• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Constraining the Parameterized Neutron Star Equation of State with Astronomical Observations

    2022-05-24 06:33:44JaikhombaSinghaMullaiVaneshwarandAnkitKumar

    Jaikhomba Singha,S.Mullai Vaneshwar,and Ankit Kumar

    1 Department of Physics,Indian Institute of Technology Roorkee,Roorkee 247667,India;mjaikhomba@gmail.com

    2 Department of Physics,National Institute of Technology Calicut,Kozhikode 673601,India

    Abstract We utilize the phenomenologically parameterized piecewise polytropic equations of state to study various neutron star properties.We investigate the compliance of these equations of state with several astronomical observations.We also demonstrate that the theoretical estimates of the fractional moment of inertia cannot explain all the pulsar glitches observed.We model the crust as a solid spheroidal shell to calculate the fractional moment of inertia of fast-spinning neutron stars.We also show that the braking index obtained in a simple magnetic dipole radiation model with a varying moment of inertia deviates significantly from the observed data.Future developments in both theory and observations may allow us to use the fractional moment of inertia and braking index as observational constraints for neutron star equation of state.

    Key words:stars:neutron– (stars:) pulsars:general– stars:rotation

    1.Introduction

    Neutron stars(NSs)are extremely dense objects formed as a result of violent supernova explosions of massive stars at the end of their lifetimes.Their extreme properties,such as strong magnetic fields,stable rotations,intense gravity,etc.,make them ideal laboratories to test various theories of physics under extreme conditions (Baym &Pethick 1979;Stairs 2003;Lattimer &Prakash 2004;Pizzochero 2016;Bandyopadhyay 2017).The observational manifestation of an NS is a pulsar.The internal structure and composition of NSs are governed by the equation of state (EOS) of neutron-rich matter (Lattimer &Prakash 2001).Despite extensive research,the composition of NS matter is not precisely known.While the primary constituents are neutrons and protons,the possible existence of hyperons and kaon condensates is still being debated.It is understood that the observation of most massive NSs could reveal some information about the presence of such exotic matter.A detailed study of EOS over a wide range of densities is crucial in understanding the properties of NSs.NSs are also continuously losing their rotational energy due to the emission of several highly energetic particles.This loss is reflected in the spin evolution of pulsars.The study of the spin evolution of pulsars helps in understanding the interior and the exterior of NSs (Urpin &Konenkov 1997;Staff et al.2012;Barsukov et al.2013).

    In this work,we utilize the piecewise polytropic EOSs to study the various important properties of NSs.Several pieces of the relativistic polytropes are ensured to be thermodynamically continuous while mimicking various phase transitions at high densities.We further put various constraints on these EOSs obtained from observations.We show that the fractional moment of inertia (FMI) obtained from theory cannot explain all the observed glitches.We also investigate how FMI varies with rotational frequency.Finally,we demonstrate the deviation of the observed braking indices from their theoretical estimates.

    The paper has been organized in the following manner.In Section 2,we briefly describe the structure of non-rotating and rotating NSs and the ways to estimate several NS properties like mass,radius,tidal deformability,FMI and braking index.In Section 3,we present the results obtained for the various EOSs used in the paper and discuss their implications.The several observational measurements used as constraints in this work have been listed in this section.Finally,in Section 4,we end the paper by presenting the conclusions of this work.

    2.Formalism

    The equilibrium configurations of NSs are usually calculated in two steps.The EOS of high-density matter is estimated at first,which is thereafter utilized for NS structure calculations in accordance with the principles of general relativity.In this work,we have constructed a few well-known EOSs based on the piecewise polytropic formalism (in Read et al.2009;Lackey 2021) for mimicking various phase transitions at high densities.

    2.1.Structure of Non-rotating NSs

    The structures of static and spherical NSs are governed by the following Tolman–Oppenheimer–Volkov(TOV)equations(Oppenheimer &Volkoff 1939;Tolman 1939):

    where M(r) is the enclosed mass of the NS within a radius r,and ν(r) is the metric potential.

    2.2.Fractional Moment of Inertia of Slowly Rotating NSs

    Assuming the NS to be rotating slowly,the moment of inertia (MOI) can be calculated within Hartle-Thorne’s approximation (Hartle 1967;Hartle &Thorne 1968).Under this condition,the metric takes the following form

    where ω(r)is the frame dragging frequency.The NSs assume a nearly-spherical shape,and the MOI can be obtained as

    where Ω is the spin frequency of the NS.The crustal MOI has the same form

    where Rcis the core-crust transition radius.The FMI is now defined as the ratio ΔI/I.

    2.3.Tidal Deformability

    An NS experiences a tidal gravitational field in the presence of a companion.The tidal deformability parameter is defined as(Hinderer et al.2010)

    where Qijis the induced quadrupole moment,due to the tidal fieldεij.The tidal deformability can be expressed in terms of the Love number k2and the NS radius R as

    The Love number k2is given by

    where C=M/R is the compactness parameter,and yRsatisfies

    The dimensionless tidal deformability can be defined as

    2.4.Pulsar Braking Index

    NSs emit electromagnetic energy via magnetic dipole radiation (MDR).This comes at the expense of the rotational kinetic energy,and hence the NSs are spinning down constantly with time.The pulsar braking index is related to the spin frequency as

    In terms of spin period (P) and its derivatives,

    If we consider the MOI to be frequency independent,n=3(Kaspi et al.1994).However,the MOI varies with spin frequency,and hence it also varies with time (Glendenning et al.1997).Assuming the MOI to be frequency dependent we have (Hamil et al.2015)

    2.5.Fractional Moment of Inertia of Fast Spinning NSs

    For the special case of fast spinning NSs we calculate the equilibrium NS configurations in an axially symmetricspacetime.In this case the infinitesimal line element is given by

    where N,A,B and N?are the metric functions dependent on r and θ.The numerical computations for solving the Einstein field equations are performed with suitable adaptation of LORENE libraries3https://lorene.obspm.fr/(Gourgoulhon 2011).The NS assumes a spheroidal shape,and the MOI for a rotation frequency Ω is given by

    R(θ) is the NS radius in the θ direction and U is defined as

    The baryon density profile is θ dependent,and so must be the core-crust transition radius Rc.We can therefore write the crustal MOI as

    ΔI/I is defined as the FMI.

    3.Results and Discussions

    The NS interior is broadly divided into two major regions,i.e.,the crust and the core.The crust is primarily composed of nucleons,and is well understood because of its near-nuclear density.The core is highly compressed to many times the nuclear density,and despite extensive research,its composition and interactions are not precisely known.It is expected that the high-density matter in the NS core may show multiple phase transitions due to the sequential onset of exotic particles.

    Following the seminal approach of Read et al.(2009);Lackey (2021),we have utilized the low density SLy EOS for the crust (Douchin &Haensel 2001),and the core is modeled with a variety of piecewise polytropes to emulate the expected phase transitions at high densities.This includes the ALF4(Alford et al.2005),AP3 (Akmal et al.1998),BBB2 (Baldo et al.1997),GNH3(Glendenning 1985),WFF3(Wiringa et al.1988) and SLy (Douchin &Haensel 2001) EOSs.ALF4 is a hybrid EOS with mixed Akmal-Pandharipande-Ravenhall(APR) nuclear matter and color-flavor locked quark matter EOS,AP3,and WFF3 are based on the variational method,BBB2 is a non-relativistic EOS and SLy is a potential-method EOS,with all of them modeling the npeμ matter.On the other hand,GNH3 is based on relativistic mean field theory,and takes into account the contribution of hyperons as well.The polytropic parameters of all the EOSs used in this work are taken from Read et al.(2009) and Lackey (2021).

    There have been several efforts to constrain the NS EOS with astronomical observations and simulations.While the most common constraint is the measurement of the mass (see C0–C3 in Table 1),there has been good progress on the much awaited simultaneous estimation of the radius (see C4-C7 in Table 1).These serve as stringent limits on the allowed mass–radius configurations of stationary NSs.Figure 1 shows the mass–radius curves for various EOSs with the shaded regions depicting the various mass–radius constraints.WFF3 does not satisfy any,ALF4,BB2,SLy and GNH3 satisfy only some,and AP3 satisfies most of the mass–radius constraints.The inclusion of hyperons in GNH3 makes it a soft EOS,and this shows up in the comparatively large radii of the allowed configurations.The mass and radius obtained for the various EOSs match the results given in Read et al.(2009)and Lackey(2021).Any valid EOS must explain the existence of the most massive NS PSR J0348+0432,and hence C0 is a necessary constraint to comply with.It can be seen that the maximum allowed mass with ALF4,BBB2 and WFF3 is not high enough to satisfy the C0 constraint,hence we no longer include these EOSs in further discussions.

    Table 1 NS Mass and Radius Constraints from Various Astronomical Observations

    Figure 1.The mass–radius relations for the ALF4,AP3,BBB2,GNH3,WFF3 and SLy EOSs.The shaded regions depict the imposed mass–radius constraints from astronomical observations (see Table 1).

    Figure 2.The dimensionless tidal deformability,Λ,as a function of NS mass for several EOSs.

    LIGO-Virgo’s paradigmatic observation of the merger of two NSs (GW170817) quantified the response of NS matter toward a strong tidal gravitational field.It has been shown by Kumar et al.(2017),De et al.(2018),Ferreira &Providência(2021),Tan et al.(2021),Burgio et al.(2021)and many others that the determination of tidal deformability has been crucial in constraining the high-density EOS.The tidal deformability constraints utilized in this work are tabulated in Table 2.InFigure 2,we plot Λ as a function of the NS mass.GNH3 satisfies none,and AP3 and Sly satisfy all of the three deformability constraints.As expected from previous discussions,the NSs described by the soft GNH3 EOS will have smaller compactness,and hence a larger Λ.The compliance of all the EOSs with the imposed constraints is summarized in Table 3.It can be seen that AP3 satisfies the maximum number of constraints.It explains the existence of the massive pulsar PSR J0348+0432(Antoniadis et al.2013).

    Figure 3.The FMI as a function of NS masses (left) and radii (right) for several piecewise polytropic EOSs resembling the realistic EOSs:AP3,GNH3 and SLy.

    Figure 4.Distribution of the FMI obtained from different glitch observations cataloged by the Jodrell Bank Observatory.The dashed lines signify the FMI obtained for the various EOSs for a canonical NS.

    Table 2 Gravitational Wave Constraints on the Dimensionless Tidal Deformability Λ

    Table 3 Compliance of various EOSs with the Imposed Mass (C1–C3),Mass–Radius(C4–C7) and Tidal Deformability Constraints (C8–C10)

    We now discuss some other properties of NSs viz.,FMI and braking index.There are times when an NS suddenly spins up.Such an event is called a pulsar glitch (Radhakrishnan &Manchester 1969),and their observations help in various ways to probe the interiors of NSs (Link et al.1992;Gügercino?lu 2017;Haskell 2017).Presently,the most favorable model to explain the occurrence of a pulsar glitch is based on pinning of superfluid vortices in the NS crust(Haskell&Melatos 2015).It is believed that glitches occur due to the transfer of angular momentum from the interior to the outer crust.The ratio of the MOI of the crust and the core,i.e.,FMI,can be estimated from observations of pulsar glitches (Basu et al.2018)

    where τiis the characteristic age of the pulsar,tiis the time preceding the last glitch and Δν/ν is the fractional rise in the spin frequency.As mentioned in Sections 2.2 and 2.5,FMI can also be estimated for a given EOS for both slowly rotating and fast rotating NSs.

    Figure 3 displays the FMI as a function of the NS mass and radius in the slow rotation limit.The crust-core transition density for every EOS ranges from 6.659×1013to 2.014×1014g cc?1.It is seen that FMI is the lowest for GNH3.Since FMI can bededuced from observations,it can be utilized to constrain the NS as well.However,the FMI estimated for a particular EOS cannot explain all the glitches observed.Many studies suggest that in order to explain some of the glitches,the participation of superfluidity in the core along with crustal superfluid must be invoked (Andersson et al.2012;Basu et al.2018).Although there has been some progress in theorizing superfluidity inside NS cores(Andersson&Comer 2001;Takatsuka et al.2006),we do not explore this in the present work.Figure 4 shows the distribution of FMIs of 384 glitches from the Jodrell Bank pulsar glitch catalog.4https://www.jb.man.ac.uk/~pulsar/glitches/gTable.htmlSince FMI cannot be estimated for the first glitch,we exclude the first glitch of every multiple glitching pulsar and also the pulsars with only one glitch.Assuming a canonical NS,for a fraction of glitches ˉf,the observed FMI is larger than what is estimated under the slow rotation approximation (see the dotted lines in Figure 4).The values offˉobtained for the various EOSs are summarized in Table 4.It can again be seen that AP3 explains the most number of glitches,while GNH3 explains the least.For these glitches,it is expected that there is a contribution of superfluidity in the NS cores.It is important to point out that we have excluded the effect of entrainment.Presently,the FMI does not put very strong constraints on the EOS.Future advancements in theoretical studies along with better observational facilities may allow us to use FMI as a constraint for the NS EOS.

    Table 4 The Fraction of Glitches Which Cannot be Explained with the Estimated FMI from the EOSs for a Canonical NS

    Figure 5.The FMI as a function of NS mass for different rotation frequencies.M⊙is the solar mass and the frequencies are mentioned in the legends.The calculations for the slowly rotating case are performed with in the Hartle–Thorne approximation(as discussed in Section 2.2).The results for the fast rotating cases are calculated exactly with a suitable adaptation of LORENE libraries (see Section 2.5).

    Table 5 The Braking Index Values Obtained from Several Pulsar Observations

    In a first,we explore the variation of FMI at very high rotation rates.Figure 5 plots the FMI as a function of NS masses at different frequencies.The FMI does not vary with the frequency in the slow rotation approximation.We demonstrate a monotonic increment in the FMI with an increase in the spin frequency.We have limited our calculations up to 700 Hz,which is close to the spin frequency of the fastest spinning radio pulsar observed at 716 Hz (Hessels et al.2006).At this frequency,Sly shows the least deviation.The centrifugal force on a spinning object is proportional to its distance from the rotation axis.The crust is the outermost region,and hence with an increase in spin frequency,ΔI changes relatively faster than I.This leads to an overall increment of the ratio ΔI/I.

    Figure 6.The braking index as a function of NS rotation frequency for the various EOSs.

    Another quantity that we have explored is the pulsar braking index.NSs are constantly radiating electromagnetic energy via MDR.This comes at the expense of the rotational kinetic energy,and hence the NSs are continuously slowing down.The braking index quantifies the rate of decrease of spin frequency.Considering the MOI to be frequency dependent,the braking index is given by Equation(16).The braking indexes of several pulsars have been estimated with the help of long baseline timing programs and other astronomical observations,and some of them are summarized in Table 5.It is evident that for many of these young pulsars,the braking index is much lower than 3.The braking index obtained for a 1.4 M⊙NS as a function of rotational frequency is displayed in Figure 6.The braking index varies very slowly and deviates a lot from the observations.Thus,an MDR model with a varying MOI may not be sufficient to explain the observed pulsar braking indices.It is shown by Lyne et al.(2013),Tauris &Konar (2001),Johnston &Karastergiou (2017) and many others that the braking index depends on various factors like the temporal evolution of the magnetic field strength and the inclination angle between the magnetic and rotational axes.Although the braking indices of young pulsars are expected to be less than three,several estimations demonstrate that it can be greater than three as well (Archibald et al.2016;Parthasarathy et al.2020).Even decades after the discovery of pulsars,the braking index is still not understood very well.The measurements of braking index presently do not provide strong constraints for the NS EOS.Future advancements in pulsar emission theory and its relation with the NS EOS will help in utilizing such observations in constraining the NS EOS.

    4.Conclusions

    In order to understand the interior structure of NSs,it is necessary that we constrain the EOS with the maximum possible number of constraints from nuclear experiments and astronomical observations.In this work,we utilized several piecewise polytropic EOSs to check their compliance with astronomical observations.We demonstrated that a significant fraction of glitches cannot be explained with the FMI obtained for any of the EOSs.We modeled the NS crust as a solid spheroidal shell to calculate the FMI at high frequencies.We showed that the FMI increases monotonically with an increase in the rotation rate.Furthermore,we investigated the variation of braking index in the MDR model,and showed that it cannot explain the observed data.The FMI and the braking index cannot be used to constrain the NS EOS but,with advancements in observational facilities,it may be possible in the near future.

    Acknowledgments

    This work is partly supported by the SPARK program of IIT Roorkee (India).J.S.acknowledges various discussions with V.B.Thapa.We thank P.Arumugam for his comments during the preparation of this manuscript.The authors especially thank the anonymous referee for their constructive comments which have improved the presentation of this article.

    ORCID iDs

    老熟妇乱子伦视频在线观看| www.999成人在线观看| 亚洲成人免费电影在线观看| 国产毛片a区久久久久| 成人永久免费在线观看视频| 久久国产精品人妻蜜桃| 精品午夜福利视频在线观看一区| 美女黄网站色视频| 国产主播在线观看一区二区| 黄色成人免费大全| 精品久久久久久久久久久久久| 久久午夜亚洲精品久久| 69av精品久久久久久| 听说在线观看完整版免费高清| 一a级毛片在线观看| 999久久久精品免费观看国产| 亚洲国产高清在线一区二区三| 久久久久性生活片| 天堂√8在线中文| 亚洲性夜色夜夜综合| 18禁在线播放成人免费| 精品久久久久久久毛片微露脸| 国产亚洲欧美在线一区二区| 久久精品国产清高在天天线| 欧美+亚洲+日韩+国产| 动漫黄色视频在线观看| 亚洲专区国产一区二区| 亚洲人成网站在线播放欧美日韩| 99热这里只有是精品50| 国产久久久一区二区三区| 欧美另类亚洲清纯唯美| 中出人妻视频一区二区| 一卡2卡三卡四卡精品乱码亚洲| 国产精品久久久久久人妻精品电影| www.999成人在线观看| 日韩欧美三级三区| 亚洲国产精品sss在线观看| 久久久久久九九精品二区国产| 久久香蕉精品热| 亚洲色图av天堂| 国内精品美女久久久久久| 国产高潮美女av| 久久精品国产自在天天线| 午夜福利18| 欧美bdsm另类| 在线观看免费视频日本深夜| 变态另类成人亚洲欧美熟女| 久久精品亚洲精品国产色婷小说| 91九色精品人成在线观看| 日日夜夜操网爽| 欧美最黄视频在线播放免费| 丁香六月欧美| 特级一级黄色大片| 国产视频一区二区在线看| 免费在线观看影片大全网站| 黄色日韩在线| 一级作爱视频免费观看| 国产真实乱freesex| 老司机午夜十八禁免费视频| 午夜激情福利司机影院| 午夜福利在线观看吧| 精品久久久久久久毛片微露脸| 久久久久久久精品吃奶| 免费人成视频x8x8入口观看| 91在线精品国自产拍蜜月 | 日韩 欧美 亚洲 中文字幕| 日本 av在线| 婷婷六月久久综合丁香| 亚洲片人在线观看| 亚洲片人在线观看| 制服人妻中文乱码| 一卡2卡三卡四卡精品乱码亚洲| 欧美一级毛片孕妇| 禁无遮挡网站| 国产精品久久久久久人妻精品电影| 亚洲黑人精品在线| 欧美在线一区亚洲| 日韩欧美免费精品| 制服丝袜大香蕉在线| 俄罗斯特黄特色一大片| 香蕉丝袜av| 俄罗斯特黄特色一大片| 天天躁日日操中文字幕| 欧美日韩中文字幕国产精品一区二区三区| 亚洲精品美女久久久久99蜜臀| 国内揄拍国产精品人妻在线| 国产免费av片在线观看野外av| 九九久久精品国产亚洲av麻豆| 国产精品一及| 久久久久久久久大av| 色噜噜av男人的天堂激情| 男女下面进入的视频免费午夜| 男女下面进入的视频免费午夜| 日本精品一区二区三区蜜桃| 久久久成人免费电影| 久久久久久久久大av| 亚洲精品美女久久久久99蜜臀| 午夜免费观看网址| 国产真实伦视频高清在线观看 | 97超视频在线观看视频| 丰满的人妻完整版| 日韩精品中文字幕看吧| 在线观看66精品国产| 动漫黄色视频在线观看| 亚洲精品日韩av片在线观看 | 女人十人毛片免费观看3o分钟| 国产真实乱freesex| 免费看日本二区| 亚洲欧美日韩高清在线视频| 日韩国内少妇激情av| 2021天堂中文幕一二区在线观| 国产高清激情床上av| 丁香欧美五月| 久久欧美精品欧美久久欧美| 免费电影在线观看免费观看| 久久久久久国产a免费观看| 国产黄色小视频在线观看| 69av精品久久久久久| 少妇人妻精品综合一区二区 | av福利片在线观看| 亚洲人成网站在线播放欧美日韩| 午夜福利高清视频| 18禁国产床啪视频网站| АⅤ资源中文在线天堂| 久久久国产精品麻豆| 天美传媒精品一区二区| 午夜老司机福利剧场| 中亚洲国语对白在线视频| 一级黄片播放器| 一本一本综合久久| 久久九九热精品免费| av女优亚洲男人天堂| x7x7x7水蜜桃| 久久久久久久精品吃奶| 一本一本综合久久| 99久久精品国产亚洲精品| 亚洲久久久久久中文字幕| 天堂网av新在线| 99精品在免费线老司机午夜| 国产精品久久久久久久久免 | 一二三四社区在线视频社区8| 久久中文看片网| 99热只有精品国产| 长腿黑丝高跟| 免费看美女性在线毛片视频| 精品欧美国产一区二区三| 国产淫片久久久久久久久 | 亚洲乱码一区二区免费版| 久久人人精品亚洲av| 久久精品夜夜夜夜夜久久蜜豆| 免费高清视频大片| 99热只有精品国产| 中文字幕熟女人妻在线| 少妇裸体淫交视频免费看高清| АⅤ资源中文在线天堂| 舔av片在线| 女人十人毛片免费观看3o分钟| 男插女下体视频免费在线播放| 最新在线观看一区二区三区| 男女那种视频在线观看| 亚洲av中文字字幕乱码综合| 激情在线观看视频在线高清| 婷婷精品国产亚洲av| 婷婷亚洲欧美| 丁香六月欧美| 一本综合久久免费| 日韩欧美 国产精品| av欧美777| 国产欧美日韩一区二区三| 宅男免费午夜| 亚洲内射少妇av| 日韩高清综合在线| 亚洲精品久久国产高清桃花| 欧美日本亚洲视频在线播放| 国产免费一级a男人的天堂| 国产免费av片在线观看野外av| 18禁美女被吸乳视频| 高清毛片免费观看视频网站| 国产v大片淫在线免费观看| 看片在线看免费视频| 人人妻人人看人人澡| 久久精品91蜜桃| 亚洲 欧美 日韩 在线 免费| 国产一级毛片七仙女欲春2| 一级a爱片免费观看的视频| 床上黄色一级片| 岛国视频午夜一区免费看| 国产伦精品一区二区三区视频9 | 国产精品影院久久| 老熟妇仑乱视频hdxx| 全区人妻精品视频| 一级黄色大片毛片| 波野结衣二区三区在线 | 久久久色成人| 国产私拍福利视频在线观看| 午夜福利18| 亚洲精品影视一区二区三区av| 亚洲七黄色美女视频| 国产伦一二天堂av在线观看| 欧美最黄视频在线播放免费| 国产探花在线观看一区二区| 天天一区二区日本电影三级| 国产精品乱码一区二三区的特点| a级一级毛片免费在线观看| 人人妻人人看人人澡| 久久国产精品影院| 精品国产三级普通话版| 免费人成视频x8x8入口观看| 婷婷丁香在线五月| 久久精品国产亚洲av涩爱 | 夜夜看夜夜爽夜夜摸| 99久久99久久久精品蜜桃| 国产精品 国内视频| 俄罗斯特黄特色一大片| 久久九九热精品免费| 国产精品日韩av在线免费观看| 欧美一区二区亚洲| 一边摸一边抽搐一进一小说| 91久久精品国产一区二区成人 | 久久婷婷人人爽人人干人人爱| 欧美黑人欧美精品刺激| 床上黄色一级片| 国产精品日韩av在线免费观看| 深夜精品福利| 免费高清视频大片| 欧美性猛交黑人性爽| 国产一区二区亚洲精品在线观看| 五月玫瑰六月丁香| 国产欧美日韩精品亚洲av| 精品国产三级普通话版| 欧美bdsm另类| 村上凉子中文字幕在线| 国内揄拍国产精品人妻在线| 18禁黄网站禁片免费观看直播| 婷婷精品国产亚洲av| 免费av不卡在线播放| 又黄又爽又免费观看的视频| 高潮久久久久久久久久久不卡| netflix在线观看网站| 无限看片的www在线观看| 一个人看视频在线观看www免费 | 黄色成人免费大全| 小说图片视频综合网站| 国产高清视频在线播放一区| 精品久久久久久,| 五月伊人婷婷丁香| 日本 av在线| 99精品欧美一区二区三区四区| 国产精品日韩av在线免费观看| 国产精品免费一区二区三区在线| 亚洲精品色激情综合| 精品乱码久久久久久99久播| 丰满乱子伦码专区| 狠狠狠狠99中文字幕| 男女之事视频高清在线观看| 亚洲精品色激情综合| 国产精品av视频在线免费观看| 国产午夜精品久久久久久一区二区三区 | 桃色一区二区三区在线观看| 午夜激情欧美在线| 校园春色视频在线观看| 国产aⅴ精品一区二区三区波| 久久精品国产99精品国产亚洲性色| 在线免费观看不下载黄p国产 | 夜夜爽天天搞| 无人区码免费观看不卡| 国产精品美女特级片免费视频播放器| 国产欧美日韩一区二区精品| 亚洲内射少妇av| 岛国视频午夜一区免费看| 波多野结衣高清作品| 黄色视频,在线免费观看| 国产99白浆流出| 人人妻人人澡欧美一区二区| 成人三级黄色视频| 日韩国内少妇激情av| 午夜两性在线视频| 午夜福利在线在线| 亚洲精品日韩av片在线观看 | 久久久成人免费电影| 听说在线观看完整版免费高清| 精品久久久久久久毛片微露脸| 五月伊人婷婷丁香| 精品乱码久久久久久99久播| 综合色av麻豆| 在线观看午夜福利视频| 国内精品久久久久久久电影| 亚洲av不卡在线观看| 中文字幕av在线有码专区| 成人国产综合亚洲| 午夜福利在线观看免费完整高清在 | 在线观看av片永久免费下载| 欧美bdsm另类| 19禁男女啪啪无遮挡网站| 亚洲av一区综合| 一级作爱视频免费观看| 法律面前人人平等表现在哪些方面| 美女被艹到高潮喷水动态| 伊人久久精品亚洲午夜| 中文亚洲av片在线观看爽| 男女下面进入的视频免费午夜| 嫩草影院精品99| 最近最新免费中文字幕在线| 女警被强在线播放| 久久久久久久亚洲中文字幕 | 成人一区二区视频在线观看| 国产精品一区二区三区四区免费观看 | 狂野欧美激情性xxxx| 国产又黄又爽又无遮挡在线| 久久久久久久久中文| 国产午夜福利久久久久久| 一级a爱片免费观看的视频| 久久久久久国产a免费观看| 国产高清有码在线观看视频| 麻豆成人午夜福利视频| 一本精品99久久精品77| 久久精品国产亚洲av涩爱 | 国模一区二区三区四区视频| 操出白浆在线播放| 国产 一区 欧美 日韩| 国产午夜精品论理片| 久久香蕉精品热| 亚洲精品成人久久久久久| 久久久精品欧美日韩精品| 男插女下体视频免费在线播放| 美女高潮的动态| 色综合婷婷激情| av在线蜜桃| 国产精品,欧美在线| 精品久久久久久久毛片微露脸| 亚洲欧美一区二区三区黑人| 国产视频内射| av专区在线播放| 国产黄片美女视频| 此物有八面人人有两片| 有码 亚洲区| 免费看十八禁软件| 美女高潮的动态| 国产精品 欧美亚洲| 最近最新中文字幕大全电影3| 真人做人爱边吃奶动态| 久久国产精品影院| 人人妻,人人澡人人爽秒播| 国产精品一及| 国产精品自产拍在线观看55亚洲| 国产亚洲精品久久久com| 天堂网av新在线| 99久久九九国产精品国产免费| 欧美又色又爽又黄视频| 亚洲精品粉嫩美女一区| tocl精华| 国产久久久一区二区三区| 91九色精品人成在线观看| 身体一侧抽搐| 国产精品,欧美在线| 亚洲av熟女| 熟女人妻精品中文字幕| 久久草成人影院| 欧美最黄视频在线播放免费| 中文字幕久久专区| 一个人看的www免费观看视频| 精品国产三级普通话版| 亚洲aⅴ乱码一区二区在线播放| 日本撒尿小便嘘嘘汇集6| 人妻丰满熟妇av一区二区三区| 国产一区二区亚洲精品在线观看| 琪琪午夜伦伦电影理论片6080| 欧美成狂野欧美在线观看| 最新美女视频免费是黄的| 久久国产精品影院| 中文字幕人成人乱码亚洲影| 欧美日韩乱码在线| 又爽又黄无遮挡网站| 熟妇人妻久久中文字幕3abv| 日韩成人在线观看一区二区三区| 国产黄色小视频在线观看| 欧美色欧美亚洲另类二区| 亚洲午夜理论影院| 一进一出抽搐gif免费好疼| 久久久久久国产a免费观看| 亚洲成人久久爱视频| 免费观看精品视频网站| 国产亚洲精品久久久久久毛片| 九九久久精品国产亚洲av麻豆| 最近最新免费中文字幕在线| 精品日产1卡2卡| 91九色精品人成在线观看| 久久人人精品亚洲av| 在线观看美女被高潮喷水网站 | 村上凉子中文字幕在线| 超碰av人人做人人爽久久 | 中文字幕久久专区| 精品国产超薄肉色丝袜足j| 国产91精品成人一区二区三区| 国产精华一区二区三区| 亚洲欧美日韩高清在线视频| 在线观看免费视频日本深夜| 男女做爰动态图高潮gif福利片| 99riav亚洲国产免费| 黄色丝袜av网址大全| 欧美三级亚洲精品| 久久久成人免费电影| 俺也久久电影网| 怎么达到女性高潮| 久久精品91蜜桃| 亚洲国产欧美人成| 久99久视频精品免费| 9191精品国产免费久久| 久久人人精品亚洲av| 听说在线观看完整版免费高清| 国内精品久久久久久久电影| 国产成+人综合+亚洲专区| www日本黄色视频网| 岛国在线免费视频观看| www国产在线视频色| 国产乱人伦免费视频| 国产主播在线观看一区二区| 69av精品久久久久久| 国产 一区 欧美 日韩| 人妻夜夜爽99麻豆av| 国产一区二区在线av高清观看| 成人av在线播放网站| 色综合婷婷激情| 美女免费视频网站| а√天堂www在线а√下载| 99久久综合精品五月天人人| 久久香蕉精品热| 一二三四社区在线视频社区8| 男人和女人高潮做爰伦理| 欧美一级a爱片免费观看看| 在线观看av片永久免费下载| 国产精品精品国产色婷婷| 国产成人福利小说| 午夜福利在线观看吧| 欧美一级a爱片免费观看看| 女人高潮潮喷娇喘18禁视频| 舔av片在线| 久久久久精品国产欧美久久久| 国产一级毛片七仙女欲春2| 床上黄色一级片| 亚洲人成伊人成综合网2020| 婷婷亚洲欧美| 丰满人妻一区二区三区视频av | 1024手机看黄色片| 啦啦啦韩国在线观看视频| 亚洲成人精品中文字幕电影| 亚洲国产精品成人综合色| 精品久久久久久久久久久久久| 精品不卡国产一区二区三区| 19禁男女啪啪无遮挡网站| 色视频www国产| 少妇高潮的动态图| 国产精品一及| e午夜精品久久久久久久| 老司机在亚洲福利影院| 中文字幕人妻丝袜一区二区| 狂野欧美白嫩少妇大欣赏| 日韩国内少妇激情av| 男女床上黄色一级片免费看| 国产麻豆成人av免费视频| 欧美乱色亚洲激情| 亚洲,欧美精品.| 亚洲成人久久爱视频| 搡老熟女国产l中国老女人| 男人舔女人下体高潮全视频| 久久6这里有精品| 久久久精品大字幕| 欧美又色又爽又黄视频| 欧美成人性av电影在线观看| 九色国产91popny在线| 久久精品人妻少妇| 极品教师在线免费播放| 欧美大码av| 我要搜黄色片| 少妇的丰满在线观看| 亚洲精品在线美女| 亚洲狠狠婷婷综合久久图片| 色综合欧美亚洲国产小说| 精品福利观看| 欧美一区二区国产精品久久精品| 中出人妻视频一区二区| 小说图片视频综合网站| 国产亚洲欧美在线一区二区| 国产久久久一区二区三区| 12—13女人毛片做爰片一| 偷拍熟女少妇极品色| 黑人欧美特级aaaaaa片| 国产三级在线视频| 久久亚洲真实| 国产欧美日韩精品一区二区| 日韩欧美一区二区三区在线观看| 好男人在线观看高清免费视频| 欧美高清成人免费视频www| 香蕉av资源在线| e午夜精品久久久久久久| 国语自产精品视频在线第100页| АⅤ资源中文在线天堂| 亚洲人成网站在线播| 每晚都被弄得嗷嗷叫到高潮| 香蕉丝袜av| 美女被艹到高潮喷水动态| 一a级毛片在线观看| 久99久视频精品免费| 欧美精品啪啪一区二区三区| 国产精品一区二区三区四区久久| xxxwww97欧美| 熟女电影av网| 亚洲国产精品成人综合色| 国产欧美日韩精品一区二区| 国产真人三级小视频在线观看| 欧美成狂野欧美在线观看| 亚洲色图av天堂| 欧美性猛交黑人性爽| 日本三级黄在线观看| 亚洲精品一区av在线观看| 黄片大片在线免费观看| 韩国av一区二区三区四区| 亚洲精品美女久久久久99蜜臀| 首页视频小说图片口味搜索| 又紧又爽又黄一区二区| 听说在线观看完整版免费高清| 中文字幕久久专区| av欧美777| 国产成人av教育| 精品一区二区三区人妻视频| 女人十人毛片免费观看3o分钟| 啦啦啦韩国在线观看视频| 宅男免费午夜| 久久草成人影院| 久久久久久人人人人人| 国产精华一区二区三区| 国产精品乱码一区二三区的特点| 国产一区二区激情短视频| 成人18禁在线播放| 久久精品国产自在天天线| 国产成人aa在线观看| 精品不卡国产一区二区三区| 99国产精品一区二区蜜桃av| 午夜视频国产福利| 高清日韩中文字幕在线| 国产单亲对白刺激| 女人高潮潮喷娇喘18禁视频| 禁无遮挡网站| 国产毛片a区久久久久| 日本免费a在线| 怎么达到女性高潮| 草草在线视频免费看| 亚洲av不卡在线观看| 成人国产一区最新在线观看| a在线观看视频网站| 波野结衣二区三区在线 | 最近最新免费中文字幕在线| 91在线观看av| 丰满乱子伦码专区| 久久久久久久亚洲中文字幕 | 男人舔奶头视频| 桃红色精品国产亚洲av| 小说图片视频综合网站| 在线观看美女被高潮喷水网站 | 俄罗斯特黄特色一大片| 18+在线观看网站| 深夜精品福利| 丰满人妻熟妇乱又伦精品不卡| 最新中文字幕久久久久| 美女 人体艺术 gogo| 久久久久久九九精品二区国产| 午夜福利视频1000在线观看| 天天一区二区日本电影三级| 超碰av人人做人人爽久久 | 亚洲专区国产一区二区| 欧美性感艳星| 国产熟女xx| 九九热线精品视视频播放| 亚洲在线观看片| АⅤ资源中文在线天堂| 国产 一区 欧美 日韩| 午夜a级毛片| 亚洲av电影不卡..在线观看| 精品人妻1区二区| 国产真实乱freesex| 成人av一区二区三区在线看| 国模一区二区三区四区视频| av福利片在线观看| 日韩av在线大香蕉| 熟妇人妻久久中文字幕3abv| 国产伦人伦偷精品视频| 免费av观看视频| 国产一区二区激情短视频| 亚洲av中文字字幕乱码综合| 欧美黑人欧美精品刺激| 日韩欧美国产在线观看| 美女黄网站色视频| 亚洲久久久久久中文字幕| 色噜噜av男人的天堂激情| 成人亚洲精品av一区二区| 村上凉子中文字幕在线| 国产v大片淫在线免费观看| 人人妻人人澡欧美一区二区| 三级毛片av免费| av天堂在线播放| 国产成人aa在线观看| 91久久精品电影网| av女优亚洲男人天堂| 国产一区二区三区视频了| 麻豆成人午夜福利视频| 999久久久精品免费观看国产| 99riav亚洲国产免费| 亚洲一区二区三区色噜噜| 十八禁人妻一区二区| 又紧又爽又黄一区二区| 嫁个100分男人电影在线观看| 黄色日韩在线| 亚洲五月婷婷丁香| 成人特级黄色片久久久久久久| 欧美xxxx黑人xx丫x性爽|