• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Spatial Distribution of HOCN Around Sagittarius B2

    2022-05-24 14:20:52SiQiZhengJuanLiJunZhiWangFengGaoYaJunWuShuLiuandShangHuoLi

    Si-Qi Zheng ,Juan Li ,Jun-Zhi Wang ,Feng Gao ,Ya-Jun Wu ,Shu Liu ,and Shang-Huo Li

    1 Shanghai Astronomical Observatory,Chinese Academy of Sciences,Shanghai 200030,China;zhengsq@shao.ac.cn,lijuan@shao.ac.cn,jzwang@shao.ac.cn

    2 Key Laboratory of Radio Astronomy,Chinese Academy of Sciences,Nanjing 210033,China

    3 University of Chinese Academy of Sciences,Beijing 100049,China

    4 Hamburger Sternwarte,Universitaet Hamburg,Gojenbergsweg 112,D-21029,Hamburg,Germany

    5 National Astronomical Observatories,Chinese Academy of Sciences,Beijing 100101,China

    6 Korea Astronomy and Space Science Institute,776 Daedeokdae-ro,Yuseong-gu,Daejeon 34055,Republic of Korea

    Abstract HOCN and HNCO abundance ratio in molecular gas can tell us the information of their formation mechanism.We performed high-sensitivity mapping observations of HOCN,HNCO,and HNC18O lines around Sagittarius B2(Sgr B2)with the IRAM 30 m telescope at the 3 mm wavelength.HNCO 404–303 and HOCN 404–303 are used to obtain the abundance ratio of HNCO to HOCN.The ratio of HNCO 404–303 to HNC18O 404–303 is used to calculate the optical depth of HNCO 404–303.The abundance ratio of HOCN and HNCO is observed to range from 0.4% to 0.7% toward most positions,which agrees well with the gas-grain model.However,the relative abundance of HOCN is observed to be enhanced toward the direction of Sgr B2 (S),with HOCN to HNCO abundance ratio of~0.9%.The reason for that still needs further investigation.Based on the intensity ratio of HNCO and HNC18O lines,we updated the isotopic ratio of 16O/18O to be 296±54 in Sgr B2.

    Key words:ISM:abundances–ISM:interstellar clouds–ISM:interstellar molecules

    1.Introduction

    The abundance variation of isomers can give some insights into their formation and destruction(Hollis et al.2000).The variation can also be used to investigate the environment that they exist(Schilke et al.1992).Thus,obtaining the relative abundances of isomers is of great importance for getting a deeper understanding of a specific isomer family.The combination of HNCO and HOCN can be a good choice to study such an astro-chemical effect of isomers (Quan et al.2010).

    HNCO is a very abundant molecule with a peptide-like bond.It was first detected in Sagittarius B2 (hereafter Sgr B2)(OH) (Snyder &Buhl 1972).It was regarded as a tracer of dense gas (Jackson et al.1984).It was also proposed to be a tracer of interstellar shocks (Zinchenko et al.2000).Many chemical models were used to reproduce the formation of HNCO,such as gas-phase reaction (Turner et al.1999) and grain-surface reaction (Garrod et al.2008).HOCN is the metastable isomer of HNCO.It was also identified in Sgr B2(OH),with an estimated fractional abundance relative to H2of 1×10-11and an abundance ratio relative to HNCO of 0.5%(Brünken et al.2009).Then,it was found in other positions toward Sgr B2,including Sgr B2(M),Sgr B2(N),and Sgr B2(S) (Brünken et al.2010).Quan et al.2010 used gas-grain models to account for the formation of HNCO and its isomers,including HOCN,in different physical environments.The results show that the formation of HNCO involves both gasphase reaction and grain-surface reaction.

    HNCO was observed to have an expanding ring-like emission in Sgr B2 and the peak position is 2″north of Sgr B2(M)(Minh&Irvine 2006;Jones et al.2008),while HOCN was detected in six positions in the Sgr B2 complex (Brünken et al.2009,2010).The enhancement of HNCO can be explained by shocks,which release the molecules in the grain mantles into the gas-phase (Minh &Irvine 2006).There is a fairly constant abundance ratio of 0.3%–0.8% between HOCN and HNCO in the six detected positions(Brünken et al.2010).Therefore,Sgr B2 can be an ideal place to study the relation between HNCO and HOCN.The spatial distribution of HOCN in Sgr B2 and its formation mechanism remain unknown.To further understand the relationship between HNCO and HOCN,mapping observation and extensive surveys in different sources are needed.

    In this paper,we present mapping observations of HNCO and HOCN toward Sgr B2 complex.The outline of this article is presented as follows.In Section 2,we describe the observations and data reduction.In Section 3,we give the mapping result,spatial distribution of HNCO 404–303and HOCN 404–303emission,and their column density.Scientific discussions are presented in Section 4 and a summary of this paper is given in Section 5.

    2.Observations and Data Reduction

    We performed point-by-point spectroscopic mapping observations toward Sgr B2 in 2019 May with the IRAM 30 mtelescope on Pica Veleta,Spain (project 170–18).The observations were performed at the 3 mm band.The position-switching mode was adopted.The broad-band Eight MIxer Receiver and the FFTSs in FTS200 mode were used for the observation.The covered frequency range is 82.3–90 GHz,with channel spacing of 0.195 MHz,which corresponds to the velocity resolution of 0.641 km s-1at 84 GHz.The telescope pointing was checked every~2 h on 1757–240.The telescope focus was optimized on 1757–240 at the beginning of the observation.The integration time range from 24 minutes to 98 minutes for different positions,with typical system temperatures of~110 K,leading to 1σ rms inof 4–8 mK derived with the line free channels.The antenna temperaturewas converted to the main beam brightness temperature (Tmb),usingwhere the forward efficiency Feffis 0.95 and beam efficiency Beffis 0.81 for the 3 mm band.

    The observing center is Sgr B2(N)with a sampling interval of 30″.The off position of (δα,δβ)=(-752″,342″) was used (Belloche et al.2013).HNCO 404–303at 87,925.237 MHz,HNCO 414–313at 87,597.330 MHz,HOCN 404–303at 83,900.570 MHz,and HNC18O 404–303at 83,191.568 MHz lines within the observing frequency range are used for this study,which are listed in Table 1.The spectroscopic parameters of molecules are taken from CDMS catalog (Müller et al.2005).404–303transition is the strongest for both HNCO and HOCN,which is found to be free of confusion from other species.The data processing was conducted using GILDAS software package,7http://www.iram.fr/IRAMFR/GILDAS.including CLASS and GREG.

    Table 1 Transitions of HNCO and HOCN

    3.Results

    We have observed 63 positions toward Sgr B2 to obtain the spatial properties of HNCO and HOCN there.HNCO 404–303emission was observed to be strong toward all the positions.The emission of HOCN 404–303was detected to be above 5σ level in 57 positions.The emission of HNC18O 404–303was detected to be above 3σ level in 33 positions,while HNCO 414–313was detected toward 58 positions above 3σ level.The spectra of the lines mentioned above are presented in Figures 1,2,3 toward four positions,which are Sgr B2(N),Sgr B2(M),(30,60),and (60,60),as examples.The strongest HOCN 404–303emission comes from(30,60).From those spectra,we can find that the emission of HNCO 404–303is about 40 times of HOCN 404–303.No significant line blending for HNC18O 404–303at 83,191.568 MHz is found,except for that toward Sgr B2(N),which is strongly blended with13CH2CHCN transitions.The line profile cannot be fitted with one simple Gaussian profile for most of the positions,which implies that there are multiple velocity components.To obtain a more accurate value of intensity,we integrate the spectra directly to get the intensity in the later analysis.

    3.1.Spatial Distribution of HNCO and HOCN Emission

    The velocity integrated intensity maps of 404–303,the strongest line for HNCO and HOCN,are presented in Figure 4.In the figure,the positions of Sgr B2 (N) and (M)were marked as “×”.The contour levels range from 20%~90% with the step of 10%.These two maps resemble each other very well.According to the maps,the emission of HNCO 404–303and HOCN 404–303are extended with an expanding ring like morphology and peaked at the north of Sgr B2,avoiding the hot cores Sgr B2(M)and(N),which is similar to the map of HNCO 505–404emission (Jones et al.2008).

    Figure 1.The spectra of HNCO 404–303 toward positions (0,0),(0,-48),(30,60) and (60,60),corresponding to Sgr B2(N),Sgr B2(M),the strongest emission and other common positions.The red lines mark the place of different transitions.

    The velocity integrated intensity maps of HNC18O 404–303and HNCO 414–313are also presented in Figure 4.The profiles of HNC18O 404–303are unblended in some positions,in which the intensity of HNC18O 404–303can be simply obtained.For the other positions where the profile of HNC18O and13CH2CHCN emission cannot be distinguished,the intensity of13CH2CHCN is needed.As the emission of13CH2CHCN is weak in other positions except for (0,0),the intensity of13CH2CHCN can be estimated with the line emission of CH2CHCN.Assuming a constant ratio of13CH2CHCN and CH2CHCN in different positions of Sgr B2,with the ratio between13CH2CHCN and CH2CHCN lines at position (0,0),the intensity of13CH2CHCN blended with HNC18O 404–303in other positions can be obtained,with a fraction of~0.3% to HNC18O 404–303.The emission of HNC18O is similar to that of HNCO,with an extended spatial distribution.The differences between the maps of isotopes may indicate that the emission of HNCO 404–303is optically thick in some positions.The emission of HNCO 414–313is also extended,with two peaks located in the hot cores,Sgr B2 (N) and (M).Considering the larger upper energy (Eu=53.78 K) of this transition,the two peaks should be mainly caused by the high temperature of the gas there.

    3.2.Isotopic Ratio 16O/18O

    Because HN13CO lines are strongly blended with the lines of HNCO and OC34S,HNC18O 404–303is used to calculate the optical depth of HNCO 404–303.Before using the line ratio of HNC18O and HNCO 404–303to obtain the optical depth of HNCO 404–303at each position,the abundance ratio of HNC18O and HNCO needs to be known.The line ratio of HNCO and HNC18O 404–303can represent the HNCO/HNC18O abundance ratio in the area where HNCO 404–303is optically thin.The flux ratio will be the lower limit of the abundance ratio if HNCO 404–303is not optically thin.To obtain a reliable spectrum of HNC18O 404–303with a high signal to noise ratio,averaging data from different positions are needed.The whole region was divided into five parts to avoid position(0,0)where Sgr B2(N)is located and the positions where the emission of HNCO 404–303is optically thick.The averaged spectra are shown in Figure 5,while the regions used to obtain the averaged spectra are shown in Figure 6.

    The integrated flux is used for calculating the line fluxes and ratios,which are presented in Table 2.The averaged ratio is shown in the last column.The flux is integrated with the same velocity range for HNCO 404–303and HNC18O 404–303.The red windows in Figure 5 are the velocity ranges used for the integration of both HNCO and HNC18O 404–303lines,in order to avoid line blending of HNC18O from13CH2CHCN.Assuming that the HNCO/HNC18O abundance ratio does not vary within Sgr B2,the HNCO/HNC18O abundance ratio of~296±54 is a reasonable number.The uncertainty is the square root of the sum of the variance of the HNCO/HNC18O ratio and the square of the median of ratio error,including the uncertainties of t he measurements for the two lines.Assuming that the HNC18O/HNCO abundance ratio can reflect the isotopic ratio of16O/18O,it will be~296±54.The result provides a more accurate value of16O/18O ratio than that in the literature(Wannier 1980;Wilson&Rood 1994).It is significantly different from the ratio less than 288 derived with H13CO+/HC18O+,while it is still within the uncertainty range of 406±140 derived with13CO/C18O (Wannier 1980;Wilson &Rood 1994).

    Figure 2.HOCN 404–303 spectra at the rest frequency of 83,900.570 MHz toward four positions of Sgr B2.The red lines mark the transition of HOCN.

    Figure 3.HNC18O 404–303 spectra at the rest frequency of 83,191.568 MHz toward four positions of Sgr B2.The red lines correspond to the transition of HNC18O and the transition of 13CH2CHCN at 83,188.122 MHz.

    Figure 4.The grey-scale and contours show the integrated emission from HNCO 404–303,HOCN 404–303,HNC18O 404–303,and HNCO 414–313 in Sgr B2.The contour levels of HNCO 404–303,HOCN 404–303 and HNC18O 404–303 range from 20%~90% with the step of 10%.To show the structure of HNCO 414–313,the contour levels range from 10%~90%with the step of 10%.The peak values for each panel are 226.3,8.1,0.66 and 21.8 K km s-1 successively.“×”indicates Sgr B2(N) and Sgr B2(M).The beams are shown in the lower-left corner of each panel.

    Figure 5.The averaged spectra of HNC18O.The red windows represent the velocity range used to be integrated.The numbers in the upper right corner represent the position of the region,which is shown in Figure 6.

    Figure 6.The five regions used to calculate the averaged spectra of HNC18O.

    3.3.Optical Depth

    With the HNCO/HNC18O abundance ratio,the optical depth of HNCO 404–303toward different positions can be derived with the intensity ratio of HNCO 404–303and HNC18O 404–303.As is mentioned above,the integrated intensity of HNC18O should be calculated after subtracting the contamination of13CH2CHCN lines.

    When HNCO 404–303is optically thick,the optical depth can be given by the formulation:

    and the IHNCOshould multipleafter taking the optical depth into consideration.

    For positions with nondetection of HNC18O emission,optically thin HNCO 404–303is a reasonable assumption.Therefore,the intensity of HNCO will not be corrected.

    3.4.Column Densities

    The column densities of HNCO and HOCN are calculated assuming local thermodynamic equilibrium (LTE).With the integrated intensity of HNCO,the column density can be given by Pillai et al.(2007):where NJis the column density of the upper level,IHNCOis the integrated intensity of HNCO after being corrected by the optical depth,h is the Planck constant,S is the line strength,μ2is the dipole moment,ηνis the beam filling factor,Texis the excitation temperature,which is equal to the rotation temperature because of the LTE hypothesis,Q(Tex) is the partition function under the excitation temperature,J(Tex) is defined asand Jν(T) is defined asSince HNCO and HOCN emissions are extended,we assume ηνto be 1.

    To estimate the dependence of the abundant ratio on the excitation temperature,we calculate the abundance ratio of HNCO to HOCN at positions (0,60) in different temperatures as an example.As is shown in Table 3,the abundance ratio of HOCN to HNCO varies from 0.75% to 0.65% as the temperature varies from 9.375 to 150 K,which does not change significantly.Since the main goal is to obtain the relative abundance ratio of HOCN to HNCO,14 K is a reasonable assumption for the excitation temperature.

    Table 2 The Ratio between 16O and 18O

    The integrated intensities are calculated using the same velocity ranges.The derived column densities were listed in Tables 4 and 5,for those positions where the emission of HOCN is higher than 5σ levels and lower than 5σ levels,respectively.The column density ratios between HNCO and HOCN were listed in the last column.For the positions where HOCN emission is lower than 3σ levels,the upper limits of the intensity and the lower limits of the ratios are given.From the results shown in Tables 4 and 5,the ratio of HOCN to HNCOranges from 0.4% to 0.7% for most of the positions.Some positions located at the south of Sgr B2(S)have the abundance ratio of~0.9%,indicating that the abundance of HOCN is enhanced.From the fourth column of Tables 4 and 5,we note that the optical depth of HNCO 404–303Sgr B2,derived from the ratio of HNCO and HNC18O,is much smaller than 1,which means the emission of HNCO is almost optically thin in most of the regions of Sgr B2,while there are only a few positions with optically thick HNCO emission.The self-absorption of HNCO lines can be omitted when dealing with the spectra of the whole area.

    Table 3 The Abundance Ratio of HNCO to HOCN Under Different Excitation Temperature

    Table 4 The Column Density of HNCO and HOCN

    Table 5 The Column Density of HNCO and HOCN

    4.Discussion

    HOCN emission was found to exist in most positions of Sgr B2,confirming that HOCN is also widespread in Sgr B2,like its isomer species HNCO.The similarity between the map of HNCO and HOCN emission indicates that they may have common origins.The strong emission discovered in the north of the cloud is likely to be related to the large-scale shock that exists in Sgr B2.The abundance ratio of HOCN to HNCO ranges from 0.4% to 0.7% in most of the positions.The histogram of the abundance ratio of HOCN to HNCO is shown in Figure 7.

    4.1.Isotopic Ratio

    The isotopic ratio of oxygen gained from HNCO and HNC18O is 296±54.The assumption used during the calculation is that there is no chemical priority,namely that the ratio of HNCO/HNC18O can represent the ratio of16O/18O.The validity of the assumption needs to be confirmed,as strong chemical priority will change our result seriously.In addition,the intensity of HNC18O also plays an important role in the result.As shown in Figure 5,the intensity of HNC18O after being averaged is slightly stronger than 3σ,while the baseline is hard to be corrected.So the intensities of HNC18O cannot be well determined.

    Figure 7.The histogram of the abundance ratios.

    4.2.Abundance Ratio of HNCO and HOCN

    The abundance ratio of HOCN to HNCO is smaller than 0.4% toward 10 positions,while this value is larger than 0.8%toward 7 positions (see Figure 7).All the 10 positions with extremely low HOCN to HNCO abundance ratio are located in the boundary of this map,with weak HOCN lines which cause large uncertainties of the abundance ratio.On the other hand,the seven positions with the abundance ratios higher than 0.8%located around Sgr B2(S)(marked as red triangles or squares in Figure 8),are with accurate values.The non-detection of HNC18O 404–303toward these positions provides small optical depth of HNCO 404–303,which means the underestimation of HNCO is not important.The spectra of HNCO 404–303and HOCN 404–303toward positions (0,-90) and (30,-150) are shown in Figure 9 as an example.The high signal to noise ratio ensures that the abundance of HOCN is actually enhanced in these positions,which needs to be explained by new chemical models.The ratios in the rest regions range from 0.4%to 0.7%,without significant variation.

    Figure 8.The spatial distribution of HOCN to HNCO ratio.The contour levels range from 30%~100% with the step of 10% and the peak value is 0.94%,while the greyscale is this ratio in percentage.The red triangles and red squares mark the positions where the abundance ratio of HOCN to HNCO is larger than 0.8%.The red squares show the positions with the largest abundance ratio.The red circles represent the positions where Brünken et al.(2010) have observed.The red circle under Sgr B2(M) is Sgr B2 (S).

    Figure 9.The spectra of HNCO 404–303 and HOCN 404–303 in (0,-90) and (30,-150),marked as red squares in Figure 8.

    The strong continuum in Sgr B2(N)and(M)may also have a contribution to the line emission of HNCO.This is ignored to simplify our calculation,so the abundance ratio in Sgr B2(N)and (M) need to be updated in the future.

    4.3.Chemical Models

    The obtained abundance ratios of HOCN/HNCO are about 0.4%–0.7% in most regions of Sgr B2,implying that the formation mechanism of these two molecules does not vary in different parts of Sgr B2 complex.This result agrees well with the calculated result of the gas-grain model(Quan et al.2010).In this model,the formation and destruction of both molecules involves gas-phase reactions and grain-surface reactions.HNCO and HOCN initially form on the grain surface,and then they are released from the grain by shocks or some other processes.The fact that the abundance of HOCN is enhanced around Sgr B2(S) needs new chemical models to explain it.

    Further observation needs to be conducted to get a more detailed understanding of HNCO and its other isomer in other different sources.It will give us more insights into how the interstellar environment affect the relative abundance of isomer families.

    5.Summary

    With point-by-point mapping observations of HOCN and HNCO lines around Sgr B2 with the IRAM 30 m telescope,the spatial distribution of HNCO 404–303,HOCN 404–303,HNC18O and HNCO 414-313were obtained.Our main results include:

    1.From the spatial distribution of HOCN which is similar to the one of HNCO,we can refer that HOCN is extended in Sgr B2,and perhaps,has a close relationship with HNCO.

    2.We note that HOCN molecule is enhanced around Sgr B2(S),with the HOCN to HNCO abundance ratio of~0.9%,while this ratio changes little in the rest positions,ranging from 0.4%to 0.7%.Given the relatively constant abundance ratio of 0.4% to 0.7%,which agrees with the gas-grain model well (Quan et al.2010),the formation mechanism may be involved both gas-phase reaction and grain-surface reaction,not varying a lot in most parts of Sgr B2.

    3.The isotopic ratio of16O/18O derived from the ratio of HNCO/HNC18O is 296±54 in Sgr B2.The optical depths of HNCO in most regions of Sgr B2 derived from HNCO/HNC18O line ratio are smaller than 1,indicating that HNCO 404–303is almost optically thin there.

    Whether the condition in Sgr B2 would also apply to other sources may also be a question that needs to be addressed,with further large sample surveys.

    Acknowledgments

    The authors thank the staff at IRAM for their excellent support of these observations.This work made use of the CDMS Database.This work has been supported by the National Natural Science Foundation of China (11773054 and U1731237).This work is also supported by the international partnership program of Chinese Academy of Sciences through Grant No.114231KYSB20200009.The single dish data are available in the IRAM archive at https://www.iraminstitute.org/EN/content-page-386-7-386-0-0-0.html.

    av一本久久久久| 亚洲怡红院男人天堂| 久久精品国产自在天天线| 国产精品欧美亚洲77777| 亚洲色图综合在线观看| 中文字幕亚洲精品专区| 99国产精品免费福利视频| 亚洲av欧美aⅴ国产| 成人国产av品久久久| 韩国av在线不卡| 成人综合一区亚洲| 中文字幕人妻丝袜制服| 色婷婷av一区二区三区视频| 人人妻人人添人人爽欧美一区卜| 婷婷色av中文字幕| 国产探花极品一区二区| 国产熟女午夜一区二区三区 | 免费大片黄手机在线观看| 欧美精品一区二区大全| 夫妻午夜视频| 国产日韩欧美视频二区| 亚洲丝袜综合中文字幕| 人成视频在线观看免费观看| 国产亚洲欧美精品永久| 水蜜桃什么品种好| kizo精华| 哪个播放器可以免费观看大片| 成人影院久久| 热re99久久精品国产66热6| 国产精品国产av在线观看| 交换朋友夫妻互换小说| 欧美少妇被猛烈插入视频| 国内精品宾馆在线| 亚洲精品久久成人aⅴ小说 | 亚洲国产最新在线播放| 欧美成人精品欧美一级黄| 麻豆成人av视频| 18在线观看网站| 2018国产大陆天天弄谢| 99热6这里只有精品| 另类亚洲欧美激情| 国产一区二区三区av在线| 在线观看国产h片| 51国产日韩欧美| 一区二区日韩欧美中文字幕 | 18在线观看网站| 国产亚洲最大av| 最近2019中文字幕mv第一页| 日韩一区二区视频免费看| 纵有疾风起免费观看全集完整版| 亚洲av福利一区| 日本欧美国产在线视频| av在线老鸭窝| 日本黄大片高清| 在线观看三级黄色| 秋霞在线观看毛片| 国产在线视频一区二区| 看非洲黑人一级黄片| 最近中文字幕高清免费大全6| 欧美亚洲日本最大视频资源| 国产免费现黄频在线看| 免费不卡的大黄色大毛片视频在线观看| 亚洲国产最新在线播放| 国产免费又黄又爽又色| 亚洲av中文av极速乱| a级毛片免费高清观看在线播放| 国产成人aa在线观看| 亚洲精品久久成人aⅴ小说 | 一级黄片播放器| 另类亚洲欧美激情| 看非洲黑人一级黄片| 久久 成人 亚洲| 中文字幕亚洲精品专区| 精品熟女少妇av免费看| 久久久精品94久久精品| 国产精品蜜桃在线观看| 国产av精品麻豆| 美女国产视频在线观看| 女性被躁到高潮视频| 午夜影院在线不卡| 亚洲精品自拍成人| 亚洲色图综合在线观看| av在线老鸭窝| 超色免费av| 丰满迷人的少妇在线观看| 青春草国产在线视频| 久久亚洲国产成人精品v| 黄片无遮挡物在线观看| 精品少妇内射三级| 日韩视频在线欧美| 日产精品乱码卡一卡2卡三| 狂野欧美激情性xxxx在线观看| 99热这里只有是精品在线观看| 中国美白少妇内射xxxbb| av播播在线观看一区| 日本爱情动作片www.在线观看| 免费观看性生交大片5| 性色av一级| 亚洲性久久影院| 一区在线观看完整版| 国产av国产精品国产| 三上悠亚av全集在线观看| 波野结衣二区三区在线| 亚洲内射少妇av| 亚洲人与动物交配视频| 伦理电影大哥的女人| 国产精品秋霞免费鲁丝片| 午夜老司机福利剧场| 亚洲国产毛片av蜜桃av| 纵有疾风起免费观看全集完整版| 青青草视频在线视频观看| 国产成人aa在线观看| 国产毛片在线视频| 亚洲av男天堂| 少妇人妻精品综合一区二区| 国产精品.久久久| 精品一区二区免费观看| 亚洲欧美一区二区三区国产| 国产探花极品一区二区| 菩萨蛮人人尽说江南好唐韦庄| 99久久精品国产国产毛片| 免费人成在线观看视频色| 男女啪啪激烈高潮av片| 亚洲色图综合在线观看| 日韩视频在线欧美| 69精品国产乱码久久久| 热re99久久国产66热| av在线老鸭窝| 欧美精品一区二区免费开放| 嫩草影院入口| 黄色欧美视频在线观看| 亚洲精品视频女| 天堂8中文在线网| 18禁观看日本| 大话2 男鬼变身卡| 亚洲国产精品一区三区| 在线观看人妻少妇| freevideosex欧美| 精品久久久精品久久久| 熟女av电影| 少妇被粗大猛烈的视频| 色婷婷久久久亚洲欧美| 国产探花极品一区二区| 欧美精品国产亚洲| 欧美 日韩 精品 国产| 国产成人精品在线电影| 国产视频首页在线观看| 亚洲精品456在线播放app| 色94色欧美一区二区| 亚洲精品乱久久久久久| 日韩一区二区三区影片| 国产av码专区亚洲av| 午夜久久久在线观看| 天堂俺去俺来也www色官网| 国产白丝娇喘喷水9色精品| 大码成人一级视频| 嘟嘟电影网在线观看| 大陆偷拍与自拍| 午夜激情久久久久久久| 亚洲人成网站在线播| 全区人妻精品视频| 亚洲情色 制服丝袜| 久久精品国产亚洲av天美| 亚洲欧美精品自产自拍| 啦啦啦中文免费视频观看日本| 97在线人人人人妻| 只有这里有精品99| 国产精品久久久久成人av| 国产午夜精品一二区理论片| 亚洲精品乱码久久久久久按摩| 日本爱情动作片www.在线观看| 国产日韩欧美亚洲二区| 国产 一区精品| 精品久久久精品久久久| 亚洲在久久综合| 亚洲精品乱久久久久久| 特大巨黑吊av在线直播| 亚洲精品乱码久久久久久按摩| 天美传媒精品一区二区| 午夜影院在线不卡| 日韩伦理黄色片| 国精品久久久久久国模美| 午夜影院在线不卡| 人人妻人人澡人人看| 老司机亚洲免费影院| 午夜福利,免费看| 久久久久久伊人网av| 人妻少妇偷人精品九色| .国产精品久久| 多毛熟女@视频| 香蕉精品网在线| 日本-黄色视频高清免费观看| 成人18禁高潮啪啪吃奶动态图 | 欧美人与性动交α欧美精品济南到 | 啦啦啦啦在线视频资源| 日本黄大片高清| 黄片播放在线免费| 午夜福利视频在线观看免费| 在线观看免费日韩欧美大片 | 日韩一本色道免费dvd| 中国国产av一级| 精品人妻一区二区三区麻豆| 成人黄色视频免费在线看| 国内精品宾馆在线| 国产精品一区二区三区四区免费观看| 一本色道久久久久久精品综合| 久久精品国产亚洲网站| 午夜福利网站1000一区二区三区| 99九九在线精品视频| 80岁老熟妇乱子伦牲交| 色吧在线观看| 一级黄片播放器| videosex国产| 视频中文字幕在线观看| h视频一区二区三区| 久久精品国产自在天天线| 简卡轻食公司| 九九在线视频观看精品| 青青草视频在线视频观看| 一边摸一边做爽爽视频免费| 亚洲av二区三区四区| 99热网站在线观看| 热99国产精品久久久久久7| 午夜视频国产福利| 人人妻人人澡人人看| 97精品久久久久久久久久精品| .国产精品久久| av天堂久久9| av黄色大香蕉| 少妇被粗大猛烈的视频| 天堂俺去俺来也www色官网| 一级毛片黄色毛片免费观看视频| 91精品伊人久久大香线蕉| 日韩一区二区视频免费看| 亚洲欧美成人综合另类久久久| 国产成人aa在线观看| 国产高清不卡午夜福利| 成人漫画全彩无遮挡| 日本91视频免费播放| 午夜av观看不卡| 在线 av 中文字幕| 一级毛片黄色毛片免费观看视频| 91精品伊人久久大香线蕉| 亚洲精华国产精华液的使用体验| 国产精品人妻久久久影院| 亚洲国产欧美日韩在线播放| 国产极品天堂在线| 亚洲国产成人一精品久久久| 18在线观看网站| 最近手机中文字幕大全| 亚洲成色77777| 狂野欧美激情性xxxx在线观看| av在线老鸭窝| 一区二区av电影网| 人妻少妇偷人精品九色| 99精国产麻豆久久婷婷| 高清不卡的av网站| 十八禁网站网址无遮挡| 成人漫画全彩无遮挡| 青春草视频在线免费观看| 人人妻人人澡人人看| 人妻系列 视频| 亚洲第一区二区三区不卡| 人人妻人人添人人爽欧美一区卜| 亚洲精品久久成人aⅴ小说 | av在线app专区| 91aial.com中文字幕在线观看| 日本欧美国产在线视频| 欧美最新免费一区二区三区| 91久久精品国产一区二区成人| 人妻 亚洲 视频| 少妇人妻久久综合中文| 欧美日韩亚洲高清精品| 五月开心婷婷网| 日韩中文字幕视频在线看片| 最近的中文字幕免费完整| 美女xxoo啪啪120秒动态图| av电影中文网址| 精品亚洲乱码少妇综合久久| 成人亚洲精品一区在线观看| 一级a做视频免费观看| 美女视频免费永久观看网站| 亚洲人成77777在线视频| 日韩中文字幕视频在线看片| 日韩 亚洲 欧美在线| 欧美激情国产日韩精品一区| 草草在线视频免费看| 国产精品久久久久成人av| 亚洲人成网站在线观看播放| 国产 一区精品| 性色avwww在线观看| 成年女人在线观看亚洲视频| av播播在线观看一区| 精品卡一卡二卡四卡免费| 欧美精品高潮呻吟av久久| 天天躁夜夜躁狠狠久久av| 丰满迷人的少妇在线观看| 欧美成人午夜免费资源| 男女免费视频国产| 制服人妻中文乱码| 在线亚洲精品国产二区图片欧美 | 亚洲国产精品一区三区| 99热这里只有精品一区| 插逼视频在线观看| 色哟哟·www| 在线免费观看不下载黄p国产| 亚洲精华国产精华液的使用体验| 日本午夜av视频| 午夜老司机福利剧场| 91成人精品电影| 美女大奶头黄色视频| 丰满迷人的少妇在线观看| 婷婷色av中文字幕| 性高湖久久久久久久久免费观看| 日韩伦理黄色片| 婷婷色综合www| 久久久久久久亚洲中文字幕| 欧美精品人与动牲交sv欧美| 国产精品免费大片| 超碰97精品在线观看| 色94色欧美一区二区| 一级a做视频免费观看| 人妻系列 视频| 女性生殖器流出的白浆| 精品久久蜜臀av无| 国产69精品久久久久777片| 波野结衣二区三区在线| 综合色丁香网| 免费看光身美女| 在线观看国产h片| 赤兔流量卡办理| 免费久久久久久久精品成人欧美视频 | 狂野欧美白嫩少妇大欣赏| 国产成人精品无人区| 99久久精品国产国产毛片| 美女脱内裤让男人舔精品视频| 男男h啪啪无遮挡| 国产在线视频一区二区| 高清不卡的av网站| 国产精品.久久久| 日日爽夜夜爽网站| 国产免费现黄频在线看| 成人无遮挡网站| 女性生殖器流出的白浆| 亚洲高清免费不卡视频| 日韩熟女老妇一区二区性免费视频| av国产精品久久久久影院| 午夜福利,免费看| 成人漫画全彩无遮挡| 久久毛片免费看一区二区三区| 国产精品三级大全| 午夜免费观看性视频| 久久久国产一区二区| 又黄又爽又刺激的免费视频.| 我的女老师完整版在线观看| 老女人水多毛片| 少妇人妻久久综合中文| 免费黄频网站在线观看国产| 免费不卡的大黄色大毛片视频在线观看| 中文字幕人妻熟人妻熟丝袜美| 亚洲国产av影院在线观看| 九九爱精品视频在线观看| 日韩中字成人| 内地一区二区视频在线| 亚洲国产av影院在线观看| 久久精品国产亚洲av天美| 亚洲av成人精品一二三区| 高清毛片免费看| 国产极品粉嫩免费观看在线 | 国产精品国产三级专区第一集| 亚洲欧美一区二区三区国产| 欧美日韩成人在线一区二区| 欧美3d第一页| 日韩中字成人| 亚洲精品国产av蜜桃| av福利片在线| 十八禁高潮呻吟视频| 成人国产麻豆网| 黑人巨大精品欧美一区二区蜜桃 | 性色avwww在线观看| 99国产综合亚洲精品| 久久午夜福利片| 99精国产麻豆久久婷婷| 亚洲av免费高清在线观看| 精品熟女少妇av免费看| 丝袜脚勾引网站| a级毛片在线看网站| 免费日韩欧美在线观看| 久久久久久久久久久免费av| 国国产精品蜜臀av免费| 18禁观看日本| 亚洲精品自拍成人| 中文字幕av电影在线播放| 男女无遮挡免费网站观看| 日韩不卡一区二区三区视频在线| 黄色视频在线播放观看不卡| 久久久久久久久久久免费av| 国产精品久久久久久av不卡| 精品国产一区二区三区久久久樱花| 亚洲欧美清纯卡通| 成人毛片a级毛片在线播放| 黄色视频在线播放观看不卡| 免费人妻精品一区二区三区视频| 国产精品蜜桃在线观看| 99热网站在线观看| 久久狼人影院| 在线观看国产h片| 99re6热这里在线精品视频| 亚洲色图综合在线观看| 大陆偷拍与自拍| 久久国内精品自在自线图片| 精品人妻偷拍中文字幕| 欧美3d第一页| 日本wwww免费看| 国产深夜福利视频在线观看| 久久人人爽人人爽人人片va| 少妇的逼水好多| 精品一区在线观看国产| 久久久欧美国产精品| 国产高清国产精品国产三级| 亚洲精品美女久久av网站| 国产成人免费无遮挡视频| 女性生殖器流出的白浆| 国产亚洲精品久久久com| 国产成人精品久久久久久| 国产精品一区www在线观看| 最新的欧美精品一区二区| 少妇 在线观看| 国产精品偷伦视频观看了| 亚洲精品456在线播放app| 亚洲欧美成人综合另类久久久| 在线观看人妻少妇| 国产亚洲午夜精品一区二区久久| 伦精品一区二区三区| 国产成人免费无遮挡视频| 99国产综合亚洲精品| 女性被躁到高潮视频| 亚洲一区二区三区欧美精品| 欧美日韩亚洲高清精品| 色吧在线观看| 少妇被粗大的猛进出69影院 | 亚洲色图综合在线观看| 一级毛片黄色毛片免费观看视频| 亚洲国产精品成人久久小说| 国产极品天堂在线| 自线自在国产av| 99久久中文字幕三级久久日本| 国产日韩欧美在线精品| 国产亚洲最大av| 免费看光身美女| videossex国产| 永久免费av网站大全| 麻豆乱淫一区二区| 最新中文字幕久久久久| 少妇精品久久久久久久| av一本久久久久| 免费看光身美女| 午夜91福利影院| 国产成人精品久久久久久| 在线免费观看不下载黄p国产| 一区在线观看完整版| 高清在线视频一区二区三区| 国产69精品久久久久777片| 亚洲av中文av极速乱| 如何舔出高潮| 一本—道久久a久久精品蜜桃钙片| 亚洲丝袜综合中文字幕| 亚洲精品久久午夜乱码| av.在线天堂| 熟女人妻精品中文字幕| 精品久久久久久久久亚洲| 国产欧美日韩一区二区三区在线 | 国产日韩欧美视频二区| 全区人妻精品视频| 中文字幕av电影在线播放| 日日摸夜夜添夜夜添av毛片| 精品久久国产蜜桃| 精品久久久噜噜| 精品久久蜜臀av无| 日日摸夜夜添夜夜添av毛片| 毛片一级片免费看久久久久| 人妻夜夜爽99麻豆av| 国产69精品久久久久777片| 九九久久精品国产亚洲av麻豆| 国产成人精品一,二区| 中国国产av一级| 亚洲成色77777| 久久久久精品性色| 婷婷色综合大香蕉| 欧美一级a爱片免费观看看| 18禁在线播放成人免费| 国产男女超爽视频在线观看| 曰老女人黄片| 男人操女人黄网站| 久久久国产欧美日韩av| 久久影院123| 成人亚洲精品一区在线观看| 水蜜桃什么品种好| 日韩精品有码人妻一区| 精品视频人人做人人爽| 久久97久久精品| 肉色欧美久久久久久久蜜桃| 夜夜骑夜夜射夜夜干| 国产精品久久久久久久电影| 91精品国产国语对白视频| 久久鲁丝午夜福利片| 久久国产精品大桥未久av| 啦啦啦视频在线资源免费观看| 伊人久久精品亚洲午夜| 国产亚洲最大av| 精品人妻在线不人妻| 日本猛色少妇xxxxx猛交久久| 十八禁高潮呻吟视频| 日本vs欧美在线观看视频| 亚洲少妇的诱惑av| 桃花免费在线播放| av黄色大香蕉| 18禁裸乳无遮挡动漫免费视频| tube8黄色片| 日韩中文字幕视频在线看片| 国产色婷婷99| 色哟哟·www| 国产精品人妻久久久久久| 亚洲av电影在线观看一区二区三区| 午夜福利,免费看| 日本爱情动作片www.在线观看| 看免费成人av毛片| 热re99久久国产66热| 精品国产一区二区三区久久久樱花| 性色avwww在线观看| 日本-黄色视频高清免费观看| 国产精品熟女久久久久浪| 天天操日日干夜夜撸| 狂野欧美白嫩少妇大欣赏| 免费人妻精品一区二区三区视频| 亚洲av综合色区一区| 哪个播放器可以免费观看大片| 乱码一卡2卡4卡精品| 久久午夜综合久久蜜桃| 夜夜看夜夜爽夜夜摸| 国产视频内射| 国产欧美另类精品又又久久亚洲欧美| 不卡视频在线观看欧美| av女优亚洲男人天堂| 欧美人与性动交α欧美精品济南到 | 最新中文字幕久久久久| 80岁老熟妇乱子伦牲交| av国产久精品久网站免费入址| 亚洲精品久久久久久婷婷小说| 中文字幕人妻熟人妻熟丝袜美| 丰满迷人的少妇在线观看| 日本免费在线观看一区| 另类精品久久| 久久人人爽人人爽人人片va| 女性生殖器流出的白浆| 亚洲精品成人av观看孕妇| 极品人妻少妇av视频| 中国美白少妇内射xxxbb| 免费观看的影片在线观看| 男人操女人黄网站| 精品视频人人做人人爽| 亚洲成人手机| 只有这里有精品99| 欧美一级a爱片免费观看看| 国产av国产精品国产| 日韩人妻高清精品专区| 97在线人人人人妻| 人人澡人人妻人| 高清黄色对白视频在线免费看| 久久久久久久国产电影| 国产亚洲最大av| 欧美日韩一区二区视频在线观看视频在线| 欧美丝袜亚洲另类| 国产亚洲欧美精品永久| 亚洲av二区三区四区| 三级国产精品片| 精品午夜福利在线看| 少妇高潮的动态图| 亚洲欧美一区二区三区国产| 日日撸夜夜添| 久久久久久久久久成人| 简卡轻食公司| 久久久久久伊人网av| 精品少妇黑人巨大在线播放| 国产精品久久久久久精品电影小说| 精品国产一区二区久久| 国产又色又爽无遮挡免| 欧美 亚洲 国产 日韩一| 亚洲色图 男人天堂 中文字幕 | 黄色配什么色好看| 免费黄色在线免费观看| 黑人高潮一二区| 看免费成人av毛片| 亚洲精品成人av观看孕妇| 国产精品人妻久久久影院| 少妇高潮的动态图| 麻豆精品久久久久久蜜桃| 久久久久视频综合| www.av在线官网国产| 99热全是精品| 中文精品一卡2卡3卡4更新| 亚洲成色77777| 免费看av在线观看网站| 亚洲欧洲日产国产| 你懂的网址亚洲精品在线观看| 亚洲国产成人一精品久久久| 成人影院久久| 三级国产精品欧美在线观看| 免费黄网站久久成人精品| 国产精品女同一区二区软件| 中文天堂在线官网| 精品亚洲成国产av| 黄色毛片三级朝国网站| 国产精品偷伦视频观看了| 一级毛片aaaaaa免费看小|