• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optical Properties of C-rich (12C,SiC and FeC) Dust Layered Structure of Massive Stars*

    2022-05-24 14:21:04RuiQingWuMengQiuLongXiaoJiaoZhangYunPengWangMengLiYaoMingMingLiChunHuaZhuGuoLiangZhaoJunWangJuJiaZhangZhaoWangandWuJinChen

    Rui-Qing Wu ,Meng-Qiu Long,6 ,Xiao-Jiao Zhang ,Yun-Peng Wang ,Meng-Li Yao ,Ming-Ming Li ,Chun-Hua Zhu,Guo-Liang Lü,Zhao-Jun Wang,Ju-Jia Zhang,Zhao Wang,and Wu-Jin Chen

    1 School of Physics and Electronics,Central South University,Changsha 410083,China;ruiqingwu163@163.com,mqlong@csu.edu.cn

    2 School of Physical Science and Technology,Xinjiang University,Urumqi 830046,China

    3 Yunnan Observatories (YNAO),Chinese Academy of Sciences,Kunming 650216,China

    4 School of Chemistry and Chemical Engineering,Guangxi University,Nanning 530004,China

    5 School of Medicine,Xinjiang Medical University,Urumqi 830011,China

    Abstract The composition and structure of interstellar dust are important and complex for the study of the evolution of stars and the interstellar medium (ISM).However,there is a lack of corresponding experimental data and model theories.By theoretical calculations based on ab-initio method,we have predicted and geometry optimized the structures of Carbon-rich(C-rich)dusts,carbon(12C),iron carbide(FeC),silicon carbide(SiC),even silicon(28Si),iron (56Fe),and investigated the optical absorption coefficients and emission coefficients of these materials in 0D(zero-dimensional),1D,and 2D nanostructures.Comparing the nebular spectra of the supernovae (SN) with the coefficient of dust,we find that the optical absorption coefficient of the 2D 12C,28Si,56Fe,SiC and FeC structure corresponds to the absorption peak displayed in the infrared band(5–8)μm of the spectrum at 7554 days after the SN1987A explosion.It also corresponds to the spectrum of 535 days after the explosion of SN2018bsz,when the wavelength was in the range of (0.2–0.8) and (3–10)μm.Nevertheless,2D SiC and FeC correspond to the spectrum of 844 days after the explosion of SN2010jl,when the wavelength is within (0.08–10)μm.Therefore,FeC and SiC may be the second type of dust in SN1987A corresponding to infrared band (5–8)μm of dust and may be in the ejecta of SN2010jl and SN2018bsz.The nano-scale C-rich dust size is~0.1 nm in SN2018bsz,which is 3 orders of magnitude lower than the value of 0.1 μm.In addition,due to the ionization reaction in the supernova remnant(SNR),we also calculated the Infrared Radiation(IR)spectrum of dust cations.We find that the cation of the 2D layered (SiC)2+ has a higher IR spectrum than those of the cation (SiC)1+ and neutral (SiC)0+.

    Key words:stars:carbon–(ISM:) dust–extinction–ISM:abundances

    1.Introduction

    The formation of carbides(e.g.,SiC,Fe3C)can be predicted by thermodynamic equilibrium calculation for given temperature,pressure,and C/O ratio in the circumstellar materials(CSMs),including AGB star and Core-collapse supernovae(CCSNe)(Lodders&Fegley 1995;Sharp&Wasserburg 1995;Hoppe et al.2001;Singerling et al.2021).The size,shape and corresponding energetics of the dust grains are indispensable information for these calculations.For the hypothetical astronomical silicon dust temperature is higher than the condensation temperature~1000 K(Nozawa et al.2003).Gail&Sedlmayr (1999) studied the limit of the dust condensation zone temperature(900–1300 K)corresponds to the sublimation temperature outflow at low pressure (10-9–10-12bar).In order to keep the problem simple,Mathis et al.(1977) assumed that the particles are spherical and have a size distribution of(0.005–0.25)μm.Nozawa et al.(2003) showed that the newly formed dust is mainly graphite or amorphous carbon.In addition,when the radius is ?0.1 μm,the condensation temperature of C-rich dust is~(1300–1350) K,and the formation temperature of Fe3C is between 1200 K and 1500 K(Singerling et al.2021).

    Dwek et al.(2010) found via Spitzer satellite that silicate dust is best suited for the evolution of(8–30)μm spectrum and time data.The Infrared Radiation (IR) spectrum (6000–8000 day) also shows the presence of very small and thermal(T~350 K) secondary dust,the dust is likely to coexist with silicate in the SNR.Until now,the origin of this emission component is an unsolved problem.The temperature of the secondary dust component is significantly higher than that of the silicate grains,ranging from 370 K(iron dust)to 460 K(Crich dust).Therefore,FeC and SiC dust is likely to be present in the SNR.According to the above description,we ignored the temperature and pressure,because these factors are very low.

    Here,we simulate the nano-layered structure of FeC and SiC in 0D,1D and 2D in the SNR,the structures of dust including metallic needles (Dwek 2004),multi-layered particles(Voshchinnikov et al.2017),hydrogenated nanotubes (HNT)molecular growth(Chen&Li 2019),spherical(Fischera 2004;Demyk et al.2017;Gail et al.2020).Marassi et al.(2019)and Kirchschlager et al.(2020) groups have studied the dust mass in the SNR,furthermore,some groups research the spectral of the iron and silicates dust (Maldoni et al.2005;Gail et al.2020).

    The radiation output of SN 1987A is mainly powered by the radioactive decay energy in the ejecta,which is affected by the interaction of its shock wave with the inner equatorial ring(ER).The ER may be formed by mass loss during the evolution of stars(Heger&Langer 1998).We do not consider the factors affecting dust radiation,because the mechanism has not been perfected and recognized.Noted that the total mass of dust particles(Md),κνand temperature(Td)are positively correlated with the dust heat flux emission Fν,and the dust mass absorption coefficient (κν) depends on the dust type and size distribution (Maeda et al.2013).We thus consider the absorption coefficient (α) and the emission coefficient (E) of the C–rich dust in the SNR,and estimated the radiant flux of C-rich dust.

    In SN 2010jl,dust formation can only commence after day~380 (Sarangi et al.2018).Chen et al.(2021) propose that Super Luminous Supernova (SLSN) 2018bsz can form new dust in the ejecta more than 200 days after the SN explosion.SN 2018bsz is the first to prove the presence of dust in SLSN ejecta.The carbon dust output can reach 10-2M⊙in 535 days after the SN explosion.The SN forward shock wave is sufficient to heat and ionize the CSM,which will generate a very strong ionizing radiation flux (Sarangi et al.2018).The energy of the interaction between the CSM and the shock wave depends on the SN photosphere(Fransson et al.2014).The preexisting dust in the CSM can be formed in cooling gas after the post-shock.According to photoionization by the central star,Ota(2019)predicts the vibrational spectra of ionized graphene and fullerene (C60),and their results are in reasonable agreement with laboratory experiments.

    Chen&Li(2019)studied the IR vibrational spectra of HNT and their cations,Devi et al.(2020),Zhang et al.(2020),and Hanine et al.(2020) researched the IR spectra of five and six membered ring PAH,respectively.However,few research groups use first principles to study the correlation between the IR spectrum of the different structures of C–rich dust and the SN spectrum.Through this method,we can obtain more accurate and reliable dust structure,composition and size,and better study the mass of dust,interstellar extinction from the CSM (Schlafly &Finkbeiner 2011;Dhar &Das 2017;Chen et al.2021).Therefore,it is necessary to study whether the C–rich dust structures of different dimensions are related to the spectrum of SNR.This is also conducive to later observations on the structure and shape of dust.

    This was quite another case, and the king had more talk with the stableman, who said that he could easily lend the king the six bushels of money, but would only do it on condition that he should be allowed to accompany the king when he went to pay the debt, and that he should then be dressed like the king s court fool, and run before him

    The physical environment for the formation of dust is a very complex and difficult content.In this paper,we ignore some of the factors and focus on the influence of dust structure and composition on the spectrum.In Section 2;the relevant physical parameters of the dust model are mainly explained.The detailed results are discussed in Section 3.Section 4 is the main conclusion.

    2.Model

    We use the open–source CALYPSO (Crystal structure AnaLYsis by Particle Swarm Optimization,version 6.0)software to acquire the initial structure of C–rich dust (Wang et al.2010;Su et al.2017;Yin et al.2020).Then we predict stable or metastable nanostructures based on the chemical composition given by CALYPSO interfaced with Vienna Ab–initio Simulation Package (VASP).

    Parameters for 2D structure prediction(2D=T).In addition,the Ialgo is 2 for local Particle Swarm Optimization (PSO).Local optimization increases the cost of each structure,but it effectively reduces efficiency,enhances the comparability between different structures,and provides a local optimal structure for use.The PSO algorithm can predict reliable ground state and metastable structures,generate symmetry structure,and then conduct the elimination of similar structures to obtain the initial dusty geometric structure.When the temperature T=0 K,we take the enthalpy of the free energy reduced to the locally optimized structure as the fitness function of the calculation simulation.The atomic coordinates and lattice parameters are locally optimized,and a large number of the worst structures are eliminated.The structure below has entered the next–generation structure prediction through PSO(Wang et al.2010).We predicted (FeC)0+and (SiC)0+(four formula unit per cel)structures with the only input information of chemical composition.The population size is set to 30(Luo et al.2011;Wang et al.2010).The distance between two adjacent layers is 2 (Layer Gap=2 ?).The total energy is calculated from the beginning with 0 K and 0 GPa,so the free energy is reduced to enthalpy (Wang et al.2010).In the PSO local search,the structure in the phase space can be regarded as a particle,the structure composed of a group of particles is called a population or generation,and the particle position is mainly updated by the following equation:

    where x and ν represent position and velocity of an atom,respectively,i is the exponent of the atom,j is the dimension of the structure,and t is the generation index (Luo et al.2011).

    Moreover,the parameter settings for VASP are as follows:the energy convergence of standard is 1×10-6eV,the Hellmann-Feynman forces of standard is ≤1×10-2eV/?,the vacuum layer is 20 ? along the z direction (Zhang et al.2018;Yao et al.2021).The unit cell of FeC/SiC crystal is in panels(a),(e),and(i) of Figure 1,and the optimized lattice constants are calculated as a=b=c=3.382 ?,a=b=c=2.611 ?,and a=b=c=4.379 ?,respectively.Lattice angles are α=β=γ=90°.Here,the vacuum layer is order to prevent the dust structure from reacting with other structural units.In the PSO simulations,via the density functional theory (DFT)based on the plane-wave calculations,we optimized the structures and calculated the related physical quantities (Luo et al.2011).The k-point grid in the Brillouin zone is set to 1×1×1 for static calculation.The calculation is based on the iterative method of Kohn–Sham,and the plane wave of the projected wave pseudopotential is concentrated on the DFT equation (Kohn &Sham 1965).In this paper,the calculation function is Perdew–Burke–Ernzerhof (PBE),the generalized gradient approximation function of exchange correlation,and the cut-off energy of the plane wave is 400 eV (Rani et al.2014;Lin et al.2016;Yao et al.2021).Two dimensional structures are constructed by 5×5 supercell for 32(FeC)0+(Consisting of 32 atoms is electrically neutral dust),and 4×4 supercells for 85(SiC)0+,and 72(Si)0+.The linear optical properties of dust can be obtained from the frequencydependent complex dielectric function:

    where ε1(ω) and ε2(ω) are the real and imaginary parts of the dielectric function,and ω is the photon frequency.Absorption coefficient α(ω) is:

    here,c is the speed of light.The reflectivity R(ω) is calculated by this formula:

    where n and K are the real and imaginary parts of the refractive index,respectively (Wang et al.2019;Yao et al.2021;Rani et al.2014).Regarding the ionization state of dust,the total number of electrons is set to randomly lose one or two electrons in VASP.

    In the FeC model,the optimized Fe-C bond length is(1.82–1.86) ?,it is close to the value in the FeC2structure(1.84–2.11) ?(Zhao et al.2016).For the SiC model,the optimized Si-C bond length is(1.89–1.92)?,which is 1.8 ? in the work of Zheng et al.(2011).Moreover,we calculated the stability of the cohesive energy verification structural model,through the formula:

    where Efe/si,Ec,and Etolare the energy of a single56Fe/28Si atom,12C atom and total energy of the monolayer FeC/SiC structure,respectively.These n and m are the number of56Fe/28Si and12C atoms in the monolayer structure,respectively.The calculated cohesive energy of per atom of FeC and SiC is 7.13 eV and 6.61 eV,respectively.The positive values indicate that the cohesive process is exothermic,and which are larger than the cohesive energy 5.76 eV per atom of tetragonal-FeC (t-FeC) and 5.59 eV per atom of orthorhombic-FeC(o-FeC),Be5C2(per atom 4.58 eV),and Be2C (per atom 4.86 eV) (Li et al.2014;Wang et al.2016;Fan et al.2020).Therefore,such a high cohesion can keep the FeC and SiC monolayer structures as a stability connection network.

    3.Results

    We calculated the optical coefficients of different structures of56Fe,28Si,12C,FeC,and SiC from nanoparticles,in order to discuss the contribution of the structure and composition of dust spectrum of massive stars.Specifically,we compared and analyzed the light absorption coefficient and emission coefficient of different types of dust,and the IR spectrum with the observation data in the work of Dwek et al.(2010) (SN 1987A),Sarangi et al.(2018)(SN 2010jl),and Chen et al.(2021)(SN 2018bsz).The IR spectrum with ionization conditions of the C-rich dust is consistent with the observed and theoretical values within a certain wavelength range.

    3.1.IR Spectrum of C-rich Dust

    Figure 1 shows the predicted structures of 0D 32(FeC)0+-Z in (b) structure model,1D 12(FeC)0+-O in (c) structure model and 2D 36(FeC)0+-T in (d) structure model.(e) model is 10(Fe4C)0+structure,(f)model is 23(C)0+-T structure,(g)and(h) models are 16(Fe)0+and 72(Si)0+,respectively.The initial model of SiC is (i) model,(j),(k),(l) models respectively represent a 0D 91(SiC)0+-Z structure,a 1D 18(SiC)0+-O structure and a 2D 85(SiC)0+-T structure.In the legend below:12C,28Si,56Fe atoms are shown as brown,blue,and orange colors,respectively.We choose the initial models FeC and Fe4C,which are generated in the second generation [(a)model],seventh generation [(e) model] in the left Figure 1,respectively.And SiC is generated in the sixteenth generations[(i) model].23(C)0+-T (f) model comes from the work of Ota(2019),Otsuka et al.(2016) indicated that small carbon clusters,small graphite flakes or fullerenes have the ability to form very small clusters.According to astronomically observed,the infrared spectrum (IR) in the planetary nebula Tc 1 coincides with the neutral C60vibration spectrum (Kroto&McKay 1988;Cami et al.2010;Otsuka et al.2016;Ota 2019).The 16(Fe)0+-T (g) and 72(Si)0+-T (h) models are built with Virtual NanoLab with Atomistix ToolKit (VNL–ATK,version 2017) (Liu et al.2018;Yi et al.2018).

    Figure 2(a) compares the IR spectrum of SN2010jl after the explosion of SN 844 days with that of silicate (black dotted line) and carbon (red dotted line) dust.C-rich dust in the nearinfrared and mid-infrared bands~(0.08–10)μm fits well with observations,while silicate dust matches well in wavelengths between 1 μm and 10 μm.The orange curve in panel (b) is taken from the work of Dwek et al.(2010).Their SN1987A IR spectrum 7554 days after the SN explosion is compared with the total IR spectrum of silicate(black dotted line),C-rich dust(red dotted line),iron(blue dotted line),silicate and the second type of dust(green dotted line).Obviously,the IR spectrum of ER in a single component in dust can fit well with the 180 K IR spectrum and the astronomically spectrum of silicate,especially at wavelengths over (5–8)μm.It is also shown that the IR spectrum of the single component56Fe and12C dust is fit well with wavelengths less (5–8)μm.Nevertheless,in the wavelengths of (5–8)μm,we find that there is a small gap between the IR spectrum of SN1987A and dust.The absorption spectrum of our 85(SiC)0+-T is basically consistent with that of 3C-SiC that of Fan et al.(2018) at peaks of wavelength 0.1,0.15,0.2 μm.Dwek et al.(2010) proposed that there is a second form of dust.As we can see,the absorption coefficient is inversely proportional to the radiation intensity.This is consistent with the thermal radiation relation proposed by Kirchhoff (1860),

    where E is the emission coefficient,α is the absorption coefficient,and e is equal to:

    where I is a function of wavelength and temperature I (λ,T),the value of e depends on the shape and relative position of the openings ω1and ω2,which refer to the projection of the opening on the plane perpendicular to the observation axis.s is the distance of the opening.Furthermore,according to the works of You (1998),Rybicki &Lightman (1979),and Shu(1991),when the optical depth is close to infinitely small,then the above formula is satisfied (F is the flux of the dust):

    Figure 3 shows the correlation between emission coefficient of our C-rich dust and the SN radiation flux.Obviously,the correlation satisfies the proportionality suggested by Equation (8),as indicated by the peaks at the wavelength of 0.4,2.5,10 μm.While light shines on a smoother material surface,the reflected light will be stronger,then the reflectivity will increase to (0.8–0.9).The photons emitted from the SN cause light echoes by scattering (Yang et al.2017),the light echoes are the radiation phenomenon formed by the reflection of the stellar light on the surface of the dust.Fan et al.(2018) believe that as the stellar light travels longer,the SN radiant flux and echo are both higher at shorter wavelengths.Here,we make the reflectivity of the dust approximately equal to the emissivity of the dust.Our 85(SiC)0+-T emission spectrum is also basically consistent with the 3C-SiC emission spectrum of Fan et al.(2018) at the peaks of wavelength 0.14,0.15,0.25 μm.

    Figure 1.The initial structure of(FeC)0+dust is(a)model,based on(a)structure,we have established zero-dimensional(0D)to two-dimensional(2D)structures(See Figure 1 for explanation).

    Figure 4 shows that the SN spectrum and the C-rich dust spectrum are in good agreement,especially with the SN1987A spectrum.There is a good overlap at the wavelength of(5–8)μm,such as the wavelength range corresponding to the blue star symbol.Therefore,there is likely to be a 2D or 1D structures of (SiC)0+or (FeC)0+in the remnant of SN1987A.In particular,the spectrum of the 2D structure is more compatible with the observation than the spectrum of the 0D and 1D structures.However,32(FeC)0+has a higher error in its 0D structure.This may be attributed to the small size of dust clusters in our calculations.In Figures 4(c)and(f),referring to the flux of SN1987A,we calculate the radiant flux of dust based on Equation(8),that the size of dust clusters in the SNR is 900 times of C-rich dust,the initial length range is(0.1–0.8)?,the size of the dust close to (9–72) nm,which is exactly in the range (4.5 ?–0.3 μm) of dust size given by Draine et al.(2021)and Lugaro et al.(2020).The radius of the star-shaped silicate sphere and carbonaceous sphere with a wavelength range from λ=0.1 μm to λ=4 μm is about 0.0005 μm to 0.5 μm (Draine 2011),and dust r~0.1 μm(Todini&Ferrara 2001).In Figures 4(d)and(e),in the flux of SN2010jl,because the flux of SN2010jl has ν Flux,then again,we assumed that the frequency of dust per unit time is 1.11×10-9times of flux.Obviously,the 2D layered structure dust and the small dust cluster 10(Fe4C)0+are in good agreement with the SN1987A spectrum in the wavelength range of (2–8)μm,followed by the 0D and 1D (SiC)0+and(FeC)0+structures.In addition,in Figure 4(d),the 1D(FeC)0+and (SiC)0+structures in the wavelength range of(0.4–1.2)μm,with peaks of 3.5,4.5,8,9 μm,and SN2010jl spectra are in good agreement.In Figure 4(e),23(C)0+-T and 10(Fe4C)0+are fit well with SN2010jl spectral in the wavelength range of (0.2–0.5)μm and the peak values are 1,3,10 μm.In Figure 4(f),23(C)0+,16(Fe)0+,85(SiC)0+,and 72(Si)0+2D models and the spectrum of SN1987A(Figure 4(b)) are in good agreement in the wavelength range of (1.6–8.0)μm.There are still gaps in some data,which may be caused by errors in the parameters of our model,for example,we have ignored the temperature,pressure,etc.

    Figure 2.Panels (a),(b) are from the work of Sarangi et al.(2018) and Dwek et al.(2010).Y-axis:flux is the radiant flux of the star or dust.X-axis:λ (μm) is the infrared radiation (IR) wavelength.In the legend of panel (c),the red color dotted-line represents the light absorption spectrum of 91(SiC)0+-Z with 0D structures.Here,α on the Y-axis represents the absorption coefficient.In our work,we find that the light absorption peaks of panels (c)–(f) in C-rich dust matches the peak of Sarangi et al.(2018) radiation spectra (green plus sign),and Dwek et al.(2010) (blue star symbol),respectively.

    3.2.IR Spectrum of C-rich Dust in Ionized State

    In diffuse ISM,the density of UV photons is proportional to the electronic density of states,but the speed of photons is always much faster than electrons.The photoionization of the central star will cause a large number of escaped photons.If the rate of photon absorption is greater than that of electrons colliding with particles,photoelectric charging can drive particles to a positive potential,thus the particles are electropositive.If there is not enough energy to overcome the potential of positively charged particles,it will result in Coulomb focusing increases in the electrons collision of crystal dust (Draine 2011).Therefore,we also study and analyze the spectral distribution of C-rich dust in the ionized state.

    Figures 5 and 6 show the radiation spectra of the 1D and 2D dust with+1 or+2 charge states.In the legend of Figure 5(a),91(SiC)0+-Z is an electrically neutral dust,91(SiC)1+-Z and 91(SiC)2+-Z are dust structures that lose one and two electrons after ionization,respectively.We find that most of the structure is basically consistent,except that the structure of 32FeC-Z is 1 order of magnitude lower than the observed results.The spectrum of the 1D structure matches the SN2010jl spectrum,and the 2D dust spectrum fits well with the SN1987A observation data.But the radiation spectrum of 1D and 2D C-rich dust are basically consistent with the SN2018bsz spectrum when the band range are (0.3–0.7)μm and(3.5–10)μm.The spectrum of SN2018bsz also shows that C II emission lines are observed at wavelengths of 0.59,0.66,and 0.72 μm,respectively (Anderson et al.2018).In Figures 5(d)–(f),in our work,the size of the dust is the initial size of the model(0.1–0.8)?.However,the dust size given by Chen et al.(2021) is 0.1 μm.Therefore,we believe that there may be nano-scale C-rich dust in the remnants of SN2018bsz.The results of the SiC dust structure are in good agreement with the observations,the difference between the neutral and the charged states is minor.One reason could be that the Fe-rich dust is more active than the Si-rich dust,and that the interaction between particles is stronger,which leads to easier electron loss and enhances emission coefficient,but its absorption coefficient increases more strongly,and eventually lead to a lower IR spectrum.In contrast,both of the 2D dusts 16Fe-T and 36Fe-T with charge of plus one and plus two have higher radiation flux than the electrically neutral dusts,but the 1D 12FeC-O structure is the opposite.In Figures 7(c) and (e),the light absorption coefficient and emission coefficient of the 2D structure are higher than those of the 1D structures.The larger the surface area of the 2D structure,and the greater the probability of photons being emitted,lead to flux increase in the final IR spectrum.Moreover,in Figure 7(e),it is seen that the emission coefficients of the 36FeC-T structure with a charge of 0,plus one and plus two basically remain almost unchanged.However,in Figure 7(c),the absorption coefficient of the structure is broadened,and the 36FeC-T dust has a lower absorption coefficient with a charge of +2.Equation (8)indicates that the radiation flux and the absorption coefficient are inversely proportional for a constant and the emission coefficient remains constant.With the increasing of the number of dust charges in the ionized state,the 1D 12FeC-O dust emission coefficient decreases faster than the absorption coefficient,which ultimately leads to a decrease in radiant flux.

    Figure 3.Similar to the Figure 2,we show that the peaks of the light emission spectrum of(c)–(f)(0D-2D)C-rich dust are coincide with the IR spectra of Sarangi et al.(2018) (yellow-green plus sign),and Dwek et al.(2010) (green star symbol).Here,E on the Y-axis represents the emission coefficient.

    Figure 4.The IR spectrum of C-rich dust in different dimensions is compared with the spectrum observed SN1987A and SN2010jl.It can be seen that they are in good agreement.Subgraphs (c)-(f) are our work.

    Figure 5.Due to the ionization in the SNR,the IR spectrum of dust has obvious changes.We compare the IR spectrum of 0D and 2D dust with the IR spectrum of SN1987A and SN2018bsz in panels(a)–(c)and(d)–(f),respectively.The green circle represents the galactic extinction radiation flux observed by SN 2018bsz.The black solid line is the radiant flux of the new dust 535 days after the SN ejection predicted by Chen et al.(2021).

    Figure 6.Similar to Figure 5,in the case of ionization,the radiation spectra of 1D/2D C-rich dust structures are compared with the radiation spectra of SN1987A,SN2010jl,and SN 2018bsz,respectively.

    Figure 7.Subgraphs(c)and(f)show the light absorption spectra of the 2D structure(36FeC-T,72Si-T,85SiC-T)and the 1D structure(12FeC-T)in the ionized state from 0 to+2 charge,while subgraphs(d)and(e)correspond to the emission coefficients of the above dust structure.At the same time,it also has corresponding peak value with the SN spectrum (SN2010jl and SN1987A).

    4.Conclusions

    In this paper,we obtained the IR spectra of C-rich dust both in neutral and ionized states through DFT calculations.Those spectra are compared with the SN observed IR spectrum in the band (0.08–10 μm).

    First,our results indicate that C-rich dust with 2D layered structure has higher radiation flux than those of 0D and 1D structures.That is the IR spectrum with a larger side length(~72 nm) of dust has higher radiant flux,while a smaller side length(~9 nm)is the opposite.In the remnants of SN2018bsz,there is most likely the dust of nano-scale C-rich (~0.1 nm).Second,we propose that the remnant of SN1987A may have a 2D or 1D structure of the second dual-component dust SiC or FeC.Third,1D structure of the second dual-component dust SiC or FeC,2D structure single-component dust 23C-T,and small clusters of dust 10(Fe4C)may exist in the SN1987A and SN2010jl.The spectrum of C-rich dust is more consistent with the spectrum of SN2018bsz both in the bands(0.3–0.7)μm and(3.5–10)μm.

    Finally,for the dust in ionized states,2D dust with +2 charge has higher radiation flux than the electrically neutral dust.On the contrary,the 1D 12FeC-O structure of the dust is the opposite.Our results would contribute to the more precise size and optical properties of C-rich dust,and provide theoretical support for later dust observations in the SNR.This calculation is of great significance for the future budget of the output of stellar dust,galaxy dust,and the influence of dust extinction on observations.For example,it can serve as a reference for dust observations by the James Webb Space Telescope (JWST),the Large Sky Area Multi-Object Fiber Spectroscopy Telescope (LAMOST),and the upcoming China Space Station Optical Survey Telescope (CSST).

    Acknowledgments

    We are very grateful to professor Zhanwen Han and Zhengwei Liu from Yunnan Astronomical Observatory of the Chinese Academy of Sciences (YNAO) for their contributions and help in this article.We are grateful for resources from the High Performance Computing Center of Central South University.This work received the generous support of the Independent Innovation Project for Postgraduates of Central South University No.160171008.The National Natural Science Foundation of China,project Nos.11763007,11863005,

    11803026,and U2031204.In the end,we would also like to express our gratitude to the Natural Science Foundation of Xinjiang No.2021D01C075.

    ORCID iDs

    久久伊人香网站| www日本在线高清视频| 在线a可以看的网站| 欧美又色又爽又黄视频| 亚洲av日韩精品久久久久久密| 舔av片在线| 欧美乱妇无乱码| 亚洲男人的天堂狠狠| 久久精品亚洲精品国产色婷小说| 欧美一区二区精品小视频在线| 宅男免费午夜| 狠狠狠狠99中文字幕| av福利片在线| 窝窝影院91人妻| 久久精品91蜜桃| 婷婷六月久久综合丁香| 色精品久久人妻99蜜桃| 黄色丝袜av网址大全| 婷婷亚洲欧美| 男女下面进入的视频免费午夜| 91av网站免费观看| 欧美一级毛片孕妇| 老熟妇乱子伦视频在线观看| 国产一区二区在线观看日韩 | 少妇粗大呻吟视频| 床上黄色一级片| 久久九九热精品免费| 高清在线国产一区| 一二三四在线观看免费中文在| 国产真人三级小视频在线观看| 俄罗斯特黄特色一大片| 少妇的丰满在线观看| 欧美乱码精品一区二区三区| 久久精品人妻少妇| 听说在线观看完整版免费高清| 麻豆国产av国片精品| 成人18禁高潮啪啪吃奶动态图| 一级黄色大片毛片| 丰满人妻一区二区三区视频av | 国产免费av片在线观看野外av| 国产高清有码在线观看视频 | 日韩免费av在线播放| 亚洲18禁久久av| 18禁裸乳无遮挡免费网站照片| 法律面前人人平等表现在哪些方面| www日本在线高清视频| 亚洲国产精品999在线| 免费看美女性在线毛片视频| 老司机福利观看| 欧美绝顶高潮抽搐喷水| av在线播放免费不卡| 亚洲欧美一区二区三区黑人| 国产成人欧美在线观看| 欧美不卡视频在线免费观看 | 在线观看舔阴道视频| 亚洲中文字幕一区二区三区有码在线看 | av天堂在线播放| 久久香蕉国产精品| 夜夜夜夜夜久久久久| 中文资源天堂在线| 美女午夜性视频免费| 亚洲七黄色美女视频| 狂野欧美激情性xxxx| 免费在线观看视频国产中文字幕亚洲| 一区福利在线观看| 又大又爽又粗| 夜夜躁狠狠躁天天躁| 老司机靠b影院| 五月玫瑰六月丁香| 亚洲成av人片免费观看| 免费一级毛片在线播放高清视频| 悠悠久久av| 黄片小视频在线播放| 高清毛片免费观看视频网站| 精品国内亚洲2022精品成人| 亚洲专区中文字幕在线| 日韩欧美免费精品| 日本在线视频免费播放| 色哟哟哟哟哟哟| 国产欧美日韩精品亚洲av| 欧美成狂野欧美在线观看| xxx96com| 国产三级中文精品| 亚洲精品中文字幕一二三四区| 亚洲第一欧美日韩一区二区三区| 亚洲欧美精品综合一区二区三区| 久久精品国产清高在天天线| 在线观看免费午夜福利视频| 国产成+人综合+亚洲专区| 村上凉子中文字幕在线| 一个人观看的视频www高清免费观看 | 国产69精品久久久久777片 | 精华霜和精华液先用哪个| 狠狠狠狠99中文字幕| 欧美另类亚洲清纯唯美| 国产亚洲av高清不卡| 免费电影在线观看免费观看| 午夜老司机福利片| 亚洲欧美日韩东京热| 巨乳人妻的诱惑在线观看| 国产高清有码在线观看视频 | 欧美av亚洲av综合av国产av| 午夜福利在线观看吧| 欧美大码av| 精品一区二区三区视频在线观看免费| a级毛片a级免费在线| 亚洲成a人片在线一区二区| 欧美乱色亚洲激情| 一进一出好大好爽视频| 日本一区二区免费在线视频| 欧美性长视频在线观看| 美女黄网站色视频| 免费在线观看成人毛片| 亚洲国产精品合色在线| 日本精品一区二区三区蜜桃| 国产区一区二久久| 午夜两性在线视频| a级毛片a级免费在线| 国产成人欧美在线观看| 亚洲精品在线美女| 黄色视频,在线免费观看| 久久久国产成人精品二区| 99国产精品一区二区三区| 婷婷六月久久综合丁香| 女警被强在线播放| 免费无遮挡裸体视频| 他把我摸到了高潮在线观看| 操出白浆在线播放| 欧美精品啪啪一区二区三区| 丰满人妻一区二区三区视频av | 久久久久久大精品| 亚洲国产中文字幕在线视频| 亚洲成人免费电影在线观看| 最近视频中文字幕2019在线8| 首页视频小说图片口味搜索| 日韩精品中文字幕看吧| 欧美午夜高清在线| aaaaa片日本免费| 不卡av一区二区三区| 亚洲片人在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 韩国av一区二区三区四区| 美女午夜性视频免费| www.www免费av| 一级毛片女人18水好多| 日韩精品免费视频一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美日韩瑟瑟在线播放| АⅤ资源中文在线天堂| 国产v大片淫在线免费观看| 国产精品99久久99久久久不卡| 18禁国产床啪视频网站| 亚洲欧美激情综合另类| 在线观看免费视频日本深夜| 欧美日韩中文字幕国产精品一区二区三区| 久久久久国产一级毛片高清牌| 国产精品1区2区在线观看.| 美女黄网站色视频| 欧美日韩福利视频一区二区| 成人国产综合亚洲| 亚洲av美国av| 又爽又黄无遮挡网站| 国产乱人伦免费视频| 岛国视频午夜一区免费看| 99热6这里只有精品| 两性午夜刺激爽爽歪歪视频在线观看 | 国产日本99.免费观看| 白带黄色成豆腐渣| videosex国产| 久久伊人香网站| 成人av一区二区三区在线看| 亚洲精品中文字幕一二三四区| 国产久久久一区二区三区| 好看av亚洲va欧美ⅴa在| 制服人妻中文乱码| 国产欧美日韩精品亚洲av| 国产主播在线观看一区二区| 国产亚洲精品久久久久5区| 97超级碰碰碰精品色视频在线观看| 国产高清videossex| 国产在线精品亚洲第一网站| 国产高清视频在线播放一区| 国产午夜精品久久久久久| 精品欧美国产一区二区三| 老司机福利观看| 9191精品国产免费久久| 亚洲电影在线观看av| 少妇被粗大的猛进出69影院| 亚洲av熟女| 久久久久性生活片| 无人区码免费观看不卡| 法律面前人人平等表现在哪些方面| 亚洲 欧美一区二区三区| 久久久久久久久中文| 一区二区三区高清视频在线| 中文字幕人妻丝袜一区二区| 老鸭窝网址在线观看| 久久久精品国产亚洲av高清涩受| 日本在线视频免费播放| 一级毛片高清免费大全| 一区二区三区高清视频在线| 桃色一区二区三区在线观看| 日韩欧美在线二视频| 亚洲在线自拍视频| 久久久久国产精品人妻aⅴ院| 男人舔奶头视频| 国产91精品成人一区二区三区| 男女之事视频高清在线观看| 女警被强在线播放| 国产aⅴ精品一区二区三区波| 一级黄色大片毛片| 国产免费av片在线观看野外av| 99国产精品一区二区蜜桃av| 99久久国产精品久久久| 久久人妻av系列| 小说图片视频综合网站| 婷婷六月久久综合丁香| 母亲3免费完整高清在线观看| 国产精品亚洲av一区麻豆| 在线国产一区二区在线| 每晚都被弄得嗷嗷叫到高潮| 日韩欧美一区二区三区在线观看| 中亚洲国语对白在线视频| 欧美一级毛片孕妇| 又黄又粗又硬又大视频| 欧美+亚洲+日韩+国产| 国产一区二区在线av高清观看| av福利片在线| 波多野结衣巨乳人妻| 国内少妇人妻偷人精品xxx网站 | 天天添夜夜摸| 国产av一区在线观看免费| 不卡一级毛片| 色综合站精品国产| 国产高清videossex| 最好的美女福利视频网| 18禁黄网站禁片午夜丰满| 亚洲欧美精品综合一区二区三区| 国产精品自产拍在线观看55亚洲| 欧美另类亚洲清纯唯美| 在线观看免费视频日本深夜| 亚洲av日韩精品久久久久久密| 成年免费大片在线观看| 欧美不卡视频在线免费观看 | 在线观看免费午夜福利视频| 久久精品夜夜夜夜夜久久蜜豆 | 特大巨黑吊av在线直播| 一级毛片高清免费大全| 午夜福利欧美成人| 日韩高清综合在线| 欧美最黄视频在线播放免费| 久久久国产欧美日韩av| 69av精品久久久久久| 精品久久久久久久久久久久久| 老司机靠b影院| 九色成人免费人妻av| 性欧美人与动物交配| 全区人妻精品视频| 五月玫瑰六月丁香| 久99久视频精品免费| 日本熟妇午夜| 亚洲成人精品中文字幕电影| av在线天堂中文字幕| 久久久久精品国产欧美久久久| 男人舔女人的私密视频| 最近视频中文字幕2019在线8| 免费在线观看成人毛片| 一区二区三区国产精品乱码| 日韩精品青青久久久久久| 国产一区二区三区在线臀色熟女| 97超级碰碰碰精品色视频在线观看| 熟妇人妻久久中文字幕3abv| 国产一区在线观看成人免费| 免费人成视频x8x8入口观看| 欧美另类亚洲清纯唯美| 日本成人三级电影网站| 亚洲成人国产一区在线观看| 久久性视频一级片| 91老司机精品| 久久精品人妻少妇| 国产成人精品久久二区二区91| 中文字幕av在线有码专区| 在线免费观看的www视频| 亚洲avbb在线观看| 搡老岳熟女国产| 三级毛片av免费| 熟女电影av网| 亚洲五月天丁香| 99国产精品一区二区三区| 午夜福利免费观看在线| 日日夜夜操网爽| 国产精品免费一区二区三区在线| 国产久久久一区二区三区| 日韩成人在线观看一区二区三区| 免费在线观看亚洲国产| 免费在线观看影片大全网站| 成人手机av| 国产精品1区2区在线观看.| 国产黄色小视频在线观看| 国产成人精品久久二区二区免费| 一个人免费在线观看的高清视频| svipshipincom国产片| 村上凉子中文字幕在线| 国产亚洲欧美98| 国产精品综合久久久久久久免费| 久久午夜亚洲精品久久| 日本成人三级电影网站| 这个男人来自地球电影免费观看| 777久久人妻少妇嫩草av网站| 亚洲九九香蕉| 国产又黄又爽又无遮挡在线| 丁香欧美五月| 精品午夜福利视频在线观看一区| 巨乳人妻的诱惑在线观看| 97超级碰碰碰精品色视频在线观看| 日韩欧美 国产精品| 一边摸一边抽搐一进一小说| 国产精品一区二区精品视频观看| 母亲3免费完整高清在线观看| 国产精品乱码一区二三区的特点| 日本免费a在线| 久久精品国产综合久久久| 国产一区二区激情短视频| 夜夜躁狠狠躁天天躁| 国产精品一及| xxx96com| 日本精品一区二区三区蜜桃| 欧美久久黑人一区二区| 国产精品,欧美在线| 国产精品久久电影中文字幕| 色噜噜av男人的天堂激情| 国产亚洲欧美98| 欧美又色又爽又黄视频| 亚洲成a人片在线一区二区| 又粗又爽又猛毛片免费看| 欧美色视频一区免费| 一边摸一边做爽爽视频免费| 精品久久久久久久末码| 国产精品国产高清国产av| 我要搜黄色片| 老司机深夜福利视频在线观看| 极品教师在线免费播放| 又黄又粗又硬又大视频| 两个人视频免费观看高清| 国产成+人综合+亚洲专区| 听说在线观看完整版免费高清| 成人精品一区二区免费| 亚洲无线在线观看| 色综合婷婷激情| 国产精品九九99| 国产精品永久免费网站| 国产精品免费视频内射| 亚洲国产欧美网| 亚洲精品一区av在线观看| 欧美性猛交╳xxx乱大交人| 久久这里只有精品19| 全区人妻精品视频| 国产高清有码在线观看视频 | 757午夜福利合集在线观看| 丰满人妻一区二区三区视频av | 亚洲自拍偷在线| 禁无遮挡网站| 国产精品乱码一区二三区的特点| АⅤ资源中文在线天堂| 久久午夜亚洲精品久久| 欧美绝顶高潮抽搐喷水| 99在线人妻在线中文字幕| 亚洲avbb在线观看| 999久久久精品免费观看国产| 久久久久久国产a免费观看| 日本三级黄在线观看| 午夜影院日韩av| 男女视频在线观看网站免费 | 亚洲18禁久久av| 在线播放国产精品三级| 国产三级在线视频| 男女之事视频高清在线观看| 精品一区二区三区av网在线观看| 久久久久久人人人人人| 99在线人妻在线中文字幕| 亚洲男人的天堂狠狠| 麻豆久久精品国产亚洲av| 天天添夜夜摸| 91大片在线观看| 男女午夜视频在线观看| 国产精品久久视频播放| 人人妻人人看人人澡| 国产蜜桃级精品一区二区三区| 狂野欧美白嫩少妇大欣赏| 白带黄色成豆腐渣| 国产一区二区在线av高清观看| 成人三级做爰电影| 大型黄色视频在线免费观看| 国产精品久久视频播放| 91九色精品人成在线观看| 免费电影在线观看免费观看| 性欧美人与动物交配| ponron亚洲| www.www免费av| 特级一级黄色大片| 黄色视频不卡| 高清在线国产一区| 此物有八面人人有两片| 啪啪无遮挡十八禁网站| 亚洲av成人精品一区久久| 91字幕亚洲| 日韩欧美免费精品| 欧美黄色淫秽网站| 亚洲人成网站在线播放欧美日韩| 最近视频中文字幕2019在线8| 精品第一国产精品| 久久久国产欧美日韩av| 欧美乱妇无乱码| 老熟妇乱子伦视频在线观看| or卡值多少钱| 国产成人av激情在线播放| 国产又色又爽无遮挡免费看| 午夜老司机福利片| 欧美三级亚洲精品| 狠狠狠狠99中文字幕| 国产成人精品久久二区二区免费| 久久中文看片网| 欧美极品一区二区三区四区| 男人舔奶头视频| 最近在线观看免费完整版| 国产精品亚洲一级av第二区| 大型av网站在线播放| 又黄又粗又硬又大视频| 日韩av在线大香蕉| 在线观看www视频免费| 欧美日韩一级在线毛片| 亚洲自拍偷在线| 亚洲avbb在线观看| 亚洲精品色激情综合| 久久久精品大字幕| 亚洲,欧美精品.| 可以在线观看毛片的网站| 九九热线精品视视频播放| 精品高清国产在线一区| 成年免费大片在线观看| 不卡一级毛片| 一本久久中文字幕| 久久久久国产精品人妻aⅴ院| 色综合站精品国产| 午夜久久久久精精品| 无遮挡黄片免费观看| 禁无遮挡网站| 757午夜福利合集在线观看| 床上黄色一级片| 国内久久婷婷六月综合欲色啪| 在线视频色国产色| 可以在线观看的亚洲视频| 欧美成人午夜精品| 日韩欧美免费精品| 亚洲 欧美一区二区三区| 欧美午夜高清在线| 亚洲第一欧美日韩一区二区三区| 亚洲人成伊人成综合网2020| 69av精品久久久久久| 亚洲av片天天在线观看| 久久久久久久久久黄片| 国产高清videossex| 久久精品国产清高在天天线| 最新美女视频免费是黄的| 久久这里只有精品中国| 国产久久久一区二区三区| 精华霜和精华液先用哪个| 久久久精品国产亚洲av高清涩受| 亚洲电影在线观看av| 99国产综合亚洲精品| 窝窝影院91人妻| 天堂动漫精品| 色尼玛亚洲综合影院| 日韩精品免费视频一区二区三区| 国产日本99.免费观看| 午夜视频精品福利| 久久九九热精品免费| 亚洲国产高清在线一区二区三| 精品久久久久久久末码| 成人永久免费在线观看视频| 亚洲精品国产精品久久久不卡| 高清在线国产一区| 一区福利在线观看| 亚洲免费av在线视频| 国产精品久久久久久亚洲av鲁大| a级毛片在线看网站| 成年版毛片免费区| 一夜夜www| 中文字幕高清在线视频| 99在线人妻在线中文字幕| 亚洲av成人精品一区久久| 日韩欧美三级三区| 国产高清videossex| 国产亚洲精品久久久久久毛片| 亚洲真实伦在线观看| 黄色片一级片一级黄色片| 不卡一级毛片| 欧美在线一区亚洲| www日本在线高清视频| 日本免费a在线| 久久久久久久久中文| 成在线人永久免费视频| 国产午夜精品论理片| 亚洲精品粉嫩美女一区| 中文字幕av在线有码专区| 国产亚洲欧美在线一区二区| 中文字幕高清在线视频| a级毛片a级免费在线| 在线观看舔阴道视频| 亚洲九九香蕉| 韩国av一区二区三区四区| 我要搜黄色片| 超碰成人久久| 国产亚洲精品久久久久5区| 国产熟女xx| 久久香蕉国产精品| 成人欧美大片| 俄罗斯特黄特色一大片| 国产精品乱码一区二三区的特点| 亚洲七黄色美女视频| 无限看片的www在线观看| 叶爱在线成人免费视频播放| 无限看片的www在线观看| 日日干狠狠操夜夜爽| 亚洲自偷自拍图片 自拍| 国产高清有码在线观看视频 | 少妇粗大呻吟视频| 一级作爱视频免费观看| 12—13女人毛片做爰片一| a在线观看视频网站| 亚洲中文字幕日韩| 成年人黄色毛片网站| 人妻夜夜爽99麻豆av| 成人手机av| 午夜视频精品福利| 无人区码免费观看不卡| 人人妻,人人澡人人爽秒播| 日韩有码中文字幕| 999精品在线视频| av福利片在线| 大型黄色视频在线免费观看| 国产成人av教育| 婷婷精品国产亚洲av在线| 午夜激情福利司机影院| 男人舔奶头视频| av片东京热男人的天堂| 村上凉子中文字幕在线| 性欧美人与动物交配| 18禁黄网站禁片免费观看直播| 久久精品国产99精品国产亚洲性色| 亚洲自拍偷在线| 可以免费在线观看a视频的电影网站| 亚洲国产看品久久| 国产激情久久老熟女| 草草在线视频免费看| 亚洲国产中文字幕在线视频| 国产av一区二区精品久久| 久久午夜综合久久蜜桃| 欧美黑人欧美精品刺激| 99精品在免费线老司机午夜| 国产午夜精品久久久久久| 窝窝影院91人妻| 欧美日韩中文字幕国产精品一区二区三区| 天堂av国产一区二区熟女人妻 | 后天国语完整版免费观看| 国产高清视频在线播放一区| 美女 人体艺术 gogo| 亚洲精品一区av在线观看| 少妇的丰满在线观看| av在线播放免费不卡| 日韩欧美国产在线观看| 久久天堂一区二区三区四区| 国产成人av激情在线播放| 麻豆国产97在线/欧美 | 身体一侧抽搐| 免费看十八禁软件| 亚洲成人免费电影在线观看| 日本一二三区视频观看| 日韩欧美 国产精品| 国产麻豆成人av免费视频| 欧美日本亚洲视频在线播放| bbb黄色大片| 午夜视频精品福利| 国产97色在线日韩免费| 日韩 欧美 亚洲 中文字幕| 91麻豆av在线| 国产成人系列免费观看| 校园春色视频在线观看| 国产精品av视频在线免费观看| 国内久久婷婷六月综合欲色啪| 黄片小视频在线播放| 看免费av毛片| 久久久久久大精品| 亚洲一区二区三区不卡视频| 欧美日韩乱码在线| 国产精品国产高清国产av| 中亚洲国语对白在线视频| 黑人巨大精品欧美一区二区mp4| 制服诱惑二区| 91字幕亚洲| 可以免费在线观看a视频的电影网站| 男人舔女人下体高潮全视频| 亚洲在线自拍视频| 欧美性猛交╳xxx乱大交人| 波多野结衣巨乳人妻| 最近最新中文字幕大全免费视频| 亚洲人成网站在线播放欧美日韩| 日本一区二区免费在线视频| 丁香欧美五月| 成人18禁高潮啪啪吃奶动态图| 麻豆国产97在线/欧美 | 少妇粗大呻吟视频| 亚洲免费av在线视频| 日韩精品免费视频一区二区三区| 九色国产91popny在线|