• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Imprints of the Jittering Jets Explosion Mechanism in the Morphology of the Supernova Remnant SNR 0540-69.3

    2022-05-24 14:21:20NoamSoker

    Noam Soker

    Department of Physics,Technion,Haifa,3200003,Israel;soker@physics.technion.ac.il

    Abstract I identify a point-symmetric structure in recently published VLT/MUSE velocity maps of different elements in a plane along the line of sight at the center of the supernova remnant SNR 0540-69.3,and argue that jittering jets that exploded this core collapse supernova shaped this point-symmetric structure.The four pairs of two opposite clumps that compose this point symmetric structure suggest that two to four pairs of jittering jets shaped the inner ejecta in this plane.In addition,intensity images of several spectral lines reveal a faint strip(the main jet-axis)that is part of this plane of jittering jets and its similarity to morphological features in a few other SNRs and in some planetary nebulae further suggests shaping by jets.My interpretation implies that in addition to instabilities,jets also mix elements in the ejecta of core collapse supernovae.Based on the point-symmetric structure and under the assumption that jittering jets exploded this supernova,I estimate the component of the neutron star natal kick velocity on the plane of the sky to be ?235 km s?1,and at an angle of ?47°to the direction of the main jet-axis.I analyze this natal kick direction together with 12 other SNRs in the frame of the jittering jets explosion mechanism.

    Key words:ISM:supernova remnants–stars:jets–(stars:) supernovae:general–(stars:) supernovae:individual(SNR 0540-69.3)

    1.Introduction

    Core collapse supernova (CCSN) remnants (SNRs) have inhomogeneous structures of filaments,arcs,clumps and “ears”(two opposite protrusions from the main SNR).Examples include the SNRs Vela(images by,e.g.,Aschenbach et al.1995;García et al.2017),SNR G292.0+1.8(e.g.,Park et al.2002,2007),and SNR W49B(e.g.,Lopez et al.2013;Sano et al.2021).This holds for the inner ejecta of CCSNe that have inhomogeneous structures of filaments,clumps,and rings of different heavy elements such as oxygen,silicon,sulfur,argon and iron.According to the delayed neutrino explosion mechanism of CCSNe,instabilities that inherently exist in this explosion mechanism cause these filamentary structures of the inner ejecta(e.g.,Janka et al.2017;Wongwathanarat et al.2017;Gabler et al.2021;Sandoval et al.2021).According to the jittering jets explosion mechanism of CCSNe,both instabilities and jittering jets shape the ejecta (e.g.,Papish &Soker 2014a;Papish et al.2015a;Gilkis &Soker 2016).In the jittering jets explosion mechanism instabilities inherently exist,in particular the spiral standing accretion shock instability(for studies of this instability see,e.g.,Blondin &Mezzacappa 2007;Rantsiou et al.2011;Fernández 2015;Kazeroni et al.2017),because these instabilities supply the stochastic angular momentum to form the intermittent accretion disk that launches the jittering jets (e.g.,Papish et al.2015a;Shishkin &Soker 2021).

    In some cases instabilities alone cannot account for the filamentary structure of the ejecta and it seems that jets as well shape the ejecta.Consider the clumpy/filamentary structure of the ejecta of SN 1987A (e.g.,Fransson et al.2015,2016;Larsson et al.2016;Abellán et al.2017;Matsuura et al.2017),now SNR 1987A.Although there are claims that the nonsymmetric explosion of SN 1987A is due to instabilities alone(e.g.,Kj?r et al.2010),recent studies suggest that this is not the case.Abellán et al.(2017) find that none of the neutrino driven explosion models they compare fit all observations of SN 1987A,a conclusion that supports a similar earlier claim by Soker (2017).Soker (2017) compared the Fe structure of SN 1987A from Larsson et al.(2016) with the numerical simulations by Wongwathanarat et al.(2015) and concluded that the neutrino-driven explosion mechanism cannot account for the structure of the Fe/Si-bright regions of SN 1987A (but this is in dispute in the literature,e.g.,Janka et al.2017).Namely,the numerical simulations of Wongwathanarat et al.(2015) predict several narrow Fe-rich fingers while the observed Fe/Si-bright structure has two large regions.Bear&Soker (2018b) use the observations of Abellán et al.(2017)to compare some morphological features of SN 1987A with morphological features of other SNRs and with planetary nebulae,and further argue that jittering jets played a crucial role in the explosion of SN 1987A.I note that the earlier claim of Wang et al.(2002) that two opposite non-jittering jets exploded SN 1987a is in conflict with the structure of the ejecta that Abellán et al.(2017) reveal (see discussion by Bear &Soker 2018b).

    Wongwathanarat et al.(2015) and Orlando et al.(2021)compared numerical simulations of the neutrino-driven explosion mechanism with the structure of SNR Cassiopeia A and argued that these simulations reproduce the morphological distribution of some metals in SNR Cassiopeia A.On the other hand,in Soker(2017) I examined the structure of Cassiopeia A from the observations of Grefenstette et al.(2017) and Lee et al.(2017)and showed that the metal distributions that Wongwathanarat et al.(2015) obtain from their numerical simulations cannot account for the observations.I instead argued that jets seem to have played a crucial role is the shaping of SNR Cassiopeia A during its explosion.I note also that Orlando et al.(2016)argued for the existence of a large-scale asymmetrical outflow in Cassiopeia A as instabilities alone cannot account for its morphology.

    Another strong indication from SNRs related to the role of jets in CCSN explosions is the presence of ears(Bear&Soker 2017;Bear et al.2017;Grichener &Soker 2017).While the distributions of heavy metals reveal mainly the SNR inner structures,ears reveal the role of jets in the outskirts of the ejecta.The reason is that most likely the ears are shaped by the last jets that the newly born neutron star (NS) launched.This launching episode takes place after the core exploded and therefore the jets can propagate to large distances (e.g.,Bear et al.2017).

    In the present study I examine the newly published highquality observations and analysis of SNR 0540-69.3 by Larsson et al.(2021)to argue that there is a point-symmetric structure as expected in the jittering jets explosion mechanism (Section 2).X-ray observations (e.g.,Park et al.2010) show that SNR 0540-69.3 has a large-scale rectangular shape,but one that is highly non-homogeneous.The 2.5–7 keV intensity map,however,contains two bright spots on opposite sides of the center (one to the east and one to the west;Figure 1 of Park et al.2010).This pair might or might not be part of the point symmetric structure that I study here.However,because the two bright spots are on the edge of the SNR and are faint,I do not explore their nature here.

    Figure 1.My claim for a main jet-axis on the plane of the sky as I mark with yellow double-headed arrows on the images reproduced from Figure 1 of Larsson et al.(2021).My additions are the yellow arrows,the dashed lines on the upper left panel that are the same as the dashed black line on the third lower panel,and the mark of the faint-strip by a black line in the upper left panel.The two parallel dashed lines mark the boundary of the wide X-shooter slit (Larsson et al.2021).

    Figure 2.My identification of the main jet-axis(yellow double-headed arrows)in the HST observations from Morse et al.(2006).In the red double-lined arrow I mark my suggestion for the transverse(projected on the plane of the sky)NS natal kick velocity vk,T that I derive from the velocity component perpendicular to the main jetaxis vk,per and the component along the slit vk,slit (Section 3).

    In Section 3 I use my claim for jittering jets in a plane to estimate the projected angle between the pulsar natal kick direction and the main jet-axis of the jittering jets.I consider this angle with 12 other SNRs for which the projected angles of the jets to the kick velocity exist.I use these 13 angles to strengthen an earlier claim that the natal kick velocity avoids small angles with respect to the main jet-axis.I discuss and summarize my study in Section 4.

    2.Imprints of Jittering Jets

    2.1.The Main Jet-axis

    The high resolution VLT/MUSE observations and high quality three-dimensional reconstruction of the ejecta of SNR 0540-69.3 by Larsson et al.(2021)allow the identification of a point-symmetric morphology.I first present in Figure 1 the images as Larsson et al.(2021) do in their Figure 1.On these images I added yellow double-headed arrows along a faint strip that goes through the center of the SNR as I mark by the black solid line in the upper left panel of Figure 1(all yellow arrows on the different panels are at the same position).I term this axis the main jet-axis,but as I discuss below it might represent a plane along the line of sight.From comparison of such central faint strips in planetary nebulae and in SNRs,earlier studies(e.g.,Bear et al.2017;Akashi et al.2018) suggested that the faint strip in SNRs is the direction of two opposite jets that cleaned the axis from most of the gas.Here,as well,I suggest that this central faint strip marks the direction of two opposite jets,or even two to four such pairs of jets in a plane.Namely,as I show in Section 2.2 more likely there is a jittering plane that represents two or more pairs of jittering jets.I also note that the double-headed arrows that mark the faint strip do not go through the pulsar,but rather through the pulsar wind nebula(PWN)blob.However,the pulsar is inside the faint strip as the strip is wide,but not at its central axis.

    I can identify the same main jet-axis in earlier Hubble Space Telescope(HST)observations by Morse et al.(2006),as I mark on the two panels of Figure 2 that I reproduce from Figure 1 of Morse et al.(2006).I discuss the meaning of the red arrows of the NS natal kick velocity in Section 3.

    Figure 3.Two-planetary nebulae which demonstrate a point-symmetric structure that the authors of the respective papers attribute to jets.On the left is PN He2-138(PN G320.1-09.6) from Sahai &Trauger (1998) and on the right is PN M1-37 (PN G002.6-03.4) from Sahai (2000).The three lines on the right panel are on the original image by Sahai (2000).

    My identification of the faint strip as the axis (or plane) of jittering jets that exploded the CCSN is new.In the past,studies(e.g.,Serafimovich et al.2004;Brantseg et al.2014)attributed this plane to the plane of the assumed torus of the PWN.These studies also identified two opposite jets perpendicular to this torus(e.g.,Serafimovich et al.2004;Lundqvist et al.2021).On the other hand,De Luca et al.(2007) suggested that the direction along the faint strip is the direction of the pulsar jets(see also discussion by Lundqvist et al.2011).As I show next,I attribute this direction to the plane of the jittering jets that exploded the CCSN of SNR 0540-69.3 rather than to the jets of the pulsar.

    2.2.A Point-symmetric Morphology

    2.2.1.Point-symmetry in Planetary Nebulae

    Larsson et al.(2021) present a thorough analysis of the properties of the clumps and the rings that they reveal in SNR 0540-69.3.Here,I only concentrate on what I identify as a point-symmetric structure that I attribute to jittering jets.My claim for jets is based in large part on the shaping by jets of the point-symmetric morphologies of planetary nebulae(e.g.,Sahai&Trauger 1998;Sahai et al.2011).

    In Figure 3 I present two examples of planetary nebulae with a point-symmetric structure.On the left is the planetary nebula He2-138 (PN G320.1-09.6) from Sahai &Trauger (1998)which displays a point symmetric structure that the authors attribute to shaping by jets.This PN demonstrates four pairs of opposite protrusions.In this case most of the brightest regions are the arcs at the front of the protrusions.On the right is the planetary nebula PN M1-37 (PN G002.6-03.4) from Sahai(2000),who also marked the three straight lines and named the three pairs of protrusions (lobes).In this case most of the brightest regions are to the sides of the lines connecting the tips of the opposite protrusions.

    The point to take from these two planetary nebulae is that jets can form point-symmetric structures,but that the brightest regions might be in different regions with respect to what researchers identify as the jets’ axes.

    2.2.2.Point-symmetry in SNR 0540-69.3

    From their VLT/X-shooter spectroscopic observation along the slit as marked by two parallel dashed lines in two panels of Figure 1 and from their derived age of ?1100 yr for SNR 0540-69.3,Larsson et al.(2021) build a velocity map in a plane perpendicular to the plane of the sky,i.e.,along the line of sight.I present their Figure 4 in Figure 4.I identify eight clumps that form a point-symmetric structure (although not perfect) along four lines that go through four pairs of clumps A-D,B-E,C-F and Gs-Gn.Larsson et al.(2021) mark clumps A-F and I also mark clumps Gn and Gs.

    I define the four different lines by connecting bright clumps.I identify the line “P1” in the images of [O II] and [S III],the line “P2” in the image of [Fe II],the line “P3” in the image of[O II],and the line“P4”in the image of[Fe II].I then copy the lines to other images to form the same structure of the four lines in all images of Figure 4.The strong point is that the lines also cross clumps that I did not use to define them.For example,line“P2”also crosses clumps in the[O II]image and in the Hα image.

    Because I define the lines by the bright clumps,the four lines do not cross exactly at the same point.However,the fact that the four lines cross each other at almost the same point,despite that I define them by the clumps,supports my claim for a pointsymmetric structure.

    A point-symmetric structure of an outflowing nebula very strongly suggests shaping by precessing jets or jittering(stochastic) jets.I therefore take the point symmetric structure in the plane of the slit to be a plane of jittering jets.The slit direction is at 12°to the main jet-axis that I take along the faint strip(Figure 2).Because the faint strip is wide,to the accuracy of the present analysis I can take the slit direction to be the main jet-axis.This implies that the main jet-axis represents a jittering plane along the line of sight (perpendicular to the planes of Figures 1 and 2).

    From the two point-symmetric planetary nebulae in Figure 3 we learn that the dense clumps might be at the tip of the jets or to the sides of the jets.Without numerical simulations of the explosion (which are extremely demanding) I cannot tell whether there were two,three or fours pairs of jittering jets in the plane of Figure 4.The reason is that each jet might form a clump at its head,a case that implies four pairs of jets,or each jet can inflate a bubble that forms clumps on its boundary,a case that allows for only two pairs of jets.

    Figure 4.Two-dimensional velocity maps as Larsson et al.(2021)present in their Figure 4 along the slit that the two dashed lines mark in two panels of Figure 1.The velocity along the slit vslit is positive to the northeast,and vz is the velocity along the line of sight.I added four lines on all panels(same four lines),P1–P4,to mark four pairs of opposite clumps that form the point-symmetric morphology that I identify here (A-D;B-E;C-F;Gn-Gs).The marks of clumps A to F in the lower left panel are from Larsson et al.(2021),while I added the marks to clumps Gn and Gs.The pulsar is at vslit=0 in these panels.The dashed horizontal yellow line at the location of the pulsar indicates that the line of sight velocity of the pulsar is not determined here.

    Let me consider the case where four pairs of jittering jets formed the point-symmetric structure that I identify in the plane of Figure 4.According to the jittering jets explosion mechanism,several to a few tens of jet-launching episodes explode the star(e.g.,Papish&Soker 2011,2014a).However,the jittering direction might not be completely chaotic.Papish&Soker(2014b)conducted three-dimensional hydrodynamical numerical simulations of the jittering jets explosion mechanism and showed that early jittering jets channel the gas that the newly born NS continues to accrete to inflow in directions perpendicular to the early jets.The direction of the angular momentum that this in-flowing gas carries,therefore,tends to be in the same plane as the first two pairs of jittering jets.Namely,later jets are more likely to be in the same plane as the first four jets (two pairs of jets).For that,the presence of four pairs of jets in a similar plane is compatible with the jittering jets explosion mechanism.This must not be the case with all jets,as large fluctuations of the angular momentum of the accreted gas onto the NS might tilt the accretion disk by a large angle so that the jet-axis of the newly launched jets is outside the earlier jittering plane.Therefore,other jet-axes are possible besides the jittering plane of Figure 4.In Section 4 I suggest that one such jet-axis might be perpendicular to the [O III]irregular ring-like structure.

    My conclusion is that the point-symmetric morphology that I identify in Figure 4 is compatible with,and strongly supports,the jittering jets explosion mechanism.

    3.On the Natal Kick Direction

    In what follows I deal only with the angle between the pulsar natal kick direction and the main jet-axis as it is projected on the plane of the sky.Therefore,the natal kick velocity component along the line of sight is not relevant.

    Serafimovich et al.(2004) estimated a pulsar transverse velocity of 1190±560 km s?1in a southeast direction.However,Mignani et al.(2010) constrain the transverse velocity to be <250 km s?1.

    If my identification of the jittering jet axis/plane holds,I can use it to estimate the pulsar natal kick velocity component on the plane of the sky.The pulsar is at a transverse distance offrom the main jet-axis.For an age of τ=1100 yr as Larsson et al.(2021)use(note that Serafimovich et al.2004 take τ=1660 yr) and a distance to the CCSN of D=50 kpc,this displacement corresponds to a transverse kick velocity component perpendicular to the main jet-axis of vk,per=dper/τ=171 km s?1.I mark this direction by a thick red arrow in Figure 2.Larsson et al.(2021)assume the pulsar is at the center of the explosion.From Figure 4 I find the velocity along the X-shooter of the pulsar relative to the center of the pointsymmetric structure to be vk,slit=165 km s?1in the southwest direction,as I mark by a second red arrow in Figure 2,and by the white arrow in the middle-lower panel of Figure 4.The slit is tilted by 12° with respect to the main jet-axis.From these I find the transverse (i.e.,projected on the plane of the sky) pulsar velocity relative to the center of the point-symmetric structure to be vk,T=|vk,slit+vk,per|=235 km s?1.I mark the transverse pulsar velocity that I estimate here by a double-lined red arrow in Figure 2.This velocity is below the upper limit that Mignani et al.(2010) deduce.

    The angle of this transverse kick velocity to the main jet-axis is α ?47°.I also note that the transverse component of the natal kick velocity of the pulsar that I deduce here is almost opposite to the direction that Serafimovich et al.(2005)argued for and that was refuted by Mignani et al.(2010).

    Bear &Soker (2018a) present the distribution of the projected angles α between the jets axis and the NS kick velocity for 12 SNRs.They conclude that the cumulative distribution function fits the random distribution (kick velocity is random with respect to the main jet-axis)at large angles,and is missing systems with small angles relative to the random distribution.I add the angle of α=47°for SNR 0540-69.3 that I estimate above to have now a sample of 13 SNRs.Note again that I deal here only with the projected angle on the plane of the sky as Bear &Soker (2018a) do in their analysis,and for that the natal kick velocity component along the line of sight is not relevant.I present the new cumulative distribution function in Figure 5.The new addition of SNR 0540-69.3 is compatible with the conclusion of Bear&Soker(2018a)and strengthens it.

    Figure 5.The cumulative distribution function Wα of projected angles between the jets’-axis and the NS natal kick for 13 SNRs.The angles of 12 SNRs are from Bear&Soker(2018a)and the new addition is my estimate of α ?47°for SNR 0540-69.3.The straight orange line is the expected random cumulative distribution function,while the convex blue line is the expected cumulative distribution function when in all cases the three-dimensional NS kick velocity is perpendicular to the jets’ axis.

    The reason that in the jittering jets explosion mechanism the NS kick velocity tends to be at a large angle to the main jet-axis is that dense ejecta clumps accelerate the NS by the gravitational tug-boat mechanism (Nordhaus et al.2010;Wongwathanarat et al.2013;Janka 2017;for a different explanation for kick velocities see,e.g.,recent studies by Yao et al.2021 and Xu et al.2021).Bear &Soker (2018a) argue that either the jets prevent the formation of dense clumps along their propagation direction,or that the dense clumps also supply the gas to the accretion disk that launches the jets.In either case the jet-axis and the natal kick velocity direction cannot be too close to each other.

    4.Discussion and Summary

    I examined the images and velocity maps of SNR 0540-69.3 that Larsson et al.(2021) present in a recent study.I defined a faint strip (upper left panel of Figure 1) in the images of the different spectral lines,and based on similar structures in a few other SNRs and in some planetary nebulae (e.g.,Akashi et al.2018) I attributed the shaping of the faint strip to one or more pairs of opposite jets.I termed this axis the main jet-axis.

    Larsson et al.(2021) obtain the velocity maps,which I present here in Figure 4,in a plane perpendicular to the plane of the sky by a slit that the two dashed lines in two panels of Figure 1 mark.In the velocity maps I identified a pointsymmetric structure that is defined by eight clumps (Figure 4).The four lines that connect opposite clumps cross each other at what I identified as the center of the structure.The direction of the slit almost coincides with the main jet-axis,and therefore I take the main jet-axis to be part of the point symmetric structure.Namely,the main jet-axis was shaped by two to four pairs of jittering jets.

    In Section 2.2 I argued that the point symmetric structure in the plane of Figure 4 is compatible with the jittering jets explosion mechanism of CCSNe.Actually,the jittering jets explosion mechanism predicts the common occurrence of point-symmetric morphological features in remnants of CCSNe.More than that,according to the jittering jets explosion mechanism,in some cases several consecutive pairs of jets will jitter in the same plane (Papish &Soker 2014b).According to the interpretation I suggest here,the elongation of the PWN (e.g.,Brantseg et al.2014) in the same direction as the main jet-axis results from the process by which the PWN plasma fills the less dense volume.The jittering jets that exploded the star shaped this less dense volume,i.e.the faint strip.

    From the location of the pulsar relative to the main jet axis and the age of 1100 yr for SNR 0540-69.3 that Larsson et al.(2021)report,I estimated the transverse(projected on the plane of the sky)pulsar natal kick velocity to be vk,T?235 km s?1at α ?47° with respect to the direction of the main jet-axis (red double-lined arrow in the right panel of Figure 2).

    In Figure 5 I present the cumulative distribution function of the jet-kick angles of 13 SNRs,12 SNRs from Bear &Soker(2018a) and the new addition of α ?47° for SNR 0540-69.3.This distribution shows that the NS natal kick direction and the main jets’-axis avoid small angles with respect to each other.I discussed in Section 3 the explanation for the missing small values of α in the frame of the jittering jets explosion mechanism.

    Each jet inflates a bubble as it interacts with the core material that it accelerates,and the interactions with each other of the bubbles that the jittering jets inflate form a complicated flow structure in the exploding core,i.e.,vortexes (Papish &Soker 2014b).This implies that in addition to instabilities(e.g.,Utrobin et al.2019) that occur also in the jittering jets explosion mechanism,the jittering jets also mix elements in the exploding core.

    I here analyzed only the inner ejecta with expanding velocities from the explosion site of ?1000 km s?1.I did not analyze the [O III] irregular ring-like structure at a velocity of ?1600 km s?1that Larsson et al.(2021) study in detail.Larsson et al.(2021)mention that the[O III]irregular ring-like structure of SNR 0540-69.3 might be similar to the CO torus expanding with a velocity of ?1700 km s?1that ALMA observations reveal in SNR 1987A (Abellán et al.2017).Bear&Soker (2018b) attributed the shaping of the CO torus in SNR 1987A to jittering jets.I therefore propose here the possibility that the [O III] irregular ring-like structure of SNR 0540-69.3 was compressed by two opposite jets with a jets’axis perpendicular to the plane of the[O III]irregular ringlike structure.This pair of jets was launched at a different angle than the four pairs of jets in the plane of Figure 4.

    I also note that in a recent paper Leonard et al.(2021)interpret their polarization observation of Type II-P/L SN 2013ej as resulting from the formation of high velocity(?4000 km s?1) nickel-56 clumps in the explosion.The jittering jets might explain such fast clumps.

    Larsson et al.(2021) write in their conclusions that their results“add to the growing evidence that rings and clumps are ubiquitous features of SN ejecta,likely reflecting hydrodynamical instabilities in the explosions.” I would add that these clumps,rings––and mixing reflect hydrodynamical instabilities and jets in the explosion mechanism.

    Acknowledgments

    I thank an anonymous referee for good suggestions.This research was supported by a grant from the Israel Science Foundation (769/20).

    此物有八面人人有两片| 免费电影在线观看免费观看| 亚洲欧美日韩卡通动漫| 首页视频小说图片口味搜索| 国产成人a区在线观看| 一个人看的www免费观看视频| 国产野战对白在线观看| 麻豆国产97在线/欧美| 日韩欧美精品免费久久 | 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 欧美+日韩+精品| 91字幕亚洲| www.999成人在线观看| 国产精品久久久久久人妻精品电影| 国产日本99.免费观看| 国产成人av激情在线播放| 国产老妇女一区| avwww免费| 天美传媒精品一区二区| 色综合欧美亚洲国产小说| 18+在线观看网站| ponron亚洲| 亚洲国产欧洲综合997久久,| 成人性生交大片免费视频hd| 在线国产一区二区在线| 色在线成人网| av视频在线观看入口| 亚洲一区高清亚洲精品| www日本在线高清视频| 日本与韩国留学比较| 久久精品综合一区二区三区| 午夜激情福利司机影院| 91九色精品人成在线观看| 99国产极品粉嫩在线观看| 国产av不卡久久| 日本一二三区视频观看| 啦啦啦观看免费观看视频高清| 成人特级黄色片久久久久久久| 欧美午夜高清在线| 日韩亚洲欧美综合| 亚洲中文日韩欧美视频| 国产男靠女视频免费网站| 久久香蕉国产精品| 久久久久性生活片| 一个人看视频在线观看www免费 | 制服人妻中文乱码| 1000部很黄的大片| 欧美日韩中文字幕国产精品一区二区三区| 久99久视频精品免费| 人妻丰满熟妇av一区二区三区| 精品国产亚洲在线| 国产一区二区激情短视频| 午夜精品久久久久久毛片777| 国产色婷婷99| 国产精品综合久久久久久久免费| 色综合站精品国产| x7x7x7水蜜桃| 久久精品国产亚洲av涩爱 | 超碰av人人做人人爽久久 | 国产午夜福利久久久久久| 色综合亚洲欧美另类图片| 亚洲五月天丁香| www.熟女人妻精品国产| 亚洲 欧美 日韩 在线 免费| 成年女人永久免费观看视频| 国产日本99.免费观看| 午夜免费男女啪啪视频观看 | 色综合欧美亚洲国产小说| 欧美精品啪啪一区二区三区| eeuss影院久久| 成年女人永久免费观看视频| 国产成人aa在线观看| 国产成人av激情在线播放| 夜夜看夜夜爽夜夜摸| 久久久久久久久大av| 久久久久久久精品吃奶| 99热这里只有精品一区| 国语自产精品视频在线第100页| 一级a爱片免费观看的视频| 听说在线观看完整版免费高清| 麻豆成人午夜福利视频| 亚洲国产欧美网| 久久久久久人人人人人| 亚洲性夜色夜夜综合| 亚洲成av人片免费观看| 亚洲av中文字字幕乱码综合| 午夜福利在线在线| 中文字幕熟女人妻在线| 欧美色欧美亚洲另类二区| 成人欧美大片| 婷婷亚洲欧美| 女警被强在线播放| 欧美性感艳星| 一个人免费在线观看电影| 亚洲成av人片在线播放无| 亚洲人成网站高清观看| svipshipincom国产片| 人妻丰满熟妇av一区二区三区| 久久精品国产亚洲av涩爱 | 热99在线观看视频| 久久精品国产亚洲av香蕉五月| 宅男免费午夜| av在线天堂中文字幕| 欧美激情在线99| 亚洲av免费高清在线观看| 欧美成人一区二区免费高清观看| 午夜福利视频1000在线观看| 久久久久国内视频| 在线观看日韩欧美| 桃色一区二区三区在线观看| 日本在线视频免费播放| 亚洲欧美日韩高清在线视频| 搡老熟女国产l中国老女人| 两个人视频免费观看高清| 亚洲狠狠婷婷综合久久图片| 午夜亚洲福利在线播放| a在线观看视频网站| 无人区码免费观看不卡| 欧洲精品卡2卡3卡4卡5卡区| 少妇的逼水好多| 亚洲精品在线观看二区| 国产国拍精品亚洲av在线观看 | 一本综合久久免费| 在线观看舔阴道视频| 亚洲国产高清在线一区二区三| 亚洲精品在线观看二区| 久久精品夜夜夜夜夜久久蜜豆| 在线免费观看的www视频| 久久久精品欧美日韩精品| 亚洲黑人精品在线| 久久午夜亚洲精品久久| 狂野欧美激情性xxxx| 亚洲在线观看片| 老司机深夜福利视频在线观看| 日韩中文字幕欧美一区二区| 久久精品人妻少妇| 国产精品久久久人人做人人爽| 国产精品精品国产色婷婷| 中国美女看黄片| 亚洲五月婷婷丁香| 久久精品国产99精品国产亚洲性色| 激情在线观看视频在线高清| 亚洲精品国产精品久久久不卡| 国产69精品久久久久777片| 亚洲色图av天堂| 午夜免费观看网址| 久久久国产精品麻豆| 身体一侧抽搐| 97碰自拍视频| 久久精品国产清高在天天线| 日本a在线网址| 在线看三级毛片| xxx96com| 成人高潮视频无遮挡免费网站| 女同久久另类99精品国产91| 国产乱人视频| 草草在线视频免费看| 最近视频中文字幕2019在线8| 亚洲五月天丁香| e午夜精品久久久久久久| 亚洲在线自拍视频| 91在线观看av| 成人av一区二区三区在线看| 亚洲成人精品中文字幕电影| 天堂√8在线中文| 嫩草影院入口| 亚洲国产中文字幕在线视频| 伊人久久精品亚洲午夜| 免费看a级黄色片| 91久久精品国产一区二区成人 | 久久久久久九九精品二区国产| 国产精品女同一区二区软件 | 免费看日本二区| 网址你懂的国产日韩在线| 亚洲精品美女久久久久99蜜臀| 色视频www国产| 一个人看的www免费观看视频| 少妇的逼好多水| 亚洲人成伊人成综合网2020| 亚洲人成网站在线播放欧美日韩| 制服丝袜大香蕉在线| 制服人妻中文乱码| 国产真人三级小视频在线观看| 久久性视频一级片| 国产亚洲精品一区二区www| 久久久成人免费电影| 在线观看免费午夜福利视频| 白带黄色成豆腐渣| av在线天堂中文字幕| 精品人妻一区二区三区麻豆 | 久久九九热精品免费| 久久久久免费精品人妻一区二区| 88av欧美| 国产v大片淫在线免费观看| 熟女电影av网| 亚洲aⅴ乱码一区二区在线播放| 黑人欧美特级aaaaaa片| 午夜免费成人在线视频| 日韩亚洲欧美综合| 亚洲国产精品合色在线| 国产精品爽爽va在线观看网站| 欧美极品一区二区三区四区| 麻豆久久精品国产亚洲av| 少妇裸体淫交视频免费看高清| 真实男女啪啪啪动态图| 啦啦啦免费观看视频1| 国产欧美日韩一区二区精品| 欧美最新免费一区二区三区 | 国产精品久久久久久人妻精品电影| 免费观看精品视频网站| 99久久精品热视频| 欧美一级毛片孕妇| 成人国产一区最新在线观看| 国产亚洲精品久久久com| 欧美乱色亚洲激情| 宅男免费午夜| 成人鲁丝片一二三区免费| 精品福利观看| 久久久成人免费电影| 桃红色精品国产亚洲av| 人妻久久中文字幕网| 免费一级毛片在线播放高清视频| 亚洲va日本ⅴa欧美va伊人久久| 首页视频小说图片口味搜索| 国产色爽女视频免费观看| 在线十欧美十亚洲十日本专区| 三级国产精品欧美在线观看| 国产蜜桃级精品一区二区三区| 少妇裸体淫交视频免费看高清| 很黄的视频免费| 国产成人a区在线观看| 在线观看免费视频日本深夜| 在线观看一区二区三区| 国产黄色小视频在线观看| 看黄色毛片网站| 一进一出抽搐gif免费好疼| 舔av片在线| 久久久久久久亚洲中文字幕 | 久久久色成人| 老司机午夜十八禁免费视频| 亚洲成av人片在线播放无| 最好的美女福利视频网| 国内毛片毛片毛片毛片毛片| 法律面前人人平等表现在哪些方面| 成人特级黄色片久久久久久久| 麻豆国产97在线/欧美| 在线看三级毛片| 国语自产精品视频在线第100页| 长腿黑丝高跟| av片东京热男人的天堂| 日韩国内少妇激情av| 国内揄拍国产精品人妻在线| 国模一区二区三区四区视频| 最近最新中文字幕大全电影3| 日本黄大片高清| 亚洲av免费在线观看| 久久性视频一级片| 国产精品一区二区免费欧美| 在线天堂最新版资源| 国产欧美日韩一区二区三| 中文亚洲av片在线观看爽| 欧美午夜高清在线| 十八禁人妻一区二区| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产97色在线日韩免费| 日本熟妇午夜| 久久99热这里只有精品18| 久久久久九九精品影院| 高潮久久久久久久久久久不卡| av在线蜜桃| 19禁男女啪啪无遮挡网站| 亚洲欧美激情综合另类| 成人高潮视频无遮挡免费网站| 黄色女人牲交| 蜜桃亚洲精品一区二区三区| 嫩草影视91久久| 国产精华一区二区三区| 欧美不卡视频在线免费观看| 叶爱在线成人免费视频播放| 看黄色毛片网站| 亚洲18禁久久av| 性欧美人与动物交配| 757午夜福利合集在线观看| 日日夜夜操网爽| 亚洲专区国产一区二区| 在线观看一区二区三区| 亚洲精华国产精华精| 亚洲欧美日韩高清在线视频| 2021天堂中文幕一二区在线观| 老汉色av国产亚洲站长工具| 国产精华一区二区三区| 最新美女视频免费是黄的| 欧美不卡视频在线免费观看| 久久精品国产清高在天天线| 国产精华一区二区三区| 99久久99久久久精品蜜桃| 国产午夜精品久久久久久一区二区三区 | 久久国产精品影院| www.999成人在线观看| 免费在线观看亚洲国产| 国产精品亚洲美女久久久| avwww免费| xxxwww97欧美| 人人妻人人澡欧美一区二区| x7x7x7水蜜桃| 午夜影院日韩av| 高潮久久久久久久久久久不卡| 国产成人系列免费观看| 狂野欧美激情性xxxx| 国产精品影院久久| 三级毛片av免费| 成人av一区二区三区在线看| 99精品久久久久人妻精品| 97超级碰碰碰精品色视频在线观看| 精品一区二区三区视频在线观看免费| 男人的好看免费观看在线视频| 老司机深夜福利视频在线观看| 国产一区二区三区在线臀色熟女| 欧美高清成人免费视频www| 亚洲av成人av| 成人一区二区视频在线观看| 夜夜夜夜夜久久久久| 国产精品野战在线观看| 12—13女人毛片做爰片一| 乱人视频在线观看| 夜夜夜夜夜久久久久| 国产精品99久久99久久久不卡| 色吧在线观看| 操出白浆在线播放| 亚洲一区二区三区不卡视频| 日韩 欧美 亚洲 中文字幕| 欧美xxxx黑人xx丫x性爽| 免费人成在线观看视频色| 色在线成人网| 日韩高清综合在线| 国产精品1区2区在线观看.| 乱人视频在线观看| 欧美+日韩+精品| 一个人免费在线观看的高清视频| 99热精品在线国产| 少妇的逼好多水| 亚洲欧美日韩高清在线视频| 久久精品影院6| 国产综合懂色| 国产免费av片在线观看野外av| 别揉我奶头~嗯~啊~动态视频| 一区二区三区免费毛片| 国产精品一区二区免费欧美| 此物有八面人人有两片| 最近最新中文字幕大全免费视频| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 99热6这里只有精品| 在线十欧美十亚洲十日本专区| 日本与韩国留学比较| 日韩av在线大香蕉| 两个人看的免费小视频| 久久欧美精品欧美久久欧美| 亚洲七黄色美女视频| 一本精品99久久精品77| 国产高清视频在线播放一区| 两个人视频免费观看高清| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 观看免费一级毛片| 此物有八面人人有两片| 男女之事视频高清在线观看| xxx96com| 色在线成人网| 男人和女人高潮做爰伦理| 亚洲av中文字字幕乱码综合| 久久精品人妻少妇| av在线蜜桃| 有码 亚洲区| 老司机午夜福利在线观看视频| 国产毛片a区久久久久| 搡老岳熟女国产| 午夜福利在线观看吧| 天堂网av新在线| 国产一区二区在线观看日韩 | 99久久综合精品五月天人人| 在线a可以看的网站| 亚洲av成人av| 欧美一级毛片孕妇| 亚洲国产高清在线一区二区三| 亚洲狠狠婷婷综合久久图片| 亚洲第一电影网av| 亚洲 国产 在线| 欧美一区二区亚洲| 国产在视频线在精品| 三级男女做爰猛烈吃奶摸视频| 免费一级毛片在线播放高清视频| 亚洲专区中文字幕在线| 丝袜美腿在线中文| 成人一区二区视频在线观看| 午夜a级毛片| 久99久视频精品免费| 亚洲av五月六月丁香网| 亚洲熟妇中文字幕五十中出| 婷婷丁香在线五月| 波多野结衣高清作品| 久久久国产成人精品二区| 午夜福利在线观看免费完整高清在 | 国内精品久久久久精免费| 在线观看一区二区三区| 99热6这里只有精品| 亚洲国产高清在线一区二区三| 亚洲性夜色夜夜综合| 国产精品一区二区免费欧美| 99精品欧美一区二区三区四区| 久久久久久久亚洲中文字幕 | 成人av在线播放网站| 久久精品人妻少妇| 狂野欧美激情性xxxx| 最新中文字幕久久久久| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 欧美日韩中文字幕国产精品一区二区三区| 在线观看舔阴道视频| 午夜亚洲福利在线播放| 老司机在亚洲福利影院| 男插女下体视频免费在线播放| 色哟哟哟哟哟哟| 欧美日韩一级在线毛片| 欧美+亚洲+日韩+国产| 最新在线观看一区二区三区| 日本 av在线| 久久久久精品国产欧美久久久| 久久久久久久久久黄片| 成人精品一区二区免费| 免费观看人在逋| 白带黄色成豆腐渣| 天美传媒精品一区二区| 成人精品一区二区免费| 久久久成人免费电影| 国产一区二区在线av高清观看| av在线天堂中文字幕| netflix在线观看网站| 精品久久久久久久毛片微露脸| 亚洲欧美日韩高清在线视频| 国产不卡一卡二| 亚洲精品456在线播放app | 色综合欧美亚洲国产小说| 91久久精品电影网| 高清毛片免费观看视频网站| 3wmmmm亚洲av在线观看| 国产乱人视频| 精品国产美女av久久久久小说| 亚洲七黄色美女视频| 黑人欧美特级aaaaaa片| 99在线人妻在线中文字幕| 欧美高清成人免费视频www| 天美传媒精品一区二区| 网址你懂的国产日韩在线| 精品免费久久久久久久清纯| 欧美国产日韩亚洲一区| 久久久久精品国产欧美久久久| 国产成人av激情在线播放| 国产一级毛片七仙女欲春2| 九色成人免费人妻av| 夜夜夜夜夜久久久久| 夜夜看夜夜爽夜夜摸| 亚洲无线在线观看| 亚洲avbb在线观看| 成人特级黄色片久久久久久久| 老汉色av国产亚洲站长工具| 欧美色欧美亚洲另类二区| 搡老岳熟女国产| www.熟女人妻精品国产| 19禁男女啪啪无遮挡网站| 亚洲无线观看免费| 久久亚洲真实| 国产一区二区三区视频了| 很黄的视频免费| 欧美bdsm另类| 男女那种视频在线观看| 久久久精品欧美日韩精品| 亚洲国产精品合色在线| 给我免费播放毛片高清在线观看| 好男人电影高清在线观看| 欧美中文日本在线观看视频| 久久久成人免费电影| 免费在线观看日本一区| 18禁在线播放成人免费| 网址你懂的国产日韩在线| 男人和女人高潮做爰伦理| 神马国产精品三级电影在线观看| 中出人妻视频一区二区| 国产91精品成人一区二区三区| 人妻丰满熟妇av一区二区三区| 久久久久久大精品| 国内精品一区二区在线观看| 欧美zozozo另类| 日韩精品中文字幕看吧| 日韩亚洲欧美综合| 亚洲乱码一区二区免费版| 国内久久婷婷六月综合欲色啪| 亚洲18禁久久av| 91九色精品人成在线观看| 啪啪无遮挡十八禁网站| 一区二区三区高清视频在线| 久久久国产成人精品二区| 91麻豆精品激情在线观看国产| a级一级毛片免费在线观看| 亚洲七黄色美女视频| 精品国产亚洲在线| 欧美丝袜亚洲另类 | 麻豆成人av在线观看| 午夜精品久久久久久毛片777| 日韩成人在线观看一区二区三区| 国产aⅴ精品一区二区三区波| 九九热线精品视视频播放| 亚洲av中文字字幕乱码综合| 一进一出好大好爽视频| 亚洲成人久久爱视频| 日韩高清综合在线| 麻豆一二三区av精品| 日韩 欧美 亚洲 中文字幕| 精品久久久久久久末码| 精品国内亚洲2022精品成人| 无遮挡黄片免费观看| 免费人成视频x8x8入口观看| 久久久久久久亚洲中文字幕 | 又紧又爽又黄一区二区| 在线观看美女被高潮喷水网站 | 亚洲人成伊人成综合网2020| 亚洲成人免费电影在线观看| 一进一出抽搐gif免费好疼| av国产免费在线观看| 午夜老司机福利剧场| www日本在线高清视频| 国产欧美日韩一区二区三| 欧美成人性av电影在线观看| 午夜免费男女啪啪视频观看 | 欧美另类亚洲清纯唯美| 99精品欧美一区二区三区四区| 国产伦一二天堂av在线观看| 国产亚洲精品久久久com| 色在线成人网| 淫妇啪啪啪对白视频| 一夜夜www| 色哟哟哟哟哟哟| 精品午夜福利视频在线观看一区| 亚洲熟妇熟女久久| 日韩精品中文字幕看吧| 午夜免费激情av| 午夜老司机福利剧场| 欧美不卡视频在线免费观看| 一边摸一边抽搐一进一小说| 国产精品亚洲一级av第二区| 免费观看的影片在线观看| 国产乱人伦免费视频| 亚洲精品成人久久久久久| 午夜福利成人在线免费观看| 久久亚洲精品不卡| xxx96com| 最近视频中文字幕2019在线8| 欧美绝顶高潮抽搐喷水| 中国美女看黄片| 精品一区二区三区视频在线观看免费| 黄色片一级片一级黄色片| 18禁黄网站禁片免费观看直播| 内地一区二区视频在线| 黄片小视频在线播放| 脱女人内裤的视频| 黄色视频,在线免费观看| 老司机在亚洲福利影院| 毛片女人毛片| 精品人妻1区二区| 亚洲国产中文字幕在线视频| 岛国视频午夜一区免费看| 啦啦啦韩国在线观看视频| 国产精品自产拍在线观看55亚洲| 99国产精品一区二区三区| 99久久无色码亚洲精品果冻| 成人国产综合亚洲| 一边摸一边抽搐一进一小说| 午夜两性在线视频| 久久久久国内视频| 欧美三级亚洲精品| 久9热在线精品视频| 不卡一级毛片| 99精品久久久久人妻精品| 国产精品久久久久久亚洲av鲁大| 两人在一起打扑克的视频| 国产蜜桃级精品一区二区三区| 搡老熟女国产l中国老女人| 真人一进一出gif抽搐免费| 国内揄拍国产精品人妻在线| 亚洲中文日韩欧美视频| 十八禁人妻一区二区| 欧美av亚洲av综合av国产av| 丁香六月欧美| 十八禁人妻一区二区| www日本黄色视频网| 真人做人爱边吃奶动态| 黄片大片在线免费观看| 精品久久久久久,| 丁香六月欧美| 俺也久久电影网| 国产一区在线观看成人免费| 在线国产一区二区在线| 日本 欧美在线| 久久久久久人人人人人| 国产单亲对白刺激| 亚洲专区中文字幕在线| 搡老妇女老女人老熟妇| 欧美区成人在线视频| 51国产日韩欧美| 亚洲精品在线观看二区| 久久伊人香网站| 19禁男女啪啪无遮挡网站| 韩国av一区二区三区四区| 亚洲黑人精品在线| 久久久久久久亚洲中文字幕 | 精品福利观看| 欧美日韩福利视频一区二区| 久久国产乱子伦精品免费另类|