• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Accurate Data Match and Call Method for the Thermal Compensation Database of the Reflector Antenna

    2022-05-24 06:34:08YuefeiYanSongXueXinlanHuPeiyuanLianYanWangLinLiQianXuNaWangWulinZhaoYuanpengZhengandCongsiWang

    Yuefei Yan ,Song Xue ,Xinlan Hu ,Peiyuan Lian ,Yan Wang ,Lin Li ,Qian Xu,Na Wang,Wulin Zhao,Yuanpeng Zheng,and Congsi Wang

    1Key Laboratory of Electronic Equipment Structure Design,Ministry of Education,Xidian University,Xi’an 710071,China;sxue@xidian.edu.cn,congsiwang@163.com

    2 School of Information and Control Engineering,Xi’an University of Architecture and Technology,Xi’an 710055,China

    3 School of Physics and Technology,Xinjiang University,Urumqi,830046,China

    4 Xinjiang Astronomical Observatory,Chinese Academy of Sciences,Urumqi 830011,China

    5 The 39th Research Institute of China Electronics Technology Group Corporation,Xi’an 710065,China

    6 The 54th Research Institute of China Electronics Technology Group Corporation,Shijiazhuang 050081,China

    Abstract The influence of thermal deformation on the performance of reflector antennas has become increasingly significant with the increasing aperture and working frequency.The use of a thermal compensation database is an efficient method to compensate for the deformation caused by the non-uniform temperature distribution.However,how to efficiently and accurately match and call the database remains as one of the tough challenges for the antenna thermal compensation system to achieve real time compensation.Therefore,this study proposes a data match and call method for the thermal compensation database of the reflector antenna,matching the database from three aspects:the overall rms match of temperature data,the similarity area match of each data sample,and the key area match of key structural positions.The validation of this method is demonstrated in an example.The difference between the pointing adjustment amount calculated by the matched data and the collected data was found to be less than 1″,which satisfied the requirements of practical engineering,thus achieving real-time thermal compensation of the antenna.

    Key words:instrumentation:miscellaneous– methods:miscellaneous– telescopes

    1.Introduction

    Whether the technical requirements of scientific research fields such as astronomical observation and deep space exploration (Wu et al.2020),or the developing innovations in technical fields such as radar communication and military defense are considered (Rahmat-Samii &Haupt 2015),largescale reflector antennas have played a significant role in these areas (Lian et al.2021).

    During practical engineering projects,under the combined effect of Sun heat and wind gusts (Wang et al.2017),the temperature field distribution of the antenna structure becomes complicated(Lian et al.2020),inducing thermal deformation and affecting the ultimate electrical performance of the antenna.To achieve real-time compensation of electrical performance,a thermal compensation database containing the related temperature data and the corresponding electrical performance compensation amount can be established during practical operation(Doyle 2009).Real-time compensation can be achieved by matching the collected data with a table look-up scheme (Wang et al.2014).In other words,when the antenna is operating,the collected temperature data can be directly matched with the temperature data stored in the predefined database,and the calculated electrical performance compensation adjustment amount corresponding to the temperature data in the compensation database can be called accordingly.This method can achieve real-time compensation of the electrical performance of the reflector antenna.It is evident that the accuracy of the database match and call is the determining factor of whether the antenna thermal compensation system can be applied in practical engineering projects.

    Based on previous real-time compensation procedures,the key to database match and call is obtaining temperature field data with temperature features similar to those of the database,during the process of real-time compensation for reflector antenna thermal compensation.If a set of temperature data measured through the temperature collecting system is used to invert the antenna temperature field and calculate the deformation displacement field to match the adjustment amount(Greve et al.2005),this can hardly be called real-time compensation.If only a single matching constraint is applied and a certain data feature of the collected temperature data is compared,it tends to introduce inaccurate and incomplete matching,and false matching results can cause the deterioration of the compensation effect.

    This study mainly focuses on the matching of temperature data,which directly matches and calls the corresponding electrical performance compensation amount to compensate for the antenna.We first examine three commonly used methods for describing the similarity of data sets,and based on the described method of data similarity,we propose an efficient and accurate method for triple match and call of the database considering the features of the reflector antenna’s thermal compensation system database.

    2.Data Similarity Description Method

    2.1.The Least Squares Method

    For storing linear data,if the database is a simple linear data set,the matching method is relatively simple.The N-time fitting or other fitting methods are applied to obtain the fitting parameters that describe the features of the data set.Then,using these parameters to match and call the data is sufficient.For example,if the data are a simple linear data set,they can be matched by parameters;if the database is a complex linear data set,it is only necessary to adopt a piecewise fitting method based on the previous method.With the multiple sets of fitting results,we can obtain the final database expression parameters,which can be used as the matching criterion.

    However,in the actual databases,the data with no correlation between databases are known as discrete data sets.For similarity matching of these database data,the least squares method(LSM)is a common mathematical solution in engineering applications.The basic idea is to select an estimator that minimizes the sum of squares of the difference between the models(including static or dynamic,linear or nonlinear data) and the measured data(Levenberg 1944).In other words,the idea of LSM is to minimize the sum of squares of the observation points and the estimated points.The purpose of this method is to ensure that the collected data are infinitely close to the sample data in the database.

    The estimated sum of squared errors of the LSM is

    The correlation between the data can be expressed using the correlation coefficient (Asuero et al.2006).The correlation coefficient is a statistical value that describes the degree of correlation and direction between the variables,and r is generally used to measure the correlation between data.

    2.2.The Feature Matching Method

    Currently,digital image processing technology has matured after several years of continuous development.Whether it is applied closely to issues related to peoples’lives,such as target tracking,three-dimensional imaging reconstruction and image stitching,or national security systems such as criminal face recognition,a large number of feature matching methods is used to perform similarity matching and calls existing databases in order to obtain a suitable target(Jiang et al.2020).

    The process of feature matching mainly consists of three steps:

    (1) Feature detection (Agrawal et al.2020):Process the information points of the matched image and detect the targeting features.

    (2) Feature description (Li et al.2021):After detection,the description is pertinent to the matching of features.Describing local features,that is,a specific description of features,will facilitate the application of final feature matching.

    (3) Feature matching (Fischer et al.2021):Through the previous preparation of preliminary matching objects,constraints were used to eliminate matching errors and enhance robustness.

    The essence of the feature matching method is to extract distinctive features from the matched image as the reference unit,and then perform similarity matching through the reference unit.This method bridges partialism and holism.Feature units are usually feature points,feature areas,and feature contours.This method is characterized by its convenience and fewer calculations.However,it is also of low accuracy and needs to correlate with other matching constraints to improve the accuracy of its match and call.

    2.3.The Pattern Matching Method

    Research on matching patterns began in the 1980s,and in the early days it was mainly for pattern integration services.With the development of technology,the demand for database integration calls has been increasing.Pattern matching integrates the data sources into a database.During this process,the mapping between the data source pattern and the features of the database is used to complete the extraction and conversion of data from the source data (Singhal &Seborg 2006),which is a generic data match and call.The pattern-matching method is mostly utilized for comprehensive matching in the application field of web data sources.The common pattern-matching methods are as follows:

    (1)The similarity flooding(SF)method is mainly focused on calculating the matching result based on the correspondence between the column name and the data type in a database pattern (Melnik et al.2002).

    (2) The schema mapping method based on the data distribution (SMDD) method is mainly based on the matching of data instance features in the database.(Li et al.2005).

    (3) The IMAP method is a system for the comprehensive application of mixed pattern matching(Dhamankar et al.2004).Its essence is the instance detection and matching of various data types,such as text,numbers and dates.

    The single-pattern-matching method has its limitations.It can only perform database matching for certain features or types.Therefore,mixed matching,which uses multiple information sources,standards and various matching techniques to jointly determine the matching target,is expected to be more effective.

    This study used the idea of mixed pattern matching for reference and applied different matching methods to successively narrow the matching range according to the structure of the thermal compensation database to achieve the final matching effect.

    3.The Triple Match and Call Method for Thermal Compensation Database

    When the construction of the reflector antenna is completed and ready for operation,a thermal compensation database will be established,and the database will be perfected gradually during the usage of the antenna after it is put into service.For the deformation of the antenna caused by temperature,a qualified matching data set could be obtained by comparing the collected temperature with the temperature stored in the database.This is an application of the matching method.It can be assumed that the two sets of data are approximately similar.Then,real-time compensation can be achieved when the intermediate calculation amount corresponding to the matching data set is directly called to calculate the electrical performance compensation adjustment amount.According to the temperature data collected in real time,the triple match and call method proposed in this study is used to match the data rms,data similarity area,and data key area to match and call the database,completing the compensation of the electrical performance adjustment amount on the reflector surface to ensure the accuracy of the compensation.The proposed matching process is illustrated in Figure 1.The following section describes each of the triple match and call methods.

    Figure 1.Application process of triple match and call method.

    Figure 2.Schematic of the overall temperature sensor layout.

    Figure 3.Schematic of radiating beam temperature sensor layout.

    Figure 4.Schematic of collected temperature data set and matching temperature data set.

    3.1.Initial Match:the Root Mean Square (rms) Error Match of Temperature Data

    The temperature sensor collects a set of temperature data,and the collected temperature is arranged according to its sensor ID.The data collected by the sensors are not linear,and the data are independent and relatively discrete.Because the number of sensors is limited,the data sample is not large,and therefore,the root mean square (rms) error is used to indicate the degree of dispersion of a set of collected temperature data.The primary matching condition for the two sets of temperature data matched is that the degree of dispersion must be similar.Under normal circumstances,the accuracy of the temperature sensor is ±1°C,and the working ambient temperature in the antenna deformation simulation analysis is set to 20°C.Therefore,it can be considered that when matching the rms error of the data set,the limit of the relative error is taken as 5%,which acts as the matching criterion of the rms error matching.This is the initial match of the triple match and call methods.The process of rms matching of the temperature data set is as follows:

    (1) The temperature collected by the sensor is indicated aswhere N is the number of sensors.

    (2)Calculate the rms of the collected temperature data TRMSc.

    (3) Obtain the rms error of the collected temperature data set calculated in step(b),along with the rms error of the temperature data set stored in the databasewhere K is the number of data sets stored in the database.

    (4) Calculate the relative error of the two sets of data according to the formula.

    Based on the method described above,the collected data are matched for the first time,and the data sets that do not match the collected temperature data in the database are eliminated using the required matching of the degree of dispersion.

    3.2.Second Match:Similarity Area Match of Temperature Data

    When the first match is completed,the second match of the collected temperature data can be performed.We set a similarity match area for the temperature data collected by each sensor.During the matching process,a confidence region is used to match the database.At the same time,a limit is set up for the overall match degree of the data.The overall match error limit of 95% is set based on experience.

    (1) The allowable error limit is determined according to the requirements of the engineering indices,and the allowable error limit of the collected temperature of each sensor is calculated.According to the collected temperature,the error limit is obtained by

    (2) Therefore,the similarity match area of the sensor’s current collected temperature is determined as ai.

    (3) The similarity match area set of the collected temperature data set can be expressed as

    (4) The similarity match area A is successively matched with the database temperature set,which is called from the initial match,and the similarity match area of each sensor in the collected temperature data set is matched.Equation (7) (Smis the number of successfully matched sensors,SNis the total number of sensors) obtains the similarity match rate P,which indicates the number of sensors that are successfully matched in a set of data matching.The value of P is determined according to engineering requirements,generally 95%.P can be expressed as

    3.3.Third Match:Key Area Match of Temperature Data

    The key area is the area where the deformation of certain structural positions in the reflector antenna will cause theelectrical performance to deteriorate to a greater extent.When performing a temperature match for this type of structural position,the allowable error limit of the match should be smaller,so the degree of match would be higher.Therefore,when performing key area matching,we take one-half of the error limit of the similarity match area and require the degree of match to be 100%,that is,complete matching.The matching process of the similarity area of the temperature data is as follows:

    (1) The key positions of the antenna structure are obtained according to the characteristics of the antenna structure.The temperature measured by the sensor at the key positions is Tj,where j=1,2,…,M.M is the number of sensors at the key positions of the antenna structure.In this study,half of the error limit of the similarity match area was taken as the allowable error limit of the key match area.According to the collected temperature Tj,the error limit is calculated by

    (2)Therefore,the key match area bjof the sensor number j is determined by

    (3)The key matching area set of the collected temperature data set is expressed as

    (4) The similarity match area set B is successively matched with the database temperature set,which is called from the initial match.The key matching rate f is obtained using Equation(10),where Gmis the number of key position sensors that are matched successfully,and GMis the total number of sensors at the key positions.f indicates the number of key position sensors that are successfully matched in a set of data matching,and it needs to be an exact match,that is,f=100%.

    (5) If multiple sets of data in the final database meet the triple match criterion,the one with the highest similarity matching rate is selected as the successful matching set.If the data matching fails,the electrical performance compensation adjustment amount corresponding to the collected temperature data is calculated and stored in the database to enrich its data.

    4.Example Verification

    The proposed triple match method was verified through an engineering example of a 35 m aperture antenna.In this antenna project,184 sensors were utilized to measure temperature.The sensor layout is depicted in Figures 2 and 3.The collected temperature data are listed in Table 1.The unit of degrees is Celsius.Data nos.171–174 in Table 1 are the temperatures measured by the ambient temperature sensor.The symbol/indicates a damaged sensor.Based on the measured temperature data obtained in Table 1,the antenna temperature database was matched applying the triple match method,and the matched temperature data obtained are listed in Table 2.

    Table 1 Temperature Data Measured by Sensor (Unit:°C)

    Table 2 Data after Triple Match (Unit:°C)

    Table 3 Result Data of Similarity Area Match (Unit:°C)

    Figure 4 displays a schematic of the matching results of the two data sets.The triple matching method was used to analyze the two data sets to verify the effectiveness of this method.

    (1) rms error match of temperature data

    We applied Equation (3) to calculate the rms error of the temperature data.The rms of the collected temperature data was 1.7189,and the rms of the matched temperature data was 1.7871.

    We applied Equation(4)to calculate the relative error of the two data sets.γ=3.968%<5%.

    (2) Similarity area match of temperature data

    The similarity match area of the collected temperature of each sensor in the collected temperature data was calculated utilizing Equation(5).The similarity area matching results for sensors 1 to 184 are listed in Table 3.According to the data above,each data set of the match data set was compared with the similarity match area set of the collected temperature successively,and it was found that a total of five sets did not meet the match criterion.We applied Equation(7)to calculate the similarity matching rate P of the data set and P=97.3%>95%.Figure 5 features a schematic of the similarity matching of the two data sets.

    (3) Key area match of temperature data

    The sensor numbers of the eight key positions were nos.6,8,51,61,63,69,81 and 107.The measured temperature set was 23.3°C,23.3°C,25.7°C,26.0°C,26.5°C,24.2°C,24.0°C and 25.1°C.The matched temperature set was 23.1°C,23.1°C,25.8°C,26.0°C,26.8°C,24.4°C,23.8°C and 25.3°C.Equation (8) was used to calculate the key match area of the temperature measured by the key position sensors,which is shown in Table 4 from left to right according to the sensor numbers.

    Table 4 Result Data of Key Match Area (Unit:°C)

    Based on the data above,the matching data were successively compared with the key matching area set B of the measured temperature,and it was found that all eight sets of data were exactly matched.Figure 6 displays a schematic of the key matching process for the two sets of data.

    The beam-pointing error in the gain pattern calculated from the two sets of temperature data was analyzed to verify the effect of the triple match and call method.After triple match,we get the matched temperature data set stored in the database that is closest to the collected temperature data set.The two sets of temperature data are loaded into the finite element model of the antenna,and the corresponding node displacement field on the surface of reflector can be obtained through finite element analysis.Then the electromechanical coupling model of the reflector antenna can be used to calculate the corresponding radiation patterns under the two sets of temperature data(Wang et al.2017).Figures 7 and 8 depict the comparison diagrams of the antenna pattern on the E-plane and H-plane of the two sets of data,respectively.

    Figure 5.Schematic of similarity matching results.

    Figure 6.Schematic of key matching results.

    Figure 7.Schematic of key matching results.

    Figure 8.Schematic of key matching results.

    Comparing the E-plane and H-plane gain patterns of the two sets of data,it can be found that the differences between the main lobe offsets of the E-plane and H-plane of the two data sets are 0.0004°and 0.000,25°,respectively.However,only the pointing offsets of the E-plane and H-plane cannot be directly used to guide the antenna pointing adjustment.It needs to be converted to adjustment amount of the antenna azimuth and pitch(Lian et al.2015).Let the current azimuth and pitch of the antenna be φ0and θ0respectively.Then the relationship between the point Plocalof the antenna in the local coordinate system (the coordinate system where the E-plane and H-plane are located) and the point Pglobalof the global coordinate system can be expressed as

    Then after using the conversion relationship from the Cartesian coordinate system to the polar coordinate system,the azimuth angleand the pitch angleafter deformation in the global coordinate system can be obtained.The azimuth and pitch adjustment of the antenna can be expressed as

    Table 5 shows the pointing adjustment data calculated from the two sets of data.

    In this project,the minimum adjustment scale of the antenna wasAs displayed in Table 5,the final pointing adjustment amount calculated from the matching data and the collected data are both less than 1″,which meets the criterion in the practical project.This further demonstrates the effectiveness of the proposed database match and call method.

    Table 5 Pointing Adjustment Data of Collected Temperature Data and Matching DataAdjustment

    5.Discussion

    A method of triple matching and calling of the thermal compensation database of the reflector antenna is proposed in this study.This method can guarantee the accuracy of the real-time compensation of the reflector antenna thermal compensation system in practical engineering.The proposed triple match and call method analyzes the degree of dispersion of the two data sets through the rms match of temperature data.Then,the overall similarity of the data was ensured through similarity area matching analysis.Finally,the complete match of key positions in the structure is guaranteed through a key area match analysis.The collected data samples were matched from the previous three aspects.The triple match and call method was verified using data charts through the analysis of an example,which further demonstrates the effectiveness of the proposed method.Finally,the patterns calculated by the collected data and the matched data were compared,and the beam-pointing adjustment error was found to be within an appropriate range,which met the requirements of accurate database calling and real-time antenna compensation.

    Acknowledgments

    This work was supported by the National Key Research and Development Program of China (2021YFC2203600),National Natural Science Foundation of China (Grant Nos.51975447 and 52005377) and Youth Innovation Team of Shaanxi Universities under No.201926.

    亚洲国产av新网站| 久久久久久久久久黄片| 嫩草影院新地址| 亚洲国产色片| 成人欧美大片| 夜夜看夜夜爽夜夜摸| eeuss影院久久| 偷拍熟女少妇极品色| 男插女下体视频免费在线播放| 九九爱精品视频在线观看| 99re6热这里在线精品视频| 成人毛片a级毛片在线播放| 日韩不卡一区二区三区视频在线| 97热精品久久久久久| 国产91av在线免费观看| 十八禁网站网址无遮挡 | 毛片一级片免费看久久久久| 别揉我奶头 嗯啊视频| 十八禁网站网址无遮挡 | 国产在线男女| 久久久午夜欧美精品| 欧美精品国产亚洲| 精品欧美国产一区二区三| 中文在线观看免费www的网站| 国产黄片美女视频| 高清日韩中文字幕在线| 精品欧美国产一区二区三| 亚洲av成人精品一区久久| 亚洲色图av天堂| 七月丁香在线播放| 亚洲av免费高清在线观看| 中文字幕人妻熟人妻熟丝袜美| .国产精品久久| 亚洲欧美成人综合另类久久久| 久久97久久精品| 色视频www国产| 久久久欧美国产精品| 22中文网久久字幕| 最近视频中文字幕2019在线8| 亚洲人与动物交配视频| 日韩欧美一区视频在线观看 | 超碰97精品在线观看| 国产又色又爽无遮挡免| 婷婷色麻豆天堂久久| 国产一区二区亚洲精品在线观看| 亚洲欧美一区二区三区国产| 中国美白少妇内射xxxbb| 亚洲av中文av极速乱| 午夜激情久久久久久久| 亚洲精品日本国产第一区| 天堂网av新在线| 亚洲国产高清在线一区二区三| 久久久成人免费电影| 男女视频在线观看网站免费| 又黄又爽又刺激的免费视频.| 精品不卡国产一区二区三区| 亚州av有码| 一本久久精品| 日韩电影二区| 亚洲精品久久久久久婷婷小说| a级毛片免费高清观看在线播放| 熟女人妻精品中文字幕| 亚洲人成网站在线观看播放| 久久99蜜桃精品久久| 一个人免费在线观看电影| 婷婷色av中文字幕| 成人亚洲精品一区在线观看 | 大陆偷拍与自拍| 精品久久久久久电影网| videossex国产| 中文在线观看免费www的网站| 你懂的网址亚洲精品在线观看| av国产免费在线观看| 国产精品三级大全| 日韩成人av中文字幕在线观看| 午夜福利视频1000在线观看| 亚洲不卡免费看| 欧美人与善性xxx| 日本午夜av视频| 国产黄片视频在线免费观看| 精品亚洲乱码少妇综合久久| 亚洲av日韩在线播放| 国产成人精品婷婷| 乱系列少妇在线播放| 国产激情偷乱视频一区二区| 男女啪啪激烈高潮av片| 搡老妇女老女人老熟妇| 天堂影院成人在线观看| 成人毛片a级毛片在线播放| 丰满乱子伦码专区| 嘟嘟电影网在线观看| 大香蕉久久网| 五月玫瑰六月丁香| 国产美女午夜福利| 伊人久久精品亚洲午夜| 高清日韩中文字幕在线| 亚洲精品第二区| 中国美白少妇内射xxxbb| 97人妻精品一区二区三区麻豆| 成人午夜高清在线视频| 国产精品麻豆人妻色哟哟久久 | 亚洲成人一二三区av| 久久亚洲国产成人精品v| 夜夜看夜夜爽夜夜摸| 亚洲欧美成人综合另类久久久| 午夜老司机福利剧场| 国产高清三级在线| freevideosex欧美| 美女内射精品一级片tv| 日韩一区二区视频免费看| 国产精品国产三级专区第一集| 偷拍熟女少妇极品色| 欧美 日韩 精品 国产| 亚洲av二区三区四区| 国产精品一及| 国产中年淑女户外野战色| 伦精品一区二区三区| 男女下面进入的视频免费午夜| 性插视频无遮挡在线免费观看| 日韩欧美国产在线观看| 国产女主播在线喷水免费视频网站 | 精品人妻视频免费看| 观看美女的网站| 中文字幕免费在线视频6| 成人高潮视频无遮挡免费网站| freevideosex欧美| 午夜激情久久久久久久| 18禁在线无遮挡免费观看视频| 国产黄色视频一区二区在线观看| 又爽又黄a免费视频| 99久久九九国产精品国产免费| 只有这里有精品99| 激情 狠狠 欧美| 国产淫片久久久久久久久| 精品久久久噜噜| 全区人妻精品视频| 91av网一区二区| 国产成人福利小说| 男女视频在线观看网站免费| 中文乱码字字幕精品一区二区三区 | 免费人成在线观看视频色| 在线a可以看的网站| 男的添女的下面高潮视频| 精品久久久久久久人妻蜜臀av| 熟女电影av网| 日韩欧美精品v在线| 97超视频在线观看视频| 偷拍熟女少妇极品色| 简卡轻食公司| 午夜久久久久精精品| 欧美激情久久久久久爽电影| 日韩av在线免费看完整版不卡| 一边亲一边摸免费视频| av国产久精品久网站免费入址| 超碰97精品在线观看| 免费av观看视频| 午夜福利高清视频| 中文精品一卡2卡3卡4更新| 18禁在线无遮挡免费观看视频| 特大巨黑吊av在线直播| 麻豆成人av视频| 国产伦精品一区二区三区视频9| 国产老妇伦熟女老妇高清| 中国美白少妇内射xxxbb| 日本wwww免费看| 男人和女人高潮做爰伦理| 91狼人影院| 亚洲美女视频黄频| 能在线免费观看的黄片| 少妇熟女aⅴ在线视频| 国产精品国产三级国产av玫瑰| 水蜜桃什么品种好| 国产伦精品一区二区三区四那| 国产熟女欧美一区二区| 少妇丰满av| 国产精品久久久久久av不卡| 91精品一卡2卡3卡4卡| 精品国产三级普通话版| 久久久久性生活片| 肉色欧美久久久久久久蜜桃 | 一区二区三区免费毛片| 91精品一卡2卡3卡4卡| 成人国产麻豆网| 中文乱码字字幕精品一区二区三区 | 亚洲av.av天堂| 久99久视频精品免费| 免费大片黄手机在线观看| 黑人高潮一二区| 国产精品国产三级国产专区5o| 一个人看的www免费观看视频| 国产精品一及| 国语对白做爰xxxⅹ性视频网站| 国产高清三级在线| 日韩av在线免费看完整版不卡| 卡戴珊不雅视频在线播放| 天堂网av新在线| 日本色播在线视频| 在线免费观看不下载黄p国产| 三级经典国产精品| 亚洲av一区综合| 国产 一区 欧美 日韩| 2022亚洲国产成人精品| 在线 av 中文字幕| 久久久久久久久久人人人人人人| 免费大片18禁| 99久久精品一区二区三区| 26uuu在线亚洲综合色| 亚洲最大成人手机在线| 国产成人freesex在线| 97超视频在线观看视频| 干丝袜人妻中文字幕| 你懂的网址亚洲精品在线观看| 偷拍熟女少妇极品色| 真实男女啪啪啪动态图| 少妇丰满av| 国产精品美女特级片免费视频播放器| 精品国产一区二区三区久久久樱花 | 亚洲在久久综合| xxx大片免费视频| 晚上一个人看的免费电影| 我的老师免费观看完整版| 女人十人毛片免费观看3o分钟| 精品一区二区三卡| 亚洲成人中文字幕在线播放| 97精品久久久久久久久久精品| 亚洲经典国产精华液单| 亚洲av一区综合| 欧美一级a爱片免费观看看| 日本色播在线视频| 国产精品国产三级国产专区5o| 你懂的网址亚洲精品在线观看| 观看美女的网站| 联通29元200g的流量卡| 国产精品久久久久久精品电影| 精品一区二区三区视频在线| 秋霞伦理黄片| 91午夜精品亚洲一区二区三区| 一级片'在线观看视频| 国产av码专区亚洲av| 亚洲乱码一区二区免费版| 综合色av麻豆| 麻豆乱淫一区二区| 日韩成人伦理影院| 纵有疾风起免费观看全集完整版 | 免费大片18禁| 成人鲁丝片一二三区免费| 国产伦在线观看视频一区| 免费av不卡在线播放| 青春草视频在线免费观看| 午夜免费男女啪啪视频观看| 天天躁夜夜躁狠狠久久av| 国产精品国产三级国产av玫瑰| 一本一本综合久久| 国产淫语在线视频| 2022亚洲国产成人精品| 最近中文字幕高清免费大全6| 成年av动漫网址| 色网站视频免费| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产三级在线视频| 性插视频无遮挡在线免费观看| 国产日韩欧美在线精品| 22中文网久久字幕| 综合色丁香网| 中文资源天堂在线| 一边亲一边摸免费视频| 国产成人精品一,二区| 久久精品夜夜夜夜夜久久蜜豆| 麻豆乱淫一区二区| av网站免费在线观看视频 | 搞女人的毛片| 99九九线精品视频在线观看视频| 国产又色又爽无遮挡免| 欧美另类一区| 青春草视频在线免费观看| 亚洲伊人久久精品综合| 亚洲精品乱码久久久v下载方式| 免费高清在线观看视频在线观看| 国产精品美女特级片免费视频播放器| 两个人的视频大全免费| 精品欧美国产一区二区三| 国产男女超爽视频在线观看| 国产乱人视频| 日本一二三区视频观看| 在线天堂最新版资源| 欧美zozozo另类| 亚洲性久久影院| 久久久久久国产a免费观看| 观看免费一级毛片| 亚洲国产精品专区欧美| 蜜桃久久精品国产亚洲av| 亚洲成人精品中文字幕电影| 日韩一区二区三区影片| 午夜福利在线在线| 中文乱码字字幕精品一区二区三区 | 国产精品精品国产色婷婷| 联通29元200g的流量卡| 亚洲av成人av| 亚洲在线自拍视频| 国产精品人妻久久久影院| 亚洲美女搞黄在线观看| 日韩不卡一区二区三区视频在线| 干丝袜人妻中文字幕| 亚洲精品视频女| 国产片特级美女逼逼视频| 国产高清不卡午夜福利| 久久午夜福利片| 日韩,欧美,国产一区二区三区| 丰满乱子伦码专区| 国产午夜精品一二区理论片| 久久久久久国产a免费观看| 天堂网av新在线| 日日撸夜夜添| 观看免费一级毛片| 亚洲精品乱久久久久久| 99热这里只有是精品50| 久久久久久久久久黄片| 亚洲在线观看片| 一级毛片 在线播放| 亚洲美女搞黄在线观看| 亚洲国产av新网站| 久久久久久久久久久丰满| 国产不卡一卡二| 91精品国产九色| 中文欧美无线码| 少妇人妻精品综合一区二区| 亚洲精品日韩在线中文字幕| 少妇人妻精品综合一区二区| 国产极品天堂在线| 色视频www国产| 日日啪夜夜撸| 天堂俺去俺来也www色官网 | 亚洲人与动物交配视频| 久久热精品热| 亚洲av免费高清在线观看| 亚洲精品一二三| 亚洲自偷自拍三级| 在线观看人妻少妇| 中文欧美无线码| 日本一二三区视频观看| 国内精品美女久久久久久| 精品久久久精品久久久| 免费看光身美女| 欧美性感艳星| 伦精品一区二区三区| 99九九线精品视频在线观看视频| 久久久久久久久久成人| 最近中文字幕高清免费大全6| 特级一级黄色大片| 欧美激情在线99| 日韩国内少妇激情av| 视频中文字幕在线观看| www.av在线官网国产| 综合色丁香网| 精品酒店卫生间| 免费观看无遮挡的男女| .国产精品久久| 亚洲婷婷狠狠爱综合网| h日本视频在线播放| 国产成人a∨麻豆精品| 国内精品一区二区在线观看| 在线观看免费高清a一片| 久久鲁丝午夜福利片| 午夜亚洲福利在线播放| 国产一区二区三区综合在线观看 | 国产精品爽爽va在线观看网站| 成人午夜精彩视频在线观看| 淫秽高清视频在线观看| 中文资源天堂在线| 69人妻影院| 岛国毛片在线播放| 国产成人a∨麻豆精品| 三级经典国产精品| 女人十人毛片免费观看3o分钟| 成人欧美大片| 国产成人91sexporn| 国产乱来视频区| 亚洲精品一二三| 人人妻人人看人人澡| 国产午夜精品久久久久久一区二区三区| 禁无遮挡网站| 免费大片黄手机在线观看| 最近视频中文字幕2019在线8| 亚洲在线自拍视频| 国内揄拍国产精品人妻在线| 最近的中文字幕免费完整| 欧美最新免费一区二区三区| 97在线视频观看| 伊人久久国产一区二区| 人人妻人人澡欧美一区二区| 日韩亚洲欧美综合| 亚洲欧美日韩东京热| 亚洲18禁久久av| 熟妇人妻不卡中文字幕| 国产精品国产三级专区第一集| 午夜爱爱视频在线播放| 日本免费在线观看一区| 免费观看无遮挡的男女| 中文字幕av在线有码专区| 日韩制服骚丝袜av| 国产精品伦人一区二区| 日韩av不卡免费在线播放| 亚洲综合精品二区| 国产成人精品福利久久| 一级毛片久久久久久久久女| 欧美变态另类bdsm刘玥| 亚洲国产欧美在线一区| 国产精品伦人一区二区| 久久久午夜欧美精品| 男人爽女人下面视频在线观看| 熟女电影av网| 欧美xxxx黑人xx丫x性爽| 国内精品一区二区在线观看| 99九九线精品视频在线观看视频| 可以在线观看毛片的网站| 国产 亚洲一区二区三区 | 午夜精品在线福利| 夫妻性生交免费视频一级片| 免费观看无遮挡的男女| 91狼人影院| 一级二级三级毛片免费看| 国产激情偷乱视频一区二区| 亚洲18禁久久av| 观看免费一级毛片| 亚洲美女视频黄频| 午夜福利成人在线免费观看| 国产 一区精品| 成人鲁丝片一二三区免费| 91午夜精品亚洲一区二区三区| 熟女人妻精品中文字幕| 国产一级毛片七仙女欲春2| 亚洲欧美清纯卡通| 国产精品1区2区在线观看.| 搡老妇女老女人老熟妇| 国产精品99久久久久久久久| 中国国产av一级| 午夜免费观看性视频| 国产亚洲91精品色在线| 中文在线观看免费www的网站| 少妇丰满av| 欧美成人精品欧美一级黄| av在线观看视频网站免费| 国产人妻一区二区三区在| 少妇高潮的动态图| 日韩成人av中文字幕在线观看| 国产免费又黄又爽又色| 亚洲av.av天堂| 一级av片app| 婷婷色麻豆天堂久久| 午夜福利视频1000在线观看| 天天一区二区日本电影三级| 国产精品国产三级国产av玫瑰| 久久草成人影院| av在线蜜桃| 高清欧美精品videossex| 亚洲av二区三区四区| 校园人妻丝袜中文字幕| 人人妻人人看人人澡| 欧美精品国产亚洲| 丝瓜视频免费看黄片| 哪个播放器可以免费观看大片| 亚洲人与动物交配视频| 26uuu在线亚洲综合色| 亚洲综合精品二区| 人人妻人人澡人人爽人人夜夜 | 亚洲精品成人av观看孕妇| 日韩国内少妇激情av| 3wmmmm亚洲av在线观看| 日韩亚洲欧美综合| 日本免费在线观看一区| 性色avwww在线观看| 在线a可以看的网站| 好男人视频免费观看在线| 欧美不卡视频在线免费观看| 日韩成人av中文字幕在线观看| 免费av观看视频| 噜噜噜噜噜久久久久久91| 国产激情偷乱视频一区二区| 床上黄色一级片| 青春草视频在线免费观看| 国产男人的电影天堂91| 精品久久久噜噜| 国产亚洲91精品色在线| 成人综合一区亚洲| 久久久国产一区二区| 青春草视频在线免费观看| 777米奇影视久久| 欧美一级a爱片免费观看看| 黑人高潮一二区| 天堂网av新在线| 久久人人爽人人爽人人片va| 大又大粗又爽又黄少妇毛片口| 精品午夜福利在线看| 丝袜喷水一区| 日韩制服骚丝袜av| av线在线观看网站| 亚洲av成人精品一二三区| 国产久久久一区二区三区| 热99在线观看视频| 亚洲精品一区蜜桃| 国产成人免费观看mmmm| 在线观看人妻少妇| 国产成年人精品一区二区| 国产成人a区在线观看| 国产成年人精品一区二区| 黄色欧美视频在线观看| 天堂√8在线中文| 欧美潮喷喷水| 一级毛片电影观看| 精品久久久久久久人妻蜜臀av| 91久久精品国产一区二区三区| 欧美高清成人免费视频www| 中国国产av一级| 欧美激情国产日韩精品一区| 免费观看性生交大片5| 看免费成人av毛片| 91久久精品国产一区二区成人| 网址你懂的国产日韩在线| 欧美日韩国产mv在线观看视频 | 国产美女午夜福利| 婷婷色麻豆天堂久久| 韩国高清视频一区二区三区| 精品人妻视频免费看| 中文字幕亚洲精品专区| 国产精品av视频在线免费观看| 日日啪夜夜爽| 国产精品人妻久久久影院| 成年女人在线观看亚洲视频 | 18禁在线无遮挡免费观看视频| 色网站视频免费| 亚洲av免费高清在线观看| 日韩欧美 国产精品| 一级黄片播放器| 只有这里有精品99| 晚上一个人看的免费电影| 亚洲美女视频黄频| 国产 一区 欧美 日韩| 久久久国产一区二区| 中文字幕av在线有码专区| 超碰av人人做人人爽久久| 久久久久国产网址| 精品久久久久久久末码| 亚洲电影在线观看av| 久久久久网色| freevideosex欧美| 干丝袜人妻中文字幕| 免费播放大片免费观看视频在线观看| av线在线观看网站| 亚州av有码| 国产一区二区亚洲精品在线观看| 欧美97在线视频| 亚洲精品成人久久久久久| 亚洲国产欧美在线一区| 老女人水多毛片| 亚洲av.av天堂| 成人综合一区亚洲| 国国产精品蜜臀av免费| 国产精品人妻久久久久久| 亚洲av一区综合| 99久久九九国产精品国产免费| 日韩欧美精品免费久久| 精品一区二区三区人妻视频| 午夜激情欧美在线| 2021天堂中文幕一二区在线观| 欧美日韩亚洲高清精品| 成人国产麻豆网| 欧美成人午夜免费资源| 久久久久久久久久黄片| 99久久精品一区二区三区| 欧美一区二区亚洲| 久久久久国产网址| 18禁裸乳无遮挡免费网站照片| 国产免费福利视频在线观看| 久久精品夜色国产| 少妇人妻一区二区三区视频| 内地一区二区视频在线| 在线免费观看的www视频| 久久这里有精品视频免费| 18禁在线播放成人免费| 网址你懂的国产日韩在线| 亚洲精品日本国产第一区| 亚洲精品日韩在线中文字幕| 蜜桃亚洲精品一区二区三区| 久久99热这里只有精品18| 成人美女网站在线观看视频| 国产视频首页在线观看| 网址你懂的国产日韩在线| 精品一区二区三区视频在线| 91av网一区二区| 十八禁国产超污无遮挡网站| 一级a做视频免费观看| 亚洲性久久影院| 欧美成人a在线观看| 色网站视频免费| 午夜激情福利司机影院| 日韩不卡一区二区三区视频在线| 老女人水多毛片| 久久久精品欧美日韩精品| 晚上一个人看的免费电影| 边亲边吃奶的免费视频| 久热久热在线精品观看| 久久久久久久久大av| 欧美变态另类bdsm刘玥| 嫩草影院入口| 亚洲av日韩在线播放| 日韩 亚洲 欧美在线| 国产精品无大码| 精品人妻一区二区三区麻豆| 欧美精品国产亚洲| 日韩,欧美,国产一区二区三区| 毛片女人毛片| 深夜a级毛片| 十八禁国产超污无遮挡网站| 日韩成人av中文字幕在线观看| 国产一级毛片七仙女欲春2|