• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hypercritical Accretion for Black Hole High Spin in Cygnus X-1

    2022-05-24 14:21:32YingQinXinwenShuShuangxiYiandYuanZhuWang

    Ying Qin ,Xinwen Shu ,Shuangxi Yi ,and Yuan-Zhu Wang

    1 Department of Physics,Anhui Normal University,Wuhu 241000,China;yingqin2013@hotmail.com

    2 Guangxi Key Laboratory for Relativistic Astrophysics,Nanning 530004,China

    3 School of Physics and Physical Engineering,Qufu Normal University,Qufu 273165,China

    4 Key Laboratory of Dark Matter and Space Astronomy,Purple Mountain Observatory,Chinese Academy of Sciences,Nanjing 210033,China

    Abstract Recent observations of AdLIGO and Virgo have shown that the spin measurements in binary black hole (BH)systems are typically small,which is consistent with the predictions by the classical isolated binary evolution channel.In this standard formation channel,the progenitor of the first-born BH is assumed to have efficient angular momentum transport.The BH spins in high-mass X-ray binaries(HMXBs),however,have consistently been found to be extremely high.In order to explain the high BH spins,the inefficient angular momentum transport inside the BH progenitor is required.This requirement,however,is incompatible with the current understanding of conventional efficient angular momentum transport mechanism.We find that this tension can be highly alleviated as long as the hypercritical accretion is allowed.We show that,for a case study of Cygnus X-1,the hypercritical accretion cannot only be a good solution for the inconsistent assumption upon the angular momentum transport within massive stars,but match its other properties reported recently.

    Key words:gravitational waves–stars:black holes–X-rays:binaries

    1.Introduction

    The recently revised measurements of the distance to Cygnus X-1 (Miller-Jones et al.2021) have shown that the masses of the black hole (BH) and its companion star are now significantly more massive than previous measurements,i.e.,To date the BH mass of Cygnus X-1 has exceeded the previously highest measured one in the X-ray binary for the extragalactic system M33 X-7.We note that the BH dimensionless spin recently reported is extremely high,a* >0.9985 (Miller-Jones et al.2021),which is consistent with the previous measurement,namely a*>0.983 (Orosz et al.2011;Cantiello et al.2014;Gou et al.2014;Reynolds 2021;Zhao et al.2021).In addition,it has been found that the surface helium-to-hydrogen ratio is about more than a factor of two relative to the solar composition (Shimanskii et al.2012).Therefore,the observations of BH spin measurement and high surface abundance of its companion star has put a challenge for stellar models of massive binary evolution.

    For low-mass X-ray binaries,the BH spins span the entire range from zero to maximally spinning,which can be explained through the Eddington-limited accretion onto the BH after its birth(Fragos &McClintock 2015).The BH spins,however,in the three high-mass X-ray binaries(HMXBs)(Cygnus X-1,M33 X-7 and LMC X-1),have been found continuously to be spinning close to maximum.Such high spins cannot be explained when considering the limited lifetime of BH companion and the Eddington-limited accretion in the isolated binary evolutionary scenario.

    Valsecchi et al.(2010) proposed a so-called Case-A mass transfer channel (Kippenhahn &Weigert 1967) that is applicable to the formation of M33 X-7.In this channel,the two stars evolve initially in a close binary system,and the BH progenitor star,while still in its main sequence,initiates mass transfer onto its companion.Qin et al.(2019b) systematically investigated this channel and found out that,in order to explain the three HMXBs,the inefficient angular momentum transport mechanism is required to form a fast spinning BH.

    To date,LIGO/Virgo have detected gravitational waves from~76 binary BH (BBH) mergers (The LIGO Scientific Collaboration et al.2021).One of the most intriguing results is that the effective inspiral spins are typically low.This has been well explained in the classical isolated binary evolution channel(Qin et al.2018;Bavera et al.2020;Belczynski et al.2020),in which the immediate progenitor of the BBH is a close binary system composed of a BH and a helium star.In this classical channel,the second-born BH can be efficiently spun up by tides (Qin et al.2018) from its companion and the first-born BH is assumed to have a negligible spin.This assumption requires that for a massive star the stellar core and its envelope have a strong coupling (i.e.,efficient angular momentum transport inside stars),and thus the first-born BH would have a negligible spin as its progenitor evolves initially with very weak tides in a wide binary system and loses its envelope to its companion via stellar winds and/or mass transfer.Therefore,the current spin measurements of LIGO/Virgo are in favor of the efficient angular momentum transport mechanism.Such an assumed mechanism,however,has a significant challenge when it is applied to the BH HMXBs.

    It is still unclear whether the angular momentum transport inside massive stars is efficient or not.The Tayler–Spruit dynamo (TS dynamo;Spruit 1999,2002),produced by differential rotation in the radiative layers,is considered as one of potential mechanisms responsible for the efficient transport of angular momentum between the stellar core and its radiative envelope.Stellar models with TS dynamo cannot only reproduce the flat rotation profile of the Sun(Eggenberger et al.2005),but the observations for final rotation of neutron stars and white dwarfs (Heger et al.2005;Suijs et al.2008).However,it has been recently found that models with TS dynamo still cannot explain the slow rotation rates of cores in red giants (Eggenberger et al.2012;Cantiello et al.2014).More recently,a revised TS dynamo (Fuller et al.2019) was proposed to better match lower core rotation rates for subgiants,which is in a better agreement with asteroseismic measurements than predicted by the original TS dynamo.But it was further confirmed that this revised TS dynamo still faces a challenge to reproduce the observed core rotation rates of red giant stars (Eggenberger et al.2019).To date,a theoretical debate on the existence of the dynamo has been ongoing(Zahn et al.2007).

    In the scenario of the classical binary evolution channel,the immediate progenitor of the BBH is a close binary system composed of a BH and a helium star.The first-born BH,formed from the more massive star,has been found with a negligible spin (Qin et al.2018).This result is exclusively dependent upon the well-accepted assumption of the TS dynamo for its progenitor.When considering the limited lifetime of HMXBs,breaking the Eddington accretion limit becomes a promising solution to explain the measured high BH spins.Early on,the case study of one HMXB(Moreno Méndez et al.2008) showed that the hypercritical accretion had happened in M33 X-7.Inayoshi et al.(2016) argued that the BH accretion rate larger than 5000 times the Eddington limit is still stable.Recently it was reported (Cherepashchuk et al.2020) that SS433 is likely a BH X-ray binary,and that the inferred accretion rate is~10-4M⊙yr-1.The hypercritical accretions onto supermassive BHs in two-dimensional radiation hydrodynamical simulations have been performed (van Son et al.2020).Woosley &Heger (2021) pointed out that a BH accretion at a rate higher than the Eddington limit is well known and that it can also be another source of uncertainty affecting the theoretical estimates for the boundaries of pairinstability mass gap.Recent population studies (Takeo et al.2020) have shown that the pair-instability mass gap might be polluted via either stable super-Eddington accretion or super-Eddington accretion in the Common Envelope phase.

    The motivation of this work comes from the inconsistent BH spin measurements in two types of BH binaries (i.e.,binary BHs and HMXBs).Such an inconsistency has put different constraints on the efficiency of the angular momentum transport inside massive stars in the context of the classical isolated binary evolution channel (Qin et al.2021).Additionally,the measured surface helium abundance of BH companion star is enhanced by more than a factor of two when compared with the solar composition.Combing the two together has put a significant challenge on the stellar models of massive binary evolution.Therefore,in this work under the assumption of nonspinning BHs at birth due to an efficient angular momentum transport inside massive stars,we study an alternative approach to forming fast-spinning BHs in HMXBs.In this study,we employ the the stellar structure code Modules for Experiments in Stellar Astrophysics MESA (Paxton et al.2011,2013,2015,2018,2019) to investigate whether or not the hypercritical accretion can explain the currently reported high BH spin measurement and high surface helium abundance of BH companion of Cygnus X-1.The paper is organized as follows.In Section 2,we briefly introduce the hypercritical accretion of the BH.We then present in Section 3 the methods in this study.In Section 4,we show the result of the case study for Cygnus X-1 with the hypercritical accretion.Finally the discussion and conclusions are given in Section 5.

    2.Hypercritical Accretion of a black hole

    In this section we first present the accretion process onto a BH at the Eddington limit,and then briefly introduce the hypercritical accretion.The Eddington accretion rate is the maximum rate at which the outward force from the radiation pressure balances the inward gravitational pull.Considering a BH as the accreting object,its corresponding maximum accretion rate is defined as

    where κ is the opacity and it is assumed to be mainly due to pure electron scattering,i.e.,κ=0.2(1+X)cm2g-1,X is the hydrogen mass fraction,and η the radiation efficiency.Forη is approximately expressed (Bardeen 1970) as

    where MBH,initis the initial mass of the BH before accretion.Under the assumption of the Eddington limit,the material in excess of the Eddington accretion rate is lost by carrying the specific orbital angular momentum of the BH.For an initially non-spinning BH,its mass and spin increase through accretion(Bardeen 1970) according to

    In our evolutionary sequences,none of the BH increases its mass by a factor of

    In case of the hypercritical accretion,the general point proposed (Brown &Weingartner 1994) is that if the mass transfer rates exceed the Eddington limit,the excess accretion energy can be removed by means of neutrino pairs rather than photons.This thus allows the matter to be smoothly accreted onto the BH.

    The hypercritical accretion can reach a rate foror even higher (Brown &Weingartner 1994).The case study(Moreno Méndez et al.2008) indicated that the hypercritical accretion had happened to the M33 X-7 system in which the BH was spun up through the hypercritical accretion after its birth.In the investigation of a binary system consisted of MBH=12 M⊙orbiting its companion star with mass M2=25 M⊙at an orbital period of 6.8 days,it was found (Podsiadlowski et al.2003) that the companion star initiated overflowing its Roche lobe at the end of main-sequence phase and the corresponding mass transfer rate could reach a peak of~4×10-3M⊙yr-1on the thermal timescale of the envelope.

    In this work,we employ the detailed binary evolution code MESA to investigate the evolution of a HMXB-like that could resemble Cygnus X-1.In this investigation,we allow for the hypercritical accretion,and assume the conservative mass transfer in the binary system.

    3.Methods

    We use release 15,140 of the MESA stellar evolution code to perform all of the detailed binary evolution calculations in this work.We adopt a metallicity of Z=Z⊙,where Z⊙=0.0142(Asplund et al.2009).We model the convection energy transport using the standard mixing-length theory (B?hm-Vitense 1958)with a mixing-length parameter of α=1.93.We adopt the Ledoux criterion for the boundary of the convective zones and choose the step core overshooting with the parameter αov=0.1.We also adopt the convective premixing scheme as introduced in Paxton et al.(2019)and include the thermohaline mixing with the parameter αth=1.0.For superadiabatic convection in radiation-dominated regions,we employ the MLT++to help numerical convergence (Paxton et al.2013).

    For stellar winds,we use the‘‘Dutch’’scheme for both RGB and AGB phase,as well as the cool and hot wind.We adopt the default RGB_to_AGB_to_wind_switch=1d-4,a scaling factor Dutch_scaling_factor=1.0,as well as cool_wind_full_on_T=0.8d4 and hot_wind_full_on_T=1.2d4.

    We model the angular momentum transport and rotational mixing diffusive processes (Heger &Langer 2000),including the effects of Eddington-Sweet circulations,the Goldreich-Schubert-Fricke instability,as well as secular and dynamical shear mixing.We adopt diffusive element mixing from these processes with an efficiency parameter of fc=1/30(Chaboyer&Zahn 1992;Heger &Langer 2000).For an efficient angular momentum transport mechanism,we use the Spruit-Tayler dynamo (Spruit 1999,2002).Mass transfer is modeled following the Kolb scheme (Kolb &Ritter 1990) and the implicit mass transfer method (Paxton et al.2015) is adopted.The timescale for orbital synchronisation is calculated following (Hurley et al.2002) for massive stars with radiative envelopes.

    4.Case Study of Cygnus X-1

    4.1.Updated Properties of Cygnus X-1

    Cygnus X-1 is a binary consisting of a massive supergiant O-type star orbiting a BH with a 5.6 days orbital period.Recently the inferred BH and its companion masses of Cygnus X-1 with revised measurements of its distance have been reported to be more massive than previous measurements.The reported parameters with their median value and 68%confidence interval boundaries of this system (Miller-Jones et al.2021),are shown in Table 1.

    Table 1 Main Properties of Cygnus X-1

    4.2.Application of the Hypercritical Accretion to Cygnus X-1

    Our result of the binary calculation that may resemble the formation history of Cygnus X-1 is shown in Figure 1.We evolved a binary consisting of a BH with the mass MBH=12 M⊙as a point mass and the companion star with its mass M2=56 M⊙at zero-age main sequence,at an initial orbital period Porb=13 days.

    Figure 1.Key binary parameters as a function of the BH companion mass.Top left panel:the BH spin a*as a function of the BH mass and its companion star mass since the beginning of mass transfer(marked by a red point).The orbital period(top right panel),the mass transfer rate(bottom left panel),the ratio of the helium to hydrogen at the surface of the BH companion star (bottom right panel),as a function of the BH companion mass.The median values with corresponding 68%confidence for observed properties are denoted in blue.

    In this numerical calculation,the BH had an assumption of zero spin at its birth.This is not only well accepted by currently conventional understanding for efficient angular momentum transport inside massive stars,but consistent with measured low BH spins from the gravitational-wave observations(Abbott et al.2021).We assume that the material from the BH companion’s winds captured by the BH is negligible when compared with the mass transfer through the Roche lobe overflow via the first Lagrangian point(L1).In the top left panel in Figure 1,we show the evolution of the binary after the onset of the mass transfer.It is shown that the BH gradually increases its spin magnitude as it accretes material from its companion star.The non-spinning BH accretes nearly half of its initial mass (~6 M⊙) to reach a high spin close to maximum.The recently updated measurements(Miller-Jones et al.2021)of the BH mass,as well as its spin a* and companion mass,are marked in blue(at 68%credibility).The currently reported BH spin is very extreme,i.e.,a*>0.983,and it is still consistent with previous measurements(Orosz et al.2011;Cantiello et al.2014;Reynolds 2021).Our finding shows that such high BH spin can be explained by the hypercritical accretion investigated here.We note that the current measurements of the masses for the BH and its companion have very larger uncertainties.

    As the BH spin can be well explained by the hypercritical accretion,we then continue to show other parameters in our calculation.The top right panel in Figure 1 presents the evolution of the orbital period as a function of the BH companion mass.The binary orbital period first increases as the BH companion loses mass through the stellar winds.It then reaches the peak as the companion star expands to reach its Roche lobe.The mass transfer via the first L1from the BH companion (more massive) to the BH (less massive) shortens the orbital separation and thus the orbital period.In the bottom left panel,we present the mass transfer rate as a function of the BH companion mass.The gap shown after the first mass transfer phase is due to the quick shrink of the companion star.We note that the mass transfer is stable at a rate~10-2M⊙yr-1.Such a high value requires that the hypercritical accretion in this binary evolution is allowed.

    Furthermore,it was reported(Shimanskii et al.2012)that the abundance ratio of the surface helium-to-hydrogen is about twice the solar composition.This indicates the BH companion has been stripped its outer hydrogen layer at a certain level.The bottom right in Figure 1 clearly shows that this abnormality is reasonable due to its larger uncertainty of the measurements.Based on our investigation,such an enhanced helium abundance is because that the BH companion star was exposed its inner layers through mass transfer and/or stellar winds.

    5.Discussion and Conclusions

    HMXBs are mostly considered as wind-fed binary systems(Shao&Li 2020),in which the BH is the accreting part of the strong stellar winds of its companion.SS 433,known as a Galactic X-ray binary,is found that mass is lost from the system at a rate of~10-4M⊙yr-1,indicating that the compact object in SS433 is accreting mass from its companion at highly supercritical rate (Fabrika 2004,also see for a recent update(Cherepashchuk et al.2020).Analyzing the hard X-ray INTEGRAL observations of SS 433 provided reliable constraints on the binary mass ratio ?0.6,which suggests that the compact object is probably a BH.Assuming a BH as the compact object,the formation channel for SS 433 has been recently explored(Han&Li 2020).Additionally,the finding of the outflows (Waisberg et al.2019) for SS 433 indicates that the mass transfer onto the BH is nonconservative.However,as a case study for Cygnus X-1,we assumed that the mass transfer is conservative.Note that the hypercritical rate here is significantly higher (~two orders of magnitude) when compared with the above mass outflow rate.Although this assumption is extreme,it will not significantly influence the final results since some fraction of the material can be significantly accreted by the BH in a supercritical accretion disk(Fabrika 2004).Therefore,our simplified assumption here is secure to test the efficiency for spinning up the accreting BH.

    Recent population study shows the birthrate of Galactic BH binaries is a few 10-5–10-4yr-1(Shao &Li 2019).As only one such high-mass X-ray source in our Galaxy,the formation rate of Cygnus X-1 is~10-3yr-1,which is challenging when considering our current understanding for massive binary evolutions.M33 X-7 and LMC X-1,known as other two BH HMXBs with high spin measurements,have been considered to share similar formation path.Early on,it was found (Moreno Méndez 2011) that,regardless of the formation channels for M33 X-7 and LMC X-1,the observed BH spins had to be obtained through the hypercritical accretion.Additionally,recent studies show that a BH can accrete materials from its companion via the stable mass transfer (van den Heuvel et al.2017;Shao &Li 2021),but the hypercritical accretion is still required to efficiently spin up the BH when considering the limited lifetime of the companion star.

    It has been suggested that the two types of BH binaries(BBHs and BH-HMXBs) likely have distinct formation paths(Qin et al.2019a;Fishbach&Kalogera 2021;Reynolds 2021).This work is motivated by the inconsistent finding for the BH spin measurements in the two types of BH binaries.For BBHs measured from LIGO/Virgo(Abbott et al.2021),the currently obtained low BH spins are in favor of the efficient angular momentum transport inside massive stars.On the other hand,in order to explain the high spin measurements for BHs in HMXBs,the angular momentum transport has to be inefficient(Qin et al.2019b,2021).Given the classical isolated formation channel for the two BH binaries,this inconsistency has put a challenge on the angular momentum transport mechanism inside massive stars.This contradictory,however,can be alleviated as long as the hypercritical accretion is allowed for some cases,for instance Cygnus X-1,M33 X-7 and LMC X-1.

    Given the non-spinning BHs at birth,we then assumed in this work that the HMXB might have experienced the hypercritical accretion.Therefore,we employ the detailed binary evolution code MESA to study the origin of the BH high spin for the HMXBs,specifically for the case of Cygnus X-1.We find that the binary evolution sequence shown in Figure 1 could resemble the Cygnus X-1 given its large uncertainties.In addition,the reported high ratio of the helium to hydrogen at the surface of the BH companion star can also be well explained.Given the very expensive computational cost,our study here is only the first step to investigate an alternative formation pathway,i.e.,hypercritical accretion,for the case study of Cygnus X-1.As a follow-up work,we next plan to perform a more detailed investigation of the systematic parameter study for the three HMXBs (Cygnus X-1,M33 X-7 and LMC X-1).

    Acknowledgments

    The authors would like to thank Xiang-Dong Li for helpful discussions at the beginning of this project.Ying Qin acknowledges the support from the Doctoral research start-up funding of Anhui Normal University and the funding from Key Laboratory for Relativistic Astrophysics in Guangxi University.This work was supported by the National Natural Science Foundation of China (Grant Nos.12192220,12192221 and U2038106) and by the Natural Science Foundation of Universities in Anhui Province (Grant No.KJ2021A0106).

    精品欧美一区二区三区在线| 久久久久久久午夜电影| 久久久久久九九精品二区国产 | 久久久精品欧美日韩精品| 午夜亚洲福利在线播放| 亚洲五月婷婷丁香| 桃色一区二区三区在线观看| www国产在线视频色| 天堂√8在线中文| 国产主播在线观看一区二区| 男女做爰动态图高潮gif福利片| 女人高潮潮喷娇喘18禁视频| 每晚都被弄得嗷嗷叫到高潮| 精品国内亚洲2022精品成人| 国产成人欧美在线观看| 在线观看免费日韩欧美大片| 床上黄色一级片| 国产男靠女视频免费网站| 老司机深夜福利视频在线观看| 亚洲在线自拍视频| 久久草成人影院| 黄色片一级片一级黄色片| 禁无遮挡网站| 久久精品91无色码中文字幕| 久久九九热精品免费| 日韩有码中文字幕| 一本精品99久久精品77| 观看免费一级毛片| 日韩国内少妇激情av| 欧美三级亚洲精品| 亚洲国产看品久久| 久久久精品欧美日韩精品| 麻豆av在线久日| 一级作爱视频免费观看| 色尼玛亚洲综合影院| 国产激情欧美一区二区| 欧美三级亚洲精品| 少妇被粗大的猛进出69影院| 一个人免费在线观看的高清视频| 国产亚洲欧美在线一区二区| 久久久久九九精品影院| 真人一进一出gif抽搐免费| 欧美丝袜亚洲另类 | 看片在线看免费视频| 亚洲男人的天堂狠狠| 成年人黄色毛片网站| 国产精品综合久久久久久久免费| 亚洲av成人av| 精品一区二区三区四区五区乱码| 国产精品亚洲美女久久久| 国产精品影院久久| 51午夜福利影视在线观看| 亚洲人成伊人成综合网2020| 国产成+人综合+亚洲专区| 亚洲乱码一区二区免费版| 国产精品精品国产色婷婷| 非洲黑人性xxxx精品又粗又长| 国产1区2区3区精品| 天天躁夜夜躁狠狠躁躁| 亚洲无线在线观看| 成年女人毛片免费观看观看9| 国产午夜精品论理片| 午夜福利在线在线| 欧美zozozo另类| 成人亚洲精品av一区二区| 婷婷亚洲欧美| 18禁国产床啪视频网站| 久久香蕉激情| 在线观看舔阴道视频| 神马国产精品三级电影在线观看 | 夜夜躁狠狠躁天天躁| 搞女人的毛片| 在线观看66精品国产| 亚洲电影在线观看av| 国产午夜福利久久久久久| 日本五十路高清| 日韩 欧美 亚洲 中文字幕| 婷婷六月久久综合丁香| 亚洲精品国产精品久久久不卡| 日韩欧美免费精品| 中文字幕久久专区| 精品久久久久久久人妻蜜臀av| 精品一区二区三区av网在线观看| 欧美日本视频| 在线a可以看的网站| 在线永久观看黄色视频| 99精品久久久久人妻精品| 国产99久久九九免费精品| 欧美一区二区精品小视频在线| 19禁男女啪啪无遮挡网站| 久9热在线精品视频| 亚洲av中文字字幕乱码综合| 一级a爱片免费观看的视频| 日本a在线网址| 精品午夜福利视频在线观看一区| 国产精品99久久99久久久不卡| 99久久精品热视频| 久久久久九九精品影院| 亚洲午夜理论影院| 亚洲精品久久成人aⅴ小说| 日本 欧美在线| 一本精品99久久精品77| 日韩欧美 国产精品| 免费av毛片视频| 我要搜黄色片| 黄色片一级片一级黄色片| 黄色a级毛片大全视频| 色老头精品视频在线观看| 村上凉子中文字幕在线| 成在线人永久免费视频| 国内精品久久久久久久电影| 亚洲午夜理论影院| 亚洲成人精品中文字幕电影| 欧美日韩乱码在线| 午夜日韩欧美国产| 欧美又色又爽又黄视频| 久久久久久国产a免费观看| 99riav亚洲国产免费| 久9热在线精品视频| 黄色丝袜av网址大全| 又黄又爽又免费观看的视频| 色噜噜av男人的天堂激情| 国产精品自产拍在线观看55亚洲| 亚洲人成伊人成综合网2020| 韩国av一区二区三区四区| 老汉色∧v一级毛片| 亚洲成人中文字幕在线播放| cao死你这个sao货| www.熟女人妻精品国产| 精品一区二区三区视频在线观看免费| 亚洲av电影在线进入| 欧美色视频一区免费| 中文字幕最新亚洲高清| av免费在线观看网站| 国语自产精品视频在线第100页| 免费看a级黄色片| 国产三级黄色录像| 桃红色精品国产亚洲av| 欧美国产日韩亚洲一区| 老熟妇乱子伦视频在线观看| avwww免费| 国产亚洲精品久久久久5区| 午夜激情福利司机影院| 日日爽夜夜爽网站| 一区二区三区高清视频在线| 久久久久久大精品| 国产黄a三级三级三级人| 男女视频在线观看网站免费 | 18禁观看日本| 91成年电影在线观看| 久9热在线精品视频| 50天的宝宝边吃奶边哭怎么回事| ponron亚洲| 国产91精品成人一区二区三区| 色播亚洲综合网| 色av中文字幕| 成人国产综合亚洲| www日本黄色视频网| 我要搜黄色片| 精品久久蜜臀av无| 亚洲男人的天堂狠狠| 国产在线精品亚洲第一网站| 国产午夜福利久久久久久| 男女做爰动态图高潮gif福利片| 成在线人永久免费视频| 久久久久久亚洲精品国产蜜桃av| 国产亚洲精品综合一区在线观看 | 亚洲av日韩精品久久久久久密| 久久精品成人免费网站| 成熟少妇高潮喷水视频| 国产区一区二久久| 精品久久久久久久人妻蜜臀av| 小说图片视频综合网站| 欧美三级亚洲精品| 国产亚洲精品一区二区www| 国产亚洲av高清不卡| 免费电影在线观看免费观看| 99在线人妻在线中文字幕| 午夜精品在线福利| 最近最新中文字幕大全电影3| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲国产欧洲综合997久久,| 给我免费播放毛片高清在线观看| 欧美中文综合在线视频| 日韩欧美在线二视频| 欧美日韩亚洲国产一区二区在线观看| 他把我摸到了高潮在线观看| 成人国产综合亚洲| 色综合亚洲欧美另类图片| 18禁黄网站禁片免费观看直播| 久久精品夜夜夜夜夜久久蜜豆 | 老司机深夜福利视频在线观看| 亚洲人成网站在线播放欧美日韩| 欧美在线黄色| 女生性感内裤真人,穿戴方法视频| 午夜免费激情av| 色综合欧美亚洲国产小说| 看片在线看免费视频| 夜夜看夜夜爽夜夜摸| 99re在线观看精品视频| 国产午夜精品久久久久久| 两个人视频免费观看高清| 99热6这里只有精品| 亚洲人成电影免费在线| 成熟少妇高潮喷水视频| 国产视频内射| 亚洲av熟女| 国产欧美日韩一区二区精品| aaaaa片日本免费| 国产片内射在线| 精品日产1卡2卡| 国产精品 欧美亚洲| 亚洲免费av在线视频| 国产片内射在线| 亚洲中文日韩欧美视频| 精品高清国产在线一区| 国产v大片淫在线免费观看| 老司机午夜福利在线观看视频| www国产在线视频色| 成年免费大片在线观看| 亚洲一区高清亚洲精品| 久久这里只有精品19| 精品午夜福利视频在线观看一区| 91麻豆av在线| 久久热在线av| 久久久久久久久免费视频了| 精品久久久久久久久久久久久| 精品久久久久久久久久免费视频| 午夜激情av网站| 伊人久久大香线蕉亚洲五| 亚洲成人国产一区在线观看| 国产一区二区三区在线臀色熟女| 久久午夜亚洲精品久久| xxxwww97欧美| 精品第一国产精品| 香蕉丝袜av| 亚洲18禁久久av| 香蕉av资源在线| 日本 欧美在线| 欧美黄色淫秽网站| 亚洲国产精品久久男人天堂| 黑人欧美特级aaaaaa片| 久久久久精品国产欧美久久久| 最新美女视频免费是黄的| 韩国av一区二区三区四区| 婷婷精品国产亚洲av| 久久香蕉精品热| 97人妻精品一区二区三区麻豆| 久久中文看片网| 久久久国产成人免费| 国产亚洲精品综合一区在线观看 | 黄片小视频在线播放| 嫁个100分男人电影在线观看| 很黄的视频免费| 欧美乱色亚洲激情| 国产欧美日韩一区二区三| 国产av又大| 99久久99久久久精品蜜桃| 亚洲自拍偷在线| 国产精品久久久久久人妻精品电影| 国产人伦9x9x在线观看| 日本五十路高清| 日韩欧美三级三区| 午夜精品久久久久久毛片777| 麻豆一二三区av精品| 村上凉子中文字幕在线| 欧美成人一区二区免费高清观看 | 级片在线观看| 夜夜看夜夜爽夜夜摸| 长腿黑丝高跟| 久久精品国产99精品国产亚洲性色| 又黄又爽又免费观看的视频| 亚洲美女视频黄频| 欧美黑人巨大hd| 国产高清videossex| 亚洲成人久久性| 99国产综合亚洲精品| svipshipincom国产片| 久久久久久免费高清国产稀缺| 亚洲中文av在线| 99精品久久久久人妻精品| 欧美 亚洲 国产 日韩一| 久久人人精品亚洲av| 午夜福利在线观看吧| 亚洲欧洲精品一区二区精品久久久| 12—13女人毛片做爰片一| 少妇裸体淫交视频免费看高清 | 欧美又色又爽又黄视频| 精品一区二区三区av网在线观看| 欧美成人午夜精品| 免费av毛片视频| 毛片女人毛片| 欧洲精品卡2卡3卡4卡5卡区| 久久 成人 亚洲| 国产一区二区三区视频了| 国产一区二区在线观看日韩 | 国产亚洲av高清不卡| 人妻夜夜爽99麻豆av| 少妇被粗大的猛进出69影院| 亚洲性夜色夜夜综合| 日韩av在线大香蕉| 狂野欧美白嫩少妇大欣赏| 日韩大尺度精品在线看网址| 国产亚洲av高清不卡| 五月伊人婷婷丁香| 国产av又大| 久久热在线av| 国产在线观看jvid| 男插女下体视频免费在线播放| 亚洲午夜理论影院| 男人舔女人下体高潮全视频| 国产精华一区二区三区| 一本综合久久免费| 99久久精品热视频| 国内精品久久久久久久电影| 在线观看66精品国产| 久久久久久国产a免费观看| 免费看日本二区| 精品福利观看| av有码第一页| 亚洲第一电影网av| 欧美成人午夜精品| 久久人妻福利社区极品人妻图片| 婷婷丁香在线五月| 国产高清视频在线播放一区| 国产一区二区在线av高清观看| 99久久综合精品五月天人人| 成人特级黄色片久久久久久久| a级毛片a级免费在线| 丁香六月欧美| 在线观看日韩欧美| 99精品在免费线老司机午夜| 欧美黄色片欧美黄色片| 精品一区二区三区av网在线观看| 国产精品免费一区二区三区在线| 久久国产精品人妻蜜桃| 亚洲成人国产一区在线观看| 精品第一国产精品| 亚洲熟妇中文字幕五十中出| 国产精品电影一区二区三区| 久久久久久久午夜电影| 亚洲午夜理论影院| 免费看美女性在线毛片视频| 色综合婷婷激情| 日韩三级视频一区二区三区| 麻豆一二三区av精品| 国产一区二区在线av高清观看| 免费观看精品视频网站| 国产黄a三级三级三级人| 夜夜躁狠狠躁天天躁| 国产精品免费一区二区三区在线| 黑人欧美特级aaaaaa片| АⅤ资源中文在线天堂| 国产精品电影一区二区三区| 久久久国产精品麻豆| 成人精品一区二区免费| 听说在线观看完整版免费高清| 色综合婷婷激情| 九九热线精品视视频播放| 99国产精品99久久久久| 亚洲性夜色夜夜综合| 亚洲国产日韩欧美精品在线观看 | 色在线成人网| 91麻豆av在线| 亚洲美女视频黄频| 欧美大码av| 丰满人妻一区二区三区视频av | 制服诱惑二区| 99久久久亚洲精品蜜臀av| 最近在线观看免费完整版| 老司机靠b影院| 好男人在线观看高清免费视频| 身体一侧抽搐| 一级作爱视频免费观看| 欧美又色又爽又黄视频| 久久精品国产99精品国产亚洲性色| 精品久久久久久,| 可以免费在线观看a视频的电影网站| 成人三级黄色视频| 国产成人啪精品午夜网站| 男人舔女人下体高潮全视频| 国产高清videossex| 国产91精品成人一区二区三区| 制服人妻中文乱码| 波多野结衣高清作品| 精品国产乱子伦一区二区三区| 亚洲男人天堂网一区| 欧美久久黑人一区二区| АⅤ资源中文在线天堂| 99久久99久久久精品蜜桃| 国产精品av久久久久免费| 一本大道久久a久久精品| а√天堂www在线а√下载| 亚洲欧美日韩东京热| 日韩av在线大香蕉| 中文亚洲av片在线观看爽| 午夜福利在线观看吧| 久久香蕉精品热| 亚洲成av人片免费观看| 国产高清视频在线播放一区| 国产视频内射| 国产不卡一卡二| www.精华液| 色综合亚洲欧美另类图片| 观看免费一级毛片| 国产精品九九99| 真人做人爱边吃奶动态| 少妇裸体淫交视频免费看高清 | 亚洲狠狠婷婷综合久久图片| 亚洲va日本ⅴa欧美va伊人久久| 51午夜福利影视在线观看| 欧美不卡视频在线免费观看 | 老熟妇仑乱视频hdxx| 一级作爱视频免费观看| 国产亚洲精品第一综合不卡| 色av中文字幕| 在线免费观看的www视频| 黄色a级毛片大全视频| 亚洲精品国产精品久久久不卡| 亚洲av片天天在线观看| а√天堂www在线а√下载| 国语自产精品视频在线第100页| 丝袜人妻中文字幕| 每晚都被弄得嗷嗷叫到高潮| 中文字幕精品亚洲无线码一区| 人人妻人人澡欧美一区二区| 亚洲男人的天堂狠狠| 丰满的人妻完整版| 亚洲avbb在线观看| 久久天堂一区二区三区四区| 窝窝影院91人妻| 女生性感内裤真人,穿戴方法视频| 国产亚洲精品综合一区在线观看 | 国产精品久久久久久久电影 | 日本一二三区视频观看| 国产精品综合久久久久久久免费| 久久久久久亚洲精品国产蜜桃av| 无遮挡黄片免费观看| 欧美中文日本在线观看视频| 国产精品久久久人人做人人爽| 亚洲av成人精品一区久久| 久久精品影院6| netflix在线观看网站| 91字幕亚洲| 国产精品久久视频播放| 悠悠久久av| 欧美日韩黄片免| 别揉我奶头~嗯~啊~动态视频| 国产精品久久久久久亚洲av鲁大| 人妻久久中文字幕网| 国产91精品成人一区二区三区| 欧美最黄视频在线播放免费| 最近视频中文字幕2019在线8| 成人高潮视频无遮挡免费网站| 中亚洲国语对白在线视频| 精品一区二区三区视频在线观看免费| 很黄的视频免费| 亚洲乱码一区二区免费版| 中文字幕精品亚洲无线码一区| 男人舔女人的私密视频| 欧美黑人巨大hd| 黄色片一级片一级黄色片| netflix在线观看网站| 久久中文字幕一级| 黑人操中国人逼视频| 久久久久久久久久黄片| 欧美一级毛片孕妇| 久久国产乱子伦精品免费另类| 日本撒尿小便嘘嘘汇集6| 波多野结衣高清无吗| av福利片在线| 成人国产一区最新在线观看| 午夜老司机福利片| 人人妻,人人澡人人爽秒播| 麻豆成人午夜福利视频| 少妇熟女aⅴ在线视频| 欧美性猛交黑人性爽| 午夜日韩欧美国产| 国产精品自产拍在线观看55亚洲| 特级一级黄色大片| 18禁美女被吸乳视频| 免费在线观看视频国产中文字幕亚洲| 免费观看人在逋| 一本综合久久免费| 免费观看人在逋| 中文字幕高清在线视频| 国产亚洲欧美在线一区二区| 国产成人av激情在线播放| 哪里可以看免费的av片| 亚洲av成人精品一区久久| 欧美午夜高清在线| 欧美另类亚洲清纯唯美| 国产亚洲精品第一综合不卡| 很黄的视频免费| 午夜免费成人在线视频| 精品无人区乱码1区二区| 久久香蕉精品热| 欧美黑人巨大hd| 国产精品一区二区三区四区免费观看 | 亚洲国产看品久久| 国产单亲对白刺激| 日韩成人在线观看一区二区三区| 桃色一区二区三区在线观看| 亚洲 国产 在线| 无人区码免费观看不卡| 午夜视频精品福利| 99在线视频只有这里精品首页| 国产一区二区三区视频了| 成人手机av| 亚洲一区二区三区色噜噜| 男插女下体视频免费在线播放| 精品国产亚洲在线| 亚洲精品久久国产高清桃花| 在线观看66精品国产| av超薄肉色丝袜交足视频| 亚洲va日本ⅴa欧美va伊人久久| 亚洲欧美一区二区三区黑人| 熟妇人妻久久中文字幕3abv| 国产伦人伦偷精品视频| 成人永久免费在线观看视频| 淫秽高清视频在线观看| 99久久99久久久精品蜜桃| 国产精品精品国产色婷婷| 国产激情偷乱视频一区二区| 国产精品免费一区二区三区在线| 91大片在线观看| 亚洲精品久久成人aⅴ小说| 男女那种视频在线观看| 1024香蕉在线观看| 中文字幕久久专区| 成在线人永久免费视频| 欧美性长视频在线观看| 免费搜索国产男女视频| 成年版毛片免费区| 18禁裸乳无遮挡免费网站照片| 全区人妻精品视频| 好男人在线观看高清免费视频| 亚洲专区中文字幕在线| 午夜激情福利司机影院| 亚洲真实伦在线观看| 精品午夜福利视频在线观看一区| 免费看a级黄色片| 一进一出抽搐动态| ponron亚洲| 亚洲成人久久爱视频| 国内少妇人妻偷人精品xxx网站 | 青草久久国产| 久久精品91蜜桃| 久久性视频一级片| 亚洲欧美精品综合一区二区三区| 岛国在线免费视频观看| 国产精品一区二区精品视频观看| 欧美黑人巨大hd| 在线观看免费视频日本深夜| 99riav亚洲国产免费| 夜夜看夜夜爽夜夜摸| 久久午夜亚洲精品久久| 国产精品综合久久久久久久免费| 国产精品美女特级片免费视频播放器 | 在线观看舔阴道视频| 嫩草影院精品99| 搞女人的毛片| 老鸭窝网址在线观看| 三级男女做爰猛烈吃奶摸视频| 欧美成人一区二区免费高清观看 | 国产亚洲欧美在线一区二区| 在线观看66精品国产| 桃色一区二区三区在线观看| 国产高清视频在线观看网站| 国产精品一区二区三区四区免费观看 | 九九热线精品视视频播放| 精品不卡国产一区二区三区| 亚洲一区高清亚洲精品| 免费看a级黄色片| 一卡2卡三卡四卡精品乱码亚洲| 午夜福利欧美成人| 天堂影院成人在线观看| 亚洲,欧美精品.| 亚洲人成网站高清观看| 一个人免费在线观看的高清视频| 757午夜福利合集在线观看| 精品国产乱码久久久久久男人| 亚洲欧美日韩东京热| 久久精品成人免费网站| 国产99白浆流出| 精品无人区乱码1区二区| 97人妻精品一区二区三区麻豆| 日本三级黄在线观看| 亚洲18禁久久av| 日韩欧美在线乱码| 最近最新中文字幕大全免费视频| 在线观看免费视频日本深夜| 一级作爱视频免费观看| 欧美日本亚洲视频在线播放| 欧美中文综合在线视频| 国产精品一区二区三区四区久久| 色综合婷婷激情| 欧美成人性av电影在线观看| 国产精品1区2区在线观看.| 黄片大片在线免费观看| 国产爱豆传媒在线观看 | 亚洲乱码一区二区免费版| 欧洲精品卡2卡3卡4卡5卡区| 国产精品一区二区三区四区久久| 欧美高清成人免费视频www| 69av精品久久久久久| 妹子高潮喷水视频| 很黄的视频免费| 国产主播在线观看一区二区| 怎么达到女性高潮| 丝袜美腿诱惑在线| 亚洲中文字幕日韩| 性欧美人与动物交配| 五月玫瑰六月丁香| 国产精品亚洲美女久久久|