• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of the Distribution,Rotation and Scale Characteristics of Solar Wind Switchbacks:Comparison between the First and Second Encounters of Parker Solar Probe

    2022-05-24 14:21:18MingMingMengYingLiuChongChenandRuiWang

    Ming-Ming Meng ,Ying D.Liu ,Chong Chen ,and Rui Wang

    1 State Key Laboratory of Space Weather,National Space Science Center,Chinese Academy of Sciences,Beijing 100190,China;liuxying@swl.ac.cn

    2 University of Chinese Academy of Sciences,Beijing 100049,China

    Abstract The S-shaped magnetic structure in the solar wind formed by the twisting of magnetic field lines is called a switchback,whose main characteristics are the reversal of the magnetic field and the significant increase in the solar wind radial velocity.We identify 242 switchbacks during the first two encounters of Parker Solar Probe.Statistics methods are applied to analyze the distribution and the rotation angle and direction of the magnetic field rotation of the switchbacks.The diameter of switchbacks is estimated with a minimum variance analysis (MVA)method based on the assumption of a cylindrical magnetic tube.We also make a comparison between switchbacks from inside and the boundary of coronal holes.The main conclusions are as follows:(1) the rotation angles of switchbacks observed during the first encounter seem larger than those of the switchbacks observed during the second encounter in general;(2)the tangential component of the velocity inside the switchbacks tends to be more positive (westward) than in the ambient solar wind;(3) switchbacks are more likely to rotate clockwise than counterclockwise,and the number of switchbacks with clockwise rotation is 1.48 and 2.65 times those with counterclockwise rotation during the first and second encounters,respectively;(4) the diameter of switchbacks is about 105 km on average and across five orders of magnitude (103–107 km).

    Key words:ISM:magnetic fields–methods:statistical–(Sun:) solar wind

    1.Introduction

    The Parker Solar Probe (PSP) mission launched in 2018 is the closest spacecraft to the Sun in history (Fox et al.2016).During the first two encounters of PSP,a large number of sudden radial magnetic field reversals associated with velocity spikes,namely switchbacks,are detected (Bale et al.2019;Kasper et al.2019).This is not the first observation of switchbacks.Switchbacks were observed by Ulysses in 1994–1995 (e.g.,Forsyth et al.1996;Balogh et al.1999;Yamauchi et al.2002) and Helios (e.g.,Horbury et al.2018;Macneil et al.2020).However,PSP observes that switchbacks are ubiquitous and are in the early stage of evolution at a higher time resolution in the solar wind,which enables us to make more detailed analysis about the origin,characteristics and evolution of switchbacks.

    Switchbacks exist widely in the solar wind and are obviously different from other forms of the change of the magnetic field polarity,such as crossings through a magnetic loop.Based on the hourly averaged magnetic field data from Ulysses during 1994–1995,Balogh et al.(1999) found that about 8.4% of the observation time the magnetic fields deviate from Parker spiral more than 90°.Yamauchi et al.(2003) suggested that,when spacecraft passes through different types of magnetic field reversals,different pitch angle distributions (PADs) of suprathermal electrons will be observed,which could help distinguish between switchbacks and other types of magnetic field reversals.Another characteristic of switchbacks is that,when spacecraft observes a switchback,it could also observe that the speed of protons is higher than the speed of alpha particles (e.g.,Yamauchi et al.2004a;Neugebauer &Goldstein 2013).

    Switchbacks are generally highly Alfvénic,so they are suggested as outward-propagating Alfvénic structures (e.g.,Bale et al.2019;Kasper et al.2019;Horbury et al.2020).Dudok de Wit et al.(2020) suggest that switchbacks originate from the corona,which is supported by some simulation results(e.g.,Fisk &Kasper 2020;Ruffolo et al.2020;Drake et al.2021).Interchange magnetic reconnection is one of the probable trigger mechanisms of switchbacks (e.g.,Yamauchi et al.2004b;Fisk &Kasper 2020;Drake et al.2021).In addition,shear-driven turbulence around the Alfvén critical zone (Ruffolo et al.2020) and footpoint motion of the solar wind between fast and slow streams (Schwadron &McComas 2021) could product switchbacks.These also support switchbacks’ coronal origin hypothesis.Tenerani et al.(2020) show that,if the background is homogeneous,switchbacks originating in the corona could propagate out to PSP.Switchbacks could also be triggered in situ in the solar wind.Squire et al.(2020)suggest that low-amplitude outwardpropagating waves could naturally develop into switchbacks in the process of spreading out.Mozer et al.(2020)suggested that the number and the rotation angle of switchbacks would be more and larger with the increase of heliocentric distances based on PSP observations on 2019 April 5 and 2019 March 31.A similar trend in the number of switchbacks is also observed by Helios (Macneil et al.2020).This trend indicates that these switchbacks may form in situ as the solar wind spreads out.

    Switchbacks triggered by different physical processes may have differences.In this study,we make a detailed analysis of the distribution,rotation and scale of switchbacks observed by PSP during the first two encounters,and compare the differences in the switchbacks between the first and second encounters.This paper is organized as follows.Section 2 shows the observation data and the methods.Section 3 gives the results from our analysis of switchbacks’ distribution,rotation and scale characteristics.We discuss the results and conclude in Section 4.Our results may help understand the origin and properties of solar wind switchbacks.

    2.Data and Methodology

    The magnetic field is measured by the fluxgate magnetometer from the FIELDS suite (Bale et al.2016),and the plasma parameters are measured by the Solar Probe Cup from the SWEAP package (Kasper et al.2016).The perihelion of the first and second encounters is at a distance of 35.7 R⊙from the center of the Sun,and the data that we use cover 35.7–56.1 R⊙a(bǔ)nd 35.7–55.1 R⊙for the first and second encounters respectively.Both the magnetic field and plasma data are from the first two encounters and are in the RTN frame.The magnetic field data are interpolated to the plasma resolution.The photospheric field synoptic maps used in this work are provided by the Global Oscillation Network Group(GONG).The coronal 193 ? images are from the Atmospheric Imaging Assembly (AIA;Lemen et al.2012) on board the Solar Dynamics Observatory (SDO;Pesnell et al.2012).

    The criteria used to identify switchbacks are as follows:(1)magnetic field has a rotation relative to the ambient solar wind;(2)the radial velocity shows an enhancement;and(3)the PAD of the 315 eV suprathermal electrons is unidirectional across a switchback.We first screen magnetic field intervals that the sign of radial magnetic field changes.Then,we examine intervals based on the magnetic field,velocity and the electron PAD characteristics of typical switchbacks.Both the magnetic field rotation and the enhancement in the radial velocity are relative to the ambient solar wind.Intervals,whose data points are less than five,are removed.We identify 129 switchbacks during the first encounter and 113 switchbacks during the second encounter.It is worth noting that the minimum time interval of these switchbacks is about 1.966 s.Therefore,the change of resolution during the encounters would not affect our results.

    A potential field source surface(PFSS)model(Altschuler&Newkirk 1969;Schatten et al.1969;Hoeksema 1984;Wang&Sheeley 1992)and a Parker spiral model(Parker 1958)are used to trace the footpoints of switchbacks.The PFSS model is included in the Solar Software (Freeland &Handy 1998).We trace the field footpoints using Equation(1).Here Φ and Φ0are the Carrington longitude of the photosphere footpoint and PSP,respectively,Ω is the angular speed of the Sun,L is the distance from PSP to the Sun,and V is the speed of the solar wind from PSP measurements.In this paper we adopt a traceability method similar to Zhu et al.(2018) and Badman et al.(2020),which first traces the Carrington coordinates of switchbacks from the location of PSP to 2.5 R⊙based on the Parker Spiral model and then determines the footpoint of switchbacks with the PFSS model.

    Horbury et al.(2020) suggested that a switchback corresponds to a long and thin cigar-like structure.Laker et al.(2021) assumed a cylindrically symmetric,long,thin structure to analyze the width and aspect ratio of switchbacks.Based on this assumption,we analyze the diameter of switchbacks using a minimum variance analysis (MVA).The details are as follows.As Figure 1 shows,if we conceive that a switchback is a cylinder,the distance that PSP passes through a switchback can be projected into two directions that are parallel to the axis of the cylinder,and perpendicular to the axis of the cylinder.The distance perpendicular to the axial direction of the cylinder provides the information about the diameter of the cylinder.However,we do not know the distance from PSP's trajectory to the cylinder axis.The MVA is used to determine the normal direction of an interval(Sonnerup&Cahill 1967),which gives us a way to estimate the diameter of the cylinder based on the distance perpendicular to the axial direction of the cylinder that PSP crosses.The boundary of switchbacks corresponds to the cylinder surface.On the cylinder surface the normal direction points to the axis of the cylinder.The axial direction of the cylinder is approximately represented by the direction of the average magnetic field in switchbacks.We can obtain the normal directions n1 and n2 by MVA on the boundaries of switchbacks,and translate these two normal directions into the same plane.Here θ is the angle between n1 and n2.The velocity of switchbacks can be projected into the directions parallel and perpendicular to the axial direction.R can be calculated by the velocity that is perpendicular to the axial direction.In order to avoid the influence of the data fluctuations on the judgment of the normal direction,filtering is applied to the boundary.We use Equation (2) to determine the quality of the diameter measurement.The diameter of a switchback is given by Equation (3).

    Figure 1.Sketch showing the estimate of the diameter of switchbacks.Here n1 and n2 represent the normal direction at the positions that PSP enters and leaves a switchback respectively.The normal direction points to the center along the blue line.R is the distance perpendicular to the axial direction of the cylinder that PSP passes through.

    Figure 2.Footpoints of switchbacks observed during the first (left) and the second (right) encounters projected on the AIA 193 ? images.Upper panels show footpoints of switchbacks only and lower panels add coronal magnetic field lines.The white line in the upper left panel is the neutral line.Points with different colors represent footpoints of switchbacks,and the colors represent the mean radial velocity of switchbacks.Blue lines represent closed magnetic field lines.Red lines are inward open magnetic field lines.

    Figure 3.The distribution of switchbacks in terms of rotation angles for encounter 1 (upper) and 2 (lower).

    Figure 4.Distribution of the tangential velocity component within switchbacks relative to the background solar wind during the first and the second encounters.The blue curve shows a Gaussian fit.

    Generally,if Δφijis less than 0.087,the result of MVA is considered to be reliable (Chou &Hau 2012).Here λ is the eigenvalue of the covariant matrix,i and j represent Cartesian field components and i ≠j,and M represents the number of data points used for MVA.

    3.Analysis and Results

    Figure 2 shows the footpoints of the switchbacks observed during the first and second encounters.The source regions on the solar disk of switchbacks observed during the first and second encounters are different.As shown in Figure 2,switchbacks observed during the first encounter mainly origin from a small coronal hole,which is consistent with Bale et al.(2019) and Badman et al.(2020).The footpoints of switchbacks observed during the second encounter are from the interface between closed and open magnetic field lines.The locations of the footpoints are also consistent with AIA 193 ? images.Interchange reconnection is likely to occur between the open and closed field lines.Rouillard et al.(2020)showed that PSP observed streamer flows during the second encounter.

    We make a detailed analysis of rotation angles of switchbacks.Figure 3 shows the distribution of rotation angles.From the top panel of Figure 3,we can see that the number of switchbacks with a rotation angle (60°–90°) seems to be the most during the first encounter.The number of switchbacks with a small rotation angle (0°–60°) is almost equal to the number of switchbacks with a large rotation angle(120°–180°).From the bottom panel of Figure 3,we can see that the rotation angles of switchbacks observed during the second encounter seem smaller than those of the switchbacks observed during the first encounter in general.The rotation angles of switchbacks are mainly concentrated at 30°–90° during the second encounter.

    We find that the tangential component of the velocity may also have a tendency.Figure 4 shows the distribution of the tangential velocity component inside switchbacks relative to the background solar wind during the first and second encounters respectively.From the figure we can see that the tangential component of the velocity inside the switchbacks tends to be more positive.The center and half-width of a Gaussian fit of the first(second)encounter are 12.26(2.77)and 21.13(28.73)km s?1respectively.In the first encounter,some switchbacks have a significant variation in the velocity tangential component,up to 100 km s?1.The reason for this tendency of being more positive is still unclear.We think that this tendency may be related to the direction of rotation of switchbacks.

    Figure 5.Distribution of diameters of switchbacks measured during the first (upper) and second (lower) encounters.

    We then make a statistical analysis on the rotation direction of switchbacks.The rotation angle relative to the ambient solar wind is limited to 0°–180° and the sign of the rotation angle represents the direction of rotation.We focus on the rotation of switchbacks in the RT plane.The positive rotation angle corresponds to counterclockwise rotation and the negative rotation angle corresponds to clockwise rotation.Statistical results are shown in the Table 1.We can see that switchbacks are more likely to rotate clockwise during the first two encounters,which is similar to what is observed by Helios(Macneil et al.2020).The results show that 77 switchbacks rotate clockwise and 52 switchbacks rotate counterclockwise during the first encounter,and 82 switchbacks rotate clockwise and 31 switchbacks rotate counterclockwise during the second encounter.The number of switchbacks with clockwise rotation is 1.48 (2.65) times of those with counterclockwise rotation during the first(second)encounter.The direction of rotation of switchbacks is directly influenced by the trigger mechanism of switchbacks.Some trigger mechanisms could just produce clockwise rotations,such as velocity shear or magnetic field line draping by ejecta (see Figure 3 of Macneil et al.2020).

    Table 1 Distribution of Rotation Direction of Switchbacks

    Using the method shown in Figure 1 we analyze the diameters of switchbacks.Just the switchbacks whose Δφijis less than 0.087 are kept.The results are shown in Figure 5.Seventy-nine and eighty-nine switchbacks are reserved,respectively,during the first and second encounters.During the first encounter,the minimum diameter of switchbacks is about 1000 km,the maximum diameter of switchbacks is about 640,000 km,and the average diameter of switchbacks is about 100,000 km.During the second encounter,the minimum diameter of switchbacks is about 1000 km,the maximum diameter of switchbacks is about 1,500,000 km,and the average diameter of switchbacks is about 80,000 km.The diameter of switchbacks spans five orders of magnitude from 103to 107km.These are consistent with the results of Laker et al.(2021) and Larosa et al.(2021).It is not ruled out that smaller switchbacks may not have been observed.In general,the diameters of most switchbacks are between 104–106km from inside the small coronal hole during the first encounter and 103–105km from the boundary of the large coronal hole during the second encounter.

    4.Discussions and Conclusions

    PSP approximately corotates with the Sun during the first encounter and mainly observes solar wind streams from a small coronal hole.During the second encounter PSP mainly observes streamer flows.This gives us a great opportunity to compare the differences of switchbacks from inside and the boundary of coronal holes.In this paper,we make a statistical analysis of the distribution,rotation angle and direction,and scale of switchbacks observed during the first two encounters.The focus of our statistical analysis is to compare the differences between switchbacks from inside and the boundary of the coronal holes.The main results are as follows.

    PSP mainly observed solar wind streams from a small coronal hole during the first encounter,and the footpoints of the switchbacks observed during the first encounter are mainly located inside the small coronal hole.PSP observed streamer flows during the second encounter,and the footpoints of the switchbacks are located between closed and open magnetic field lines.The different solar wind origins may give rise to different properties of switchbacks.

    The distribution of rotation angles of switchbacks seems to have differences between the first and second encounters,which may be related to the different origins of switchbacks.The switchbacks observed during the first encounter seem to have larger rotation angles than the switchbacks observed during the second encounter in general.In the first encounter,switchbacks with a rotation angle (60°–90°) seems to be the most,and about 45% of switchbacks have a rotation angle greater than 90°.In the second encounter,switchbacks with a rotation angle (30°–60°) seems to be the most,and about 40%of switchbacks have a rotation angle greater than 90°during the second encounter.

    PSP observed large tangential velocities that exceed the value from the axisymmetric Weber–Davis model (Kasper et al.2019).Our results indicate that the tangential component of the velocity in the switchbacks tends to be more positive than in the ambient solar wind.The cause for this tendency is still unclear.It is an interesting issue if there is any relation between switchbacks and the tangential flow.

    Switchbacks have a tendency in the direction of rotation.Switchbacks generally tend to rotate clockwise from both inside and the boundary of the coronal holes,which is also similar to the observation made by Helios(Macneil et al.2020).This trend reflects the different trigger mechanisms of switchbacks.Macneil et al.(2020) introduced the relationship between the trigger mechanism and the direction of rotation,and Larosa et al.(2021) gave a detailed summary about the different trigger mechanisms of switchbacks.The physical process that could only produce switchbacks with clockwise rotation,such as local velocity shear,may be an important trigger mechanism,because the observed switchbacks are more likely to rotate clockwise.The direction of rotation and the change of plasma parameters of switchbacks could help make a detailed distinction between the different trigger mechanisms of switchbacks.

    We also make a statistical analysis of the diameter of switchbacks.The diameter of switchbacks is about 105km on average,which is similar to the results of Laker et al.(2021),and the magnitude of the diameter crosses five orders(103–107km).In addition,Laker et al.(2021) suggested that the mean length of switchbacks is about 500,000 km,corresponding to an aspect ratio of the order of 10.The diameter of switchbacks seems larger from inside a coronal hole than from the boundary of a coronal hole in general.

    Acknowledgments

    The research was supported by NSFC under Grant Nos.41774179 and 12073032,Beijing Municipal Science and Technology Commission (Z191100004319003),and the Specialized Research Fund for State Key Laboratories of China.We acknowledge the data provided by PSP,SDO,and GONG.We also thank Bei Zhu,Lei Lei,Xiaowei Zhao and Huidong Hu for their help on this work.

    在线观看一区二区三区| 精品一区二区三区视频在线| 国产爽快片一区二区三区| 小蜜桃在线观看免费完整版高清| 国产精品一区二区性色av| 婷婷色综合大香蕉| 午夜亚洲福利在线播放| 91精品国产九色| 另类亚洲欧美激情| 自拍偷自拍亚洲精品老妇| 亚洲自偷自拍三级| 男人爽女人下面视频在线观看| 高清在线视频一区二区三区| 亚洲av二区三区四区| 亚洲精品成人久久久久久| 久久影院123| 国产老妇伦熟女老妇高清| 新久久久久国产一级毛片| 久久久久国产网址| 又大又黄又爽视频免费| 91在线精品国自产拍蜜月| 一级黄片播放器| 午夜精品一区二区三区免费看| .国产精品久久| 3wmmmm亚洲av在线观看| 亚洲aⅴ乱码一区二区在线播放| 欧美老熟妇乱子伦牲交| 久久99精品国语久久久| 观看美女的网站| 韩国av在线不卡| 久热这里只有精品99| 国产av码专区亚洲av| 久久精品久久久久久噜噜老黄| 欧美日韩视频高清一区二区三区二| 狂野欧美白嫩少妇大欣赏| 国产淫语在线视频| 亚洲一区二区三区欧美精品 | 18+在线观看网站| 中文天堂在线官网| 国产亚洲最大av| 黄色视频在线播放观看不卡| 亚洲精华国产精华液的使用体验| 亚洲成人精品中文字幕电影| 日日摸夜夜添夜夜爱| 亚洲精品456在线播放app| 久久久久久久久久成人| 精品国产乱码久久久久久小说| 亚洲,一卡二卡三卡| 国产精品伦人一区二区| 看十八女毛片水多多多| 高清日韩中文字幕在线| 亚洲精品日本国产第一区| 99热这里只有是精品50| 国产永久视频网站| 亚洲精品国产成人久久av| 人妻少妇偷人精品九色| 搞女人的毛片| 亚洲av成人精品一二三区| 91久久精品国产一区二区成人| 特大巨黑吊av在线直播| 久久久久久久久久人人人人人人| 大码成人一级视频| 黄色视频在线播放观看不卡| 欧美变态另类bdsm刘玥| 国产真实伦视频高清在线观看| 一级毛片久久久久久久久女| 久久精品国产亚洲av天美| 亚洲色图av天堂| 又大又黄又爽视频免费| 丰满少妇做爰视频| 欧美97在线视频| 人妻夜夜爽99麻豆av| 又粗又硬又长又爽又黄的视频| 日本欧美国产在线视频| 人人妻人人看人人澡| 亚洲一区二区三区欧美精品 | 成人亚洲精品一区在线观看 | 国产av不卡久久| 国产片特级美女逼逼视频| 中文字幕久久专区| av在线观看视频网站免费| 听说在线观看完整版免费高清| 日本黄色片子视频| 不卡视频在线观看欧美| 99久久中文字幕三级久久日本| 一区二区三区免费毛片| 久久久a久久爽久久v久久| av.在线天堂| 一级片'在线观看视频| 亚洲国产色片| 国产精品99久久久久久久久| 久久精品国产自在天天线| 91久久精品国产一区二区成人| av线在线观看网站| 纵有疾风起免费观看全集完整版| 一级毛片久久久久久久久女| 亚洲精品国产av蜜桃| 久久女婷五月综合色啪小说 | 女的被弄到高潮叫床怎么办| 免费观看av网站的网址| 夫妻午夜视频| 韩国高清视频一区二区三区| 国产黄片美女视频| 一本色道久久久久久精品综合| 在线 av 中文字幕| 亚洲欧美成人精品一区二区| 国内揄拍国产精品人妻在线| 2021少妇久久久久久久久久久| 成人一区二区视频在线观看| 亚洲成人精品中文字幕电影| 性色avwww在线观看| 久久久久久久亚洲中文字幕| 午夜福利在线在线| 一个人观看的视频www高清免费观看| 99久久人妻综合| 国产熟女欧美一区二区| 亚洲内射少妇av| 午夜激情福利司机影院| 99久久九九国产精品国产免费| 国产精品秋霞免费鲁丝片| 欧美日韩国产mv在线观看视频 | 国产免费一级a男人的天堂| 国产精品三级大全| 18禁动态无遮挡网站| 久久久久久久久久久免费av| 高清av免费在线| 日韩av免费高清视频| 最近的中文字幕免费完整| 波多野结衣巨乳人妻| 国产精品无大码| 色播亚洲综合网| av在线app专区| 国内精品美女久久久久久| 久久久久久国产a免费观看| 亚洲成人久久爱视频| 尾随美女入室| 日日撸夜夜添| 老司机影院成人| 97超碰精品成人国产| 国产 一区精品| 亚洲婷婷狠狠爱综合网| 免费看不卡的av| av免费观看日本| 能在线免费看毛片的网站| 亚洲在线观看片| 男女边摸边吃奶| 久久人人爽av亚洲精品天堂 | 亚洲经典国产精华液单| 丰满乱子伦码专区| 欧美成人午夜免费资源| 午夜福利高清视频| 一个人观看的视频www高清免费观看| 国产色爽女视频免费观看| 男的添女的下面高潮视频| 欧美性猛交╳xxx乱大交人| 99热这里只有精品一区| 国产乱人视频| 亚洲精品影视一区二区三区av| 99热这里只有是精品50| 五月伊人婷婷丁香| 亚洲国产色片| 人人妻人人澡人人爽人人夜夜| 一级片'在线观看视频| 色视频www国产| 在线a可以看的网站| 有码 亚洲区| 热re99久久精品国产66热6| 成年版毛片免费区| 久久久精品94久久精品| 久久精品国产a三级三级三级| 午夜福利在线观看免费完整高清在| a级毛片免费高清观看在线播放| 一级av片app| av福利片在线观看| 一边亲一边摸免费视频| 中文字幕制服av| 制服丝袜香蕉在线| 国产av国产精品国产| 中文在线观看免费www的网站| 欧美精品人与动牲交sv欧美| av国产久精品久网站免费入址| 国产淫语在线视频| 久久久成人免费电影| 精品人妻熟女av久视频| 插逼视频在线观看| 亚洲精品久久午夜乱码| 成人一区二区视频在线观看| 亚洲欧美成人综合另类久久久| 男插女下体视频免费在线播放| 亚洲人成网站在线观看播放| 最近最新中文字幕免费大全7| 少妇 在线观看| 欧美激情久久久久久爽电影| 久久久久久久午夜电影| 丝瓜视频免费看黄片| 精品人妻偷拍中文字幕| 国语对白做爰xxxⅹ性视频网站| 国产精品人妻久久久久久| 久久精品久久久久久噜噜老黄| 久久久久网色| h日本视频在线播放| 亚洲内射少妇av| 国产91av在线免费观看| 自拍偷自拍亚洲精品老妇| 18禁裸乳无遮挡免费网站照片| 80岁老熟妇乱子伦牲交| 99久久中文字幕三级久久日本| 人妻系列 视频| 色网站视频免费| 成人特级av手机在线观看| 99热这里只有精品一区| 黄片无遮挡物在线观看| 亚洲成人久久爱视频| 亚洲经典国产精华液单| 久久久久久久精品精品| tube8黄色片| 国产精品成人在线| 国产精品久久久久久精品电影小说 | 欧美一级a爱片免费观看看| 91午夜精品亚洲一区二区三区| 久久6这里有精品| 青春草视频在线免费观看| 亚洲熟女精品中文字幕| 中文乱码字字幕精品一区二区三区| 看免费成人av毛片| 一级二级三级毛片免费看| av在线老鸭窝| 九九久久精品国产亚洲av麻豆| 少妇 在线观看| 国产老妇女一区| 免费大片18禁| 日韩欧美一区视频在线观看 | 秋霞在线观看毛片| 国产精品精品国产色婷婷| 国产高清有码在线观看视频| 91久久精品国产一区二区三区| 最后的刺客免费高清国语| 青春草国产在线视频| 国产精品精品国产色婷婷| 久久人人爽人人片av| 免费人成在线观看视频色| 少妇高潮的动态图| 肉色欧美久久久久久久蜜桃 | 久久久久久久大尺度免费视频| 国产精品麻豆人妻色哟哟久久| 一级毛片aaaaaa免费看小| av专区在线播放| 十八禁网站网址无遮挡 | 亚洲天堂国产精品一区在线| 亚洲av中文字字幕乱码综合| 中文字幕av成人在线电影| 嫩草影院精品99| 日本三级黄在线观看| 91午夜精品亚洲一区二区三区| 欧美成人a在线观看| 在线播放无遮挡| 亚洲最大成人手机在线| 国产探花极品一区二区| 99九九线精品视频在线观看视频| 国产淫语在线视频| av免费观看日本| 亚洲精品国产av成人精品| 高清视频免费观看一区二区| 日本猛色少妇xxxxx猛交久久| 成年av动漫网址| 91午夜精品亚洲一区二区三区| 国语对白做爰xxxⅹ性视频网站| 亚洲无线观看免费| 国产男人的电影天堂91| av在线app专区| av播播在线观看一区| 热99国产精品久久久久久7| 人妻制服诱惑在线中文字幕| 国产精品爽爽va在线观看网站| 老师上课跳d突然被开到最大视频| 蜜臀久久99精品久久宅男| 亚洲va在线va天堂va国产| 国产精品99久久久久久久久| 综合色av麻豆| 夜夜爽夜夜爽视频| 国产成人91sexporn| 三级国产精品片| 成年女人看的毛片在线观看| 91精品伊人久久大香线蕉| 免费看不卡的av| 亚洲av免费在线观看| 国产精品久久久久久久久免| 亚洲精品视频女| 91精品伊人久久大香线蕉| 国产精品不卡视频一区二区| 国产男人的电影天堂91| av在线老鸭窝| 国产精品久久久久久精品电影| 国产美女午夜福利| 亚洲欧美精品自产自拍| 成人无遮挡网站| 欧美激情国产日韩精品一区| 精品久久国产蜜桃| 男女那种视频在线观看| 久久久久久伊人网av| 如何舔出高潮| 午夜日本视频在线| 久久久久精品性色| 日本-黄色视频高清免费观看| 我要看日韩黄色一级片| 人妻 亚洲 视频| 高清日韩中文字幕在线| 欧美极品一区二区三区四区| av播播在线观看一区| 久久久久国产精品人妻一区二区| 国内精品美女久久久久久| 亚洲国产精品成人综合色| 欧美日本视频| 欧美少妇被猛烈插入视频| 久久久a久久爽久久v久久| 少妇人妻 视频| 亚洲精品456在线播放app| 日日啪夜夜撸| 狂野欧美白嫩少妇大欣赏| 亚洲电影在线观看av| 免费观看无遮挡的男女| 日韩国内少妇激情av| 男女国产视频网站| 日韩电影二区| 中文精品一卡2卡3卡4更新| 99久久人妻综合| 亚洲真实伦在线观看| 久久国内精品自在自线图片| 国产老妇女一区| 国产精品人妻久久久影院| 91精品伊人久久大香线蕉| 中文字幕免费在线视频6| 免费黄网站久久成人精品| 国产色婷婷99| 国产精品国产三级专区第一集| 亚洲精品乱久久久久久| 激情五月婷婷亚洲| 国产亚洲一区二区精品| 国产一区有黄有色的免费视频| 亚洲第一区二区三区不卡| 国产一区二区亚洲精品在线观看| 一区二区三区乱码不卡18| 久久久久久久国产电影| 亚洲欧美精品自产自拍| 黄片wwwwww| 性色avwww在线观看| 蜜桃久久精品国产亚洲av| 亚洲丝袜综合中文字幕| 你懂的网址亚洲精品在线观看| 26uuu在线亚洲综合色| 欧美xxxx黑人xx丫x性爽| 日本三级黄在线观看| 91久久精品电影网| 偷拍熟女少妇极品色| 极品少妇高潮喷水抽搐| 国产有黄有色有爽视频| 国产精品三级大全| 欧美成人午夜免费资源| 国产高清不卡午夜福利| 夫妻午夜视频| 国产精品蜜桃在线观看| 亚洲第一区二区三区不卡| 美女xxoo啪啪120秒动态图| 中文字幕人妻熟人妻熟丝袜美| 男的添女的下面高潮视频| 69av精品久久久久久| 欧美高清性xxxxhd video| 肉色欧美久久久久久久蜜桃 | 人妻一区二区av| 一本色道久久久久久精品综合| 国产精品99久久99久久久不卡 | 99热这里只有是精品在线观看| 国产欧美亚洲国产| 一边亲一边摸免费视频| 男人狂女人下面高潮的视频| 国产欧美亚洲国产| 2018国产大陆天天弄谢| 又爽又黄无遮挡网站| 亚洲成人av在线免费| 亚洲一级一片aⅴ在线观看| 麻豆成人午夜福利视频| 免费看不卡的av| 国产综合懂色| 欧美日韩综合久久久久久| 丰满人妻一区二区三区视频av| 能在线免费看毛片的网站| 晚上一个人看的免费电影| 国产有黄有色有爽视频| 国产亚洲午夜精品一区二区久久 | 色综合色国产| 精品国产三级普通话版| 国产亚洲av嫩草精品影院| 久久久a久久爽久久v久久| 免费高清在线观看视频在线观看| 国产av国产精品国产| 欧美一级a爱片免费观看看| 黄色日韩在线| 91午夜精品亚洲一区二区三区| 日韩强制内射视频| 亚洲精品中文字幕在线视频 | 啦啦啦在线观看免费高清www| 欧美 日韩 精品 国产| 我的老师免费观看完整版| 久久精品久久精品一区二区三区| 新久久久久国产一级毛片| 欧美区成人在线视频| 国产精品国产三级国产av玫瑰| 国产淫片久久久久久久久| 欧美人与善性xxx| 亚洲欧美精品专区久久| 国产一区亚洲一区在线观看| 在线免费十八禁| 日韩在线高清观看一区二区三区| 97人妻精品一区二区三区麻豆| 免费观看的影片在线观看| 精品酒店卫生间| 午夜激情久久久久久久| 亚洲精品中文字幕在线视频 | 青春草国产在线视频| 一个人看的www免费观看视频| 啦啦啦在线观看免费高清www| 国产乱来视频区| 白带黄色成豆腐渣| 日本wwww免费看| 六月丁香七月| 欧美高清性xxxxhd video| 少妇人妻一区二区三区视频| 精品久久久久久久末码| 精品人妻一区二区三区麻豆| 高清午夜精品一区二区三区| 综合色丁香网| 精品久久久久久久人妻蜜臀av| 91aial.com中文字幕在线观看| 国产免费视频播放在线视频| 美女视频免费永久观看网站| 一级毛片黄色毛片免费观看视频| 国产免费视频播放在线视频| 黄色配什么色好看| 18禁在线播放成人免费| av专区在线播放| 少妇被粗大猛烈的视频| 在线 av 中文字幕| 国产黄片美女视频| 一级黄片播放器| 亚洲欧美日韩东京热| 国产成人免费观看mmmm| 免费观看的影片在线观看| 人妻 亚洲 视频| 亚洲精品乱码久久久久久按摩| 最近中文字幕高清免费大全6| 日韩欧美精品免费久久| 老师上课跳d突然被开到最大视频| 国产乱来视频区| 国产av不卡久久| 毛片女人毛片| 婷婷色综合www| 亚洲成人av在线免费| 69人妻影院| 午夜免费观看性视频| 久久人人爽人人爽人人片va| 国产亚洲av片在线观看秒播厂| 欧美bdsm另类| 日韩人妻高清精品专区| 久久影院123| 免费少妇av软件| 搡女人真爽免费视频火全软件| 在线亚洲精品国产二区图片欧美 | 菩萨蛮人人尽说江南好唐韦庄| 热re99久久精品国产66热6| 一级毛片黄色毛片免费观看视频| 97热精品久久久久久| 男人添女人高潮全过程视频| 成年女人看的毛片在线观看| 有码 亚洲区| 特大巨黑吊av在线直播| 成年女人看的毛片在线观看| 日日摸夜夜添夜夜爱| 18+在线观看网站| 欧美xxⅹ黑人| 亚洲婷婷狠狠爱综合网| 白带黄色成豆腐渣| 亚洲aⅴ乱码一区二区在线播放| 国产精品99久久久久久久久| 久久影院123| 国产精品不卡视频一区二区| 久久精品综合一区二区三区| 男女那种视频在线观看| 亚洲精品乱久久久久久| 在线观看人妻少妇| 99久久中文字幕三级久久日本| 尤物成人国产欧美一区二区三区| 精品人妻视频免费看| 亚洲欧美一区二区三区国产| 久久久久久九九精品二区国产| 亚洲成人久久爱视频| 亚洲国产高清在线一区二区三| 久久久久九九精品影院| 欧美成人精品欧美一级黄| 男女边摸边吃奶| 亚洲欧美清纯卡通| 天天一区二区日本电影三级| 青春草亚洲视频在线观看| 一级毛片aaaaaa免费看小| 午夜激情久久久久久久| 精品一区二区三卡| 大片电影免费在线观看免费| 大又大粗又爽又黄少妇毛片口| 亚洲av免费在线观看| 一级爰片在线观看| 久久人人爽人人爽人人片va| 可以在线观看毛片的网站| 五月玫瑰六月丁香| 成人欧美大片| 噜噜噜噜噜久久久久久91| av在线亚洲专区| 免费观看性生交大片5| 国产成人freesex在线| 最近中文字幕高清免费大全6| www.av在线官网国产| 偷拍熟女少妇极品色| 一个人看视频在线观看www免费| 久久精品久久精品一区二区三区| 黄色日韩在线| 春色校园在线视频观看| 白带黄色成豆腐渣| 欧美xxxx黑人xx丫x性爽| 插逼视频在线观看| 国模一区二区三区四区视频| 在线天堂最新版资源| 亚洲av免费高清在线观看| 永久免费av网站大全| 午夜激情福利司机影院| 中文字幕av成人在线电影| 99热这里只有是精品在线观看| 91aial.com中文字幕在线观看| 亚洲不卡免费看| 一级片'在线观看视频| 久久久久国产网址| 一本久久精品| 欧美日韩在线观看h| 在线观看一区二区三区激情| 嫩草影院新地址| 日本-黄色视频高清免费观看| 干丝袜人妻中文字幕| 日日撸夜夜添| 日韩成人伦理影院| 18禁裸乳无遮挡免费网站照片| 国产黄色免费在线视频| 亚洲精品一区蜜桃| 美女xxoo啪啪120秒动态图| 欧美三级亚洲精品| 女人被狂操c到高潮| 少妇人妻 视频| 成人美女网站在线观看视频| 亚洲国产欧美人成| 高清视频免费观看一区二区| 久久久久久久久久久免费av| 国产精品精品国产色婷婷| 嘟嘟电影网在线观看| 免费观看在线日韩| 国产精品熟女久久久久浪| 亚洲精品视频女| 免费黄网站久久成人精品| 午夜激情久久久久久久| 欧美+日韩+精品| 一本久久精品| 神马国产精品三级电影在线观看| 国产爽快片一区二区三区| 色吧在线观看| 国产欧美日韩精品一区二区| 69人妻影院| 永久网站在线| 王馨瑶露胸无遮挡在线观看| 国内少妇人妻偷人精品xxx网站| 美女高潮的动态| 亚洲av男天堂| 亚洲三级黄色毛片| 最近中文字幕高清免费大全6| 日本-黄色视频高清免费观看| 建设人人有责人人尽责人人享有的 | 国产高清三级在线| 国产男人的电影天堂91| 国产成人一区二区在线| 91久久精品国产一区二区成人| 国产精品久久久久久久电影| 韩国av在线不卡| 亚洲欧洲国产日韩| 国产欧美日韩精品一区二区| 久久6这里有精品| 日本-黄色视频高清免费观看| 欧美丝袜亚洲另类| 亚洲av成人精品一二三区| 国产欧美日韩精品一区二区| 国精品久久久久久国模美| 1000部很黄的大片| 女人被狂操c到高潮| 亚洲精品乱久久久久久| 国产毛片在线视频| 国产免费视频播放在线视频| 交换朋友夫妻互换小说| 成人亚洲精品av一区二区| 一边亲一边摸免费视频| 欧美激情久久久久久爽电影| 能在线免费看毛片的网站| 午夜福利高清视频| 日本黄色片子视频| 亚洲av.av天堂| 午夜视频国产福利| 天美传媒精品一区二区| av天堂中文字幕网| 99久久精品国产国产毛片| 久久久久久九九精品二区国产| 亚洲欧美日韩另类电影网站 | 亚洲精品,欧美精品| 水蜜桃什么品种好|