网久久字幕| 日韩高清综合在线| 又黄又爽又免费观看的视频| 激情 狠狠 欧美| 天堂网av新在线| 久久精品国产清高在天天线| 精品午夜福利视频在线观看一区| 亚洲av中文av极速乱| 18禁裸乳无遮挡免费网站照片| 黄色配什么色好看| 激情 狠狠 欧美| 又黄又爽又刺激的免费视频.| 搡女人真爽免费视频火全软件 | 成人特级av手机在线观看| 听说在线观看完整版免费高清| 黄色视频,在线免费观看| 精品人妻偷拍中文字幕| 成人鲁丝片一二三区免费| 国产精品,欧美在线| 亚洲性久久影院| 亚洲在线观看片| 国产乱人偷精品视频| 免费黄网站久久成人精品| 偷拍熟女少妇极品色| 免费大片18禁| 日产精品乱码卡一卡2卡三| eeuss影院久久| 成年女人看的毛片在线观看| 自拍偷自拍亚洲精品老妇| 精品久久久久久久久久免费视频| 一级av片app| 99久国产av精品| 欧美一级a爱片免费观看看| 天堂影院成人在线观看| 成人亚洲精品av一区二区| 精品久久久久久成人av| 亚洲国产精品国产精品| 午夜视频国产福利| 亚洲欧美成人精品一区二区| 亚洲最大成人中文| 日本成人三级电影网站| 91久久精品电影网| 最新中文字幕久久久久| 免费电影在线观看免费观看| 久久精品人妻少妇| 高清日韩中文字幕在线| 亚州av有码| 国产私拍福利视频在线观看| 亚洲无线在线观看| 国产精品国产三级国产av玫瑰| 国国产精品蜜臀av免费| av天堂在线播放| 国产真实伦视频高清在线观看| 天堂√8在线中文| 国产精品久久视频播放| 日本撒尿小便嘘嘘汇集6| 亚洲精品乱码久久久v下载方式| 可以在线观看毛片的网站| 网址你懂的国产日韩在线| 大又大粗又爽又黄少妇毛片口| 久久久久久久久久成人| 国产高潮美女av| 美女黄网站色视频| 麻豆av噜噜一区二区三区| 免费无遮挡裸体视频| 美女大奶头视频| 亚洲美女视频黄频| 嫩草影院新地址| 国产精品永久免费网站| 夜夜看夜夜爽夜夜摸| 午夜亚洲福利在线播放| 一级毛片aaaaaa免费看小| 激情 狠狠 欧美| 欧美一区二区国产精品久久精品| 欧美成人免费av一区二区三区| 日韩欧美 国产精品| 欧美zozozo另类| 免费一级毛片在线播放高清视频| 看非洲黑人一级黄片| 有码 亚洲区| 久久久久久久亚洲中文字幕| 色哟哟·www| 特级一级黄色大片| 久久久久久国产a免费观看| 久久久久久久久久成人| 美女内射精品一级片tv| 国产一级毛片七仙女欲春2| 国产亚洲欧美98|