• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    FAST Continuum Mapping of the SNR VRO 42.05.01

    2022-05-24 14:20:44LiXiaoMingZhuXiaoHuiSunPengJiangandChunSun

    Li Xiao ,Ming Zhu ,Xiao-Hui Sun ,Peng Jiang ,and Chun Sun

    1 National Astronomical Observatories,Chinese Academy of Sciences,Beijing 100101,China;xl@nao.cas.cn

    2 CAS Key Laboratory of FAST,National Astronomical Observatories,Chinese Academy of Sciences,Beijing 100101,China

    3 Department of Astronomy,Yunnan University,and Key Laboratory of Astroparticle Physics of Yunnan Province,Kunming 650091,China

    Abstract The relativistic electrons rotate in the enhanced magnetic field of the supernova remnants and emit the synchrotron radio emission.We aim to use the Five-hundred-meter Aperture Spherical radio Telescope (FAST) to obtain a sensitive continuum map of the supernova remnant VRO 42.05.01 (G166.0+4.3) at 1240 MHz.The 500 MHz bandwidth is divided into low and high-frequency bands centered at 1085 and 1383 MHz to investigate the spectral index variations within the remnant,together with the Effelsberg 2695 MHz data.We obtained an integrated flux density of 6.2±0.4 Jy at 1240 MHz for VRO 42.05.01,consistent with previous results.The spectral index found from temperature-temperature plot (TT-plot) between 1240 and 2695 MHz agrees with previous values from 408 MHz up to 5 GHz.The three-band spectral index distribution shows a clear flatter value of α~-0.33 in the shell region and steeper index of α=-0.36 to -0.54 in the wing region.The flatter spectral index in the shell region could be attributed to a second-order Fermi process in the turbulent medium in the vicinity of the shock and/or a higher compression ratio of shock and a high post-shock density than that in elsewhere.

    Key words:ISM:supernova remnants–radio continuum:ISM–methods:observational

    1.Introduction

    Supernova explosions inject in excess of 1050erg kinetic energy into the interstellar medium (ISM).The strong shock generated by supernova remnants (SNRs) heat and compress the surrounding gas medium.The shock accelerated relativistic particles rotate in the enhanced magnetic field to emit nonthermal radio/gamma-ray synchrotron radiation(Blandford&Eichler 1987;Park et al.2015).Therefore,continuum observations of SNRs are important to reveal the properties of the shocked ambient ISM and probe the acceleration process in different regions.

    VRO 42.05.01 (G166.0+4.3) is a shell-type SNR with a peculiar morphology,consisting of a semicircular “shell”,and a triangular“wing”structure(denoted in Figure 5).It has been classified as a mixed-morphology supernova remnant,characteristic of center-filled thermal X-ray emission(Rho &Petre 1998),and extensively studied at various wavelengths(see Arias et al.2019a for a recent review).Its distance is reconfined to 1.0±0.4 kpc by molecular gas observations using the Galactic rotation curve(Arias et al.2019a).The age estimated from the X-ray spectra of ionizing plasma will be rescaled to about 7000 yr(Matsumura et al.2017;Leahy et al.2020).Though molecular line observations in the west and north regions show no sign of interaction with nearby molecular clouds,interaction probably happens in features in the wing shell as indicated by infrared emission(Arias et al.2019a).A dust sheet that crosses the SNR in the interface is probably responsible for the double shell-shaped morphology.

    The radio continuum emission of VRO 42.05.01 has been observed from low frequency to high frequency(Leahy &Tian 2005;Gao et al.2011;Arias et al.2019b).The radio spectrum has a flat overall spectral index of α=-0.37(Kothes et al.2006).The spectral index between 408 and 1420 MHz shows a spatial variation that it is steeper in the wing region than elsewhere(Leahy &Tian 2005),indicating different compression ratio shock.The LOFAR observation also shows a curvature of steeper index in the low-frequency end of the radio spectrum for the bright“shell”and“wing”regions,while the diffuse “wing” regions present a roughly constant powerlaw behavior between 143 MHz and 2695 MHz(Arias et al.2019b).

    In this paper,we present the continuum observations of VRO 42.05.01 with Five-hundred-meter Aperture Spherical radio Telescope (FAST) from 1050–1450 MHz.FAST is located at a geographic latitude of 25°39′106 with an observable maximum zenith angle of 40° (Jiang et al.2020)and has achieved scientific achievements in several areas(Qian et al.2020).The 19 beam receiver of the FAST with a wide band coverage of 500 MHz enables it powerful to investigate the variation of the spectral index both in space and in frequency with a good sensitivity.This paper organizes as follows.The observations and data reduction are described in detail in Section 2.The results of flux density and spectral index combined with Effelsberg 2695 MHz map are presentedin Section 3.In Section 4,we give discussions.Conclusions are summarized in Section 5.

    2.Data Reduction

    2.1.Observations and Imaging

    The FAST continuum observations of VRO 42.05.01 were conducted twice using the 19 beam L-band receiver in 2020 April and 2021 February,respectively.We use multibeam onthe-fly mode to scan the target along either R.A.or decl.direction (R.A.+decl.direction at a time) with a telescope scan velocity of 15″s-1.The map is centered at α2000=with a size of 2°×2°.The pointing accuracy is better than 16″(Jiang et al.2019).3C138 is observed as the calibrator.The spectral backend with a 65,536 channel covering the 1000–1500 MHz band was used to collect data.Each channel has a bandwidth of 7.6 kHz.A sampling rate of one second is adopted.A noise signal with an amplitude of 10 K was injected under a period of two seconds for intensity calibration.Four pol data was also recorded and under analysis (in preparation).The observation parameters are summarized in Table 1.

    Table 1 Observational Parameters

    After intensity calibration,the baselines for Stokes I were corrected by subtracting a linear fit of the edge of each scan to remove the smooth increase of background emission toward the Galactic plane.Bad data caused by the satellite(1160–1280 MHz)and other radio frequency interference(RFI)that cause bad baselines were masked.The actual useful bandwidth is approximately~140 MHz.The data were gridded with a Gaussian function kernel to produce a data cube(Mangum et al.2007).The half-power beamwidth(HPBW) of each channel decreases with the increase of frequency(Jiang et al.2020).To derive the main beam bright temperature,the value of each channel was corrected by dividing the main beam efficiency (ηb),which is calculated from the HPBW of the current channel(Sun et al.2021).Then channel maps at different frequencies were smoothed to a common 4′ angular resolution and averaged to form the combined map.These processes were mainly carried out by python codes and packages.

    The in-band spectra toward two pixels are shown as examples in Figure 1,which are binned for every 20 channels with a bandwidth of 15.2 MHz per channel to lower the noise(for maps with a typical r.m.s of 500 mK).The binned FAST cube has been convolved to the same angular resolution of 4′.3 of Efflesberg 2695 MHz data,which is also plotted as a reference.The in-band spectra(the brightness temperature(Tb)versus the frequency (ν)) fit well to a power-law function.Accurate temperature spectral index after suppressing the scanning effects and adjusting baselevels of maps is presented in Section 3.

    Finally,we suppressed scanning effects for the intensity maps (Stokes I) by applying the “unsharp masking” method described by(Sofue &Reich 1979).All four total intensity maps (2R.A.+2decl.) were combined together using the PLAIT-algorithm(Emerson&Graeve 1988).To derive the flux density,we use a relevant main beam gain of 13.3 K Jy-1at 1.24 GHz,scaled from the 16.0 K Jy-1to the 4′resolution(Jiang et al.2020).As the gain of each beam slightly varies and has a different linear relation versus frequency(Sun et al.2021),we calculated the standard deviation of the gains for 19 beams at each frequency,and adopt the maximum 5% at the highest frequency end as the error.

    2.2.Comparison with the Effelsberg 21 cm Data

    VRO 42.05.01 has been observed at 1408 MHz in the Effelsberg 21 cm Galactic plane survey in total intensity(Reich et al.1990).It has a bandwidth of 20 MHz and an angular resolution of 94.It has also been observed in CGPS 1420 MHz survey(Taylor et al.2003).VRO 42.05.01 presents a substantial amount of diffuse emission slightly larger than 1°scales in the wing region as shown in Figure 2.While the CGPS samples baselines correspond to scales of1420 MHz,we compare the FAST result with the Effelsberg 21 cm map.

    To avoid the influence of lacking of data in the blank RFI zone,the FAST 500 MHz bandwidth is divided into two parts centered at 1085,1383 MHz,respectively.We smoothed each total intensity map to theresolution of the Effelsberg 21 cm map,and made a temperature—temperature plot (TT-plot)comparison of each pixel value(Figure 3).TT-plots of the two maps show the same slope,and the value in 1383 MHz agrees well with the Effelsberg 21 cm data along a diagnosis line.We also checked the positions and compared the flux density of the four bright extra-galactic point sources in the vicinity of VRO 42.05.01 with the NVSS catalog (Condon et al.1998).Their in-band spectral indices have values of 0.7–0.8,typical for extra-galactic sources.

    Figure 1.The FAST in-band spectra toward two pixels as labeled in Figure 5 together with the Effelsberg 2695 MHz data.The binned cube has been convolved to the same angular resolution of 4 3 at 2695 MHz.

    Figure 2.Left:The full bandwidth FAST total intensity map of VRO 42.05.01 at a central frequency of 1240 MHz.The image has an angular resolution of 4′.The semicircular“shell”and triangular“wing”structure are well defined.Right:The Effelsberg 2695 MHz total intensity map of VRO 42.05.01 with an angular resolution of 4 3.

    Figure 3.TT-plots of FAST total intensity map of VRO 42.05.01 centered at 1085 MHz and 1383 MHz with the Effelsberg 1408 MHz map.Both TT-plots show the same slope.The values at two frequencies in the right TT-plot agrees well along a diagnosis line.

    Figure 4.TT-plots for the shell (left) and the wing (right) region of VRO 42.05.01 between 1240 and 2695 MHz (upper panels),and between FAST 1085 and 1385 MHz (lower panels).

    3.Results

    3.1.Flux Density

    The FAST full bandwidth total intensity map of VRO 42.05.01 is shown in Figure 2.The semicircular “shell”and triangular “wing” structure are well defined with extragalactic sources embedded in the diffuse emission.The r.m.snoise measured from no emission areas in the maps is 12.0 mK TB.

    The large-scale background emission toward this region at 1240 MHz is adjusted by the TT-plot in Section 3.2(50 mK TB)and then subtracted.The integrated flux densities are directly obtained by setting polygons just outside the periphery of the SNR and integrating the emission enclosed.Then it is converted to the flux density by dividing an average main beam gain value of 13.3 K Jy-1at different frequencies.The variations of gain of each beam are considered into a 5%error.Four bright extra-galactic sources embedded in the wing area of the source are subtracted by comparison with the NVSS catalog.From variations outside the SNR,we estimate a remaining uncertainty in the base-level setting of 5 mK TB.With estimated 5% uncertainties in calibration,we obtained integrated flux densities of 6.2±0.4 Jy at 1240 MHz.The flux density is consistent with the value of 5.2 Jy(Leahy &Tian 2005) and 6.0 Jy at 1420 MHz(Landecker et al.1982).

    3.2.TT-plot Spectral Analysis

    We use the 2695 MHz map from the Effelsberg 11 cm survey in the direction of the Galactic anticenter(Fürst et al.1990) to investigate the spectral index variations within the SNR between two frequencies.The FAST total intensity map is smoothed to theresolution of the 11 cm Effelsberg map.The TT-plot method is used to investigate the spectrum of distinct emission structures independent of a consistent baselevel setting of both maps.

    We applied this method for the shell and wing sections of VRO 42.05.01,respectively.The TT-plot results between the 1240 and 2695 MHz data are shown in Figure 4.The data is fitted twice,alternately taking the data of one of the two frequencies as the independent variable,to obtain the error.In order to reveal the distinct index properties of the two regions,TT-plot results between FAST low and high frequency 1083 MHz and 1385 MHz are also plotted.A clear temperature-temperature relation is seen in all cases.The temperature spectral index β (Sν∝να,α=β+2) found from fitting the slope is β21/11=-2.31±0.12 for the shell section andβ21/11=-2.42±0.27 for the wing section,respectively.The error of β of the diffuse western part of the wing region is large,probably due to its weak emission and confusion with weak unresolved background sources,which could not be subtracted.The spectral index in the wing section is steeper than that in the shell section,and is slightly larger than the spectral index of the integrated spectrum within the errors.Compared with previous TT-plot values,there is no variation of the indices in both shell and wing region in the frequency domain from 408 MHz up to 5 GHz (Table 2).

    Table 2 TT-plot Spectral Index

    3.3.Spectral Index Distribution

    The low and high-frequency bands centered at 1085,1383 MHz has sufficient span in frequency.We used the brightness temperatures at these two frequencies and Effelsberg 2695 MHz data to calculate a three-band spectral index map by fitting a power law for each pixel of VRO 42.05.01 (Figure 5).The four extra-galactic sources embedded in the wing area of the source are also subtracted from both maps,and the large-scale background baselevels at 1085,1383 MHz are adjusted and subtracted by about 80,40 mK TB.While the background baselevels at 2695 MHz are twisted and added by 7 mK TB.The background emission outside the source is excluded from the fitting by setting a lower intensity limit.

    Figure 5.The three-band spectral index map (left) and error map (right) of VRO 42.05.01 (1085-1383-2695 MHz).The overlaid contours show total intensities at 1240 MHz.The pixels used to show the in-band spectra in Figure 1 are marked by pluses.

    The spectral index map obtained with single-dish telescopes does not suffer from the missing flux problem.The different indices mainly distribute in three subregions.The semicircular shell region has a spectral index of α~-0.33,while the wing region shows a steeper spectrum of α=-0.36 to -0.54.This is consistent with the values obtained from TT-plots.Possible remaining variations of the base-levels at three bands cause a systematic uncertainty of the spectral indices of Δ α=0.06.The uncertainty is largest where the total intensity is small.The point-like variations correspond to the uncertainty of subtraction of extra-galactic sources.Besides,there is a spectral flattening toward the boundary of the shell and wing region of α~-0.18 with a relatively large error,which needs to be further confirmed.

    4.Discussion

    The variation of spectral index in SNRs is generally considered related with physical conditions changes with position.In this section,we briefly discussed possible explanations of the flat spectral index in the shell of VRO 42.05.01.

    The linear diffusive shock acceleration (DSA) theory predicts that the electron energy index p only depends on the shock compression ratio χ (the ratio of postshock to preshock densities),and is independent of energy(Blandford&Eichler 1987).For a strong adiabatic shock,the compression ratio is χ=4,corresponding to a radio spectral index α of 0.5.Lower Mach number reduces the compression ratio and leads to steeper electron synchrotron spectra.

    However,as reviewed in Oni? (2013),there are several mechanisms to cause a flat radio spectra (<0.5) in SNRs.(1)Second-order Fermi (stochastic) acceleration.When the magnetized gas has an Alfvén speed non-negligible in comparison to the shock velocity,the second-order Fermi process in the turbulent medium can modify the energy spectrum of the particles and generate a flat particle distribution(Ostrowski 1999).For VRO 42.05.01,Oni?(2013) has calculated that a low plasma value around 0.05 in the case of compression ratio of 3.9 and constant spatial diffusion coefficient can obtain an spectral indices of 0.33(Gao et al.2011).

    (2)High compression ratios of shocks.When the remnant enter into the radiative phase,energy loss became significant.A high compression ratio can be achieved for an isothermal shock with modest Mach numbers as the square of the Mach number,χ=γM2,where γ is the ratio of specific heat of the medium(Draine 2011).It produces a flatter radio spectral index asThis scenario is favored to explain the spatial spectral index variation in Leahy &Tian (2005) and the steepening of spectral index of VRO 42.05.01 at low frequencies in Arias et al.(2019b).

    (3)secondary electrons from the decay of neutral pions.For mixed-morphology supernova remnants,the re-acceleration of pre-existing cosmic-rays by DSA power the observed γ-ray emission through the decay of neutral pions,while the secondary electrons can create a flat-spectrum electron population and mainly contribute at lower radio frequencies(Uchiyama et al.2010).As no molecular gas has been found in the northern part(Arias et al.2019a),it remains to be checked for further molecular observations to cover other regions.

    Various works suggested that VRO 42.05.01 has evolved into an inhomogeneous medium with different densities in the shell and wing region,which cause the peculiar morphology(Pineault et al.1987;Landecker et al.1989;Burrows &Guo 1994;Matsumura et al.2017).Though new H I observations show no clear shell features related with the remnant(Arias et al.2019b),the coincidence of the boundary of the shell and wing with the edge of a large polarized bubble structure(Kothes &Landecker 2004) gives a hint that such environment might have been affected by an old SNR.As the flat spectral index region appears to have excess optical Hαemission,delineating positions of cooling post-shock ISM gas,we suggest that scenarios (1) and (2) are both possible.

    5.Summary

    Summing up,we used the FAST radio telescope to obtain a sensitive continuum map of SNR VRO 42.05.01 at 1240 MHz.We obtained an integrated flux density of 6.2±0.4 Jy at 1240 MHz for VRO 42.05.01,consistent with previous results.The spectral index found from TT-plot with the Effelsberg 2695 MHz map is α21/11=-0.31±0.12 for the shell section and α21/11=-0.42±0.27 for the wing section,respectively,agrees with previous TT-plot values from 408 MHz up to 5 GHz.The three-band spectral index map made by maps centered at 1085,1383 and 2695 MHz shows a flatter index of α~-0.33 in the shell region and a steeper index of α=-0.36 to -0.54 in the wing region.The flatter spectral index in the shell region could be attributed to a second-order Fermi process in the turbulent medium in the vicinity of the shock and/or a higher compression ratio of shock and a high post-shock density than that in elsewhere.

    Acknowledgments

    We thank the anonymous journal referee for the valuable comments to improve the paper.We acknowledge support from the National Key R&D Program of China (2018YFE0202900)as well as the early science Project Program of the Key Laboratory of FAST.We thank Prof.Wang Jie for the open python code package of the data reduction pipeline for reference,and thank the help from FAST colleagues for using the server.

    ORCID iDs

    日本色播在线视频| 校园春色视频在线观看| 色5月婷婷丁香| 12—13女人毛片做爰片一| 久久久久久久久大av| 亚洲欧美日韩卡通动漫| 欧美高清性xxxxhd video| 国产成人一区二区在线| 亚洲真实伦在线观看| 国产成人福利小说| 非洲黑人性xxxx精品又粗又长| 精品国内亚洲2022精品成人| 中文字幕av成人在线电影| 长腿黑丝高跟| 亚洲国产色片| 麻豆一二三区av精品| av在线蜜桃| 亚洲一级一片aⅴ在线观看| 亚洲av熟女| 又爽又黄无遮挡网站| 中文资源天堂在线| 午夜福利18| 亚洲性夜色夜夜综合| 热99re8久久精品国产| 99热精品在线国产| 成人av一区二区三区在线看| 淫秽高清视频在线观看| 一级黄片播放器| 亚洲中文日韩欧美视频| 无遮挡黄片免费观看| 成年人黄色毛片网站| 最近最新中文字幕大全电影3| 亚洲精品一卡2卡三卡4卡5卡| 一a级毛片在线观看| 日本爱情动作片www.在线观看 | 午夜福利成人在线免费观看| 波野结衣二区三区在线| 亚洲av美国av| 熟女人妻精品中文字幕| 色5月婷婷丁香| 午夜免费成人在线视频| 99国产精品一区二区蜜桃av| 色尼玛亚洲综合影院| 99久久九九国产精品国产免费| 国内精品美女久久久久久| 国产精品一区二区性色av| 一卡2卡三卡四卡精品乱码亚洲| 99热精品在线国产| 欧美激情国产日韩精品一区| 国产成人一区二区在线| 免费av不卡在线播放| 精品人妻偷拍中文字幕| 国内少妇人妻偷人精品xxx网站| 两个人的视频大全免费| av天堂中文字幕网| 在线观看66精品国产| 日本黄色视频三级网站网址| 999久久久精品免费观看国产| 色哟哟哟哟哟哟| 国内精品美女久久久久久| 国产精品一区二区性色av| 国内少妇人妻偷人精品xxx网站| 日本黄大片高清| 又粗又爽又猛毛片免费看| 少妇被粗大猛烈的视频| 日韩欧美精品免费久久| 啦啦啦观看免费观看视频高清| 国产午夜福利久久久久久| 国产精品国产三级国产av玫瑰| 春色校园在线视频观看| 18+在线观看网站| 波多野结衣高清无吗| 极品教师在线免费播放| 国产69精品久久久久777片| 亚洲无线观看免费| 欧美日韩精品成人综合77777| 亚洲av第一区精品v没综合| 亚洲av不卡在线观看| 黄色一级大片看看| 国产亚洲91精品色在线| 日本撒尿小便嘘嘘汇集6| 国产午夜精品论理片| 美女大奶头视频| 岛国在线免费视频观看| 淫妇啪啪啪对白视频| 亚洲成人久久性| 亚洲精品粉嫩美女一区| 麻豆av噜噜一区二区三区| 亚洲,欧美,日韩| www日本黄色视频网| 亚洲欧美日韩卡通动漫| 99热这里只有是精品50| 国产精品久久久久久亚洲av鲁大| 国产高清有码在线观看视频| 天堂影院成人在线观看| 国内精品美女久久久久久| 国产一区二区在线av高清观看| 人妻少妇偷人精品九色| 亚洲人成网站高清观看| 夜夜看夜夜爽夜夜摸| www.色视频.com| 国产精品日韩av在线免费观看| 国产麻豆成人av免费视频| 欧美日本视频| 热99在线观看视频| 麻豆成人午夜福利视频| 国产伦一二天堂av在线观看| 久久亚洲精品不卡| 久9热在线精品视频| av专区在线播放| 亚洲精品在线观看二区| 一区二区三区四区激情视频 | 亚洲精华国产精华精| 国产色爽女视频免费观看| 国产女主播在线喷水免费视频网站 | 国产视频内射| 国产精品1区2区在线观看.| 国产精品一及| 日本欧美国产在线视频| 看片在线看免费视频| 日韩精品青青久久久久久| 亚洲性夜色夜夜综合| 婷婷丁香在线五月| 欧美日韩综合久久久久久 | 亚洲美女搞黄在线观看 | 亚洲18禁久久av| 18禁黄网站禁片午夜丰满| 亚洲,欧美,日韩| 在线观看一区二区三区| 18禁裸乳无遮挡免费网站照片| 人妻丰满熟妇av一区二区三区| 国产爱豆传媒在线观看| 啪啪无遮挡十八禁网站| 美女被艹到高潮喷水动态| 欧美日本亚洲视频在线播放| 精品久久久久久久末码| 亚洲中文日韩欧美视频| 国产蜜桃级精品一区二区三区| 给我免费播放毛片高清在线观看| 中文字幕高清在线视频| 欧美日韩精品成人综合77777| 久久久久国内视频| 91在线观看av| 免费av毛片视频| 在现免费观看毛片| 一个人看视频在线观看www免费| 婷婷六月久久综合丁香| 欧美xxxx性猛交bbbb| 不卡视频在线观看欧美| 十八禁网站免费在线| 韩国av在线不卡| 国产毛片a区久久久久| 日韩欧美三级三区| 美女高潮的动态| 精品福利观看| 国产精品爽爽va在线观看网站| 成熟少妇高潮喷水视频| 在线观看av片永久免费下载| 淫秽高清视频在线观看| 一级黄片播放器| 又黄又爽又免费观看的视频| 有码 亚洲区| 免费看日本二区| 亚洲专区国产一区二区| 综合色av麻豆| 日韩欧美国产在线观看| 精品久久久久久,| 最后的刺客免费高清国语| 看片在线看免费视频| av国产免费在线观看| www.www免费av| 国产在线男女| 美女黄网站色视频| 99热6这里只有精品| 中国美白少妇内射xxxbb| 此物有八面人人有两片| 亚洲av美国av| 美女xxoo啪啪120秒动态图| 国产精品伦人一区二区| 尾随美女入室| 神马国产精品三级电影在线观看| 草草在线视频免费看| 日韩欧美三级三区| 51国产日韩欧美| 日韩欧美国产在线观看| 成人特级黄色片久久久久久久| 男人舔女人下体高潮全视频| 亚洲黑人精品在线| 一级av片app| 中国美白少妇内射xxxbb| 嫩草影视91久久| 两个人视频免费观看高清| 观看免费一级毛片| 色噜噜av男人的天堂激情| 午夜精品在线福利| 亚洲av二区三区四区| 国产av不卡久久| 中出人妻视频一区二区| 亚洲 国产 在线| 毛片一级片免费看久久久久 | 精品久久久久久久久亚洲 | 无遮挡黄片免费观看| 一本久久中文字幕| 婷婷亚洲欧美| 18禁在线播放成人免费| 大又大粗又爽又黄少妇毛片口| 国产 一区精品| 桃红色精品国产亚洲av| 亚洲国产精品合色在线| 亚洲狠狠婷婷综合久久图片| 精品久久久久久久久久免费视频| 久久亚洲精品不卡| 国产单亲对白刺激| ponron亚洲| 69av精品久久久久久| 人妻丰满熟妇av一区二区三区| 搡老岳熟女国产| 最近在线观看免费完整版| 亚洲欧美日韩东京热| 国产男人的电影天堂91| 国产精品永久免费网站| 搡老岳熟女国产| 麻豆成人午夜福利视频| 国产亚洲精品久久久久久毛片| 亚洲狠狠婷婷综合久久图片| 成人综合一区亚洲| 久久99热这里只有精品18| 韩国av在线不卡| 全区人妻精品视频| 国产精品久久久久久av不卡| 一个人看视频在线观看www免费| 国产高清视频在线观看网站| 久久久久精品国产欧美久久久| 国产精品久久久久久亚洲av鲁大| 久久久色成人| 国产老妇女一区| 一级毛片久久久久久久久女| 啦啦啦观看免费观看视频高清| 男人舔女人下体高潮全视频| 久久99热6这里只有精品| 亚洲国产高清在线一区二区三| 国产伦人伦偷精品视频| 赤兔流量卡办理| 一进一出好大好爽视频| 欧美极品一区二区三区四区| 国产三级在线视频| 可以在线观看的亚洲视频| 在线观看66精品国产| 欧美性感艳星| 日本三级黄在线观看| 精品不卡国产一区二区三区| 69av精品久久久久久| 精品99又大又爽又粗少妇毛片 | 国产成人av教育| 欧美日韩综合久久久久久 | 精品久久久久久久人妻蜜臀av| 丰满的人妻完整版| 欧美日韩亚洲国产一区二区在线观看| 日韩一本色道免费dvd| 日韩高清综合在线| 国产乱人伦免费视频| 最近视频中文字幕2019在线8| 国产精品一区二区免费欧美| 久久婷婷人人爽人人干人人爱| 成年免费大片在线观看| 日韩一本色道免费dvd| 嫁个100分男人电影在线观看| 免费看光身美女| 丰满乱子伦码专区| 啦啦啦韩国在线观看视频| 色综合亚洲欧美另类图片| 日本黄色片子视频| 国产av在哪里看| 成年人黄色毛片网站| 亚洲色图av天堂| 噜噜噜噜噜久久久久久91| 精品一区二区三区av网在线观看| 色吧在线观看| 精品人妻一区二区三区麻豆 | 亚洲av免费在线观看| 中文字幕免费在线视频6| 亚洲精品在线观看二区| 真人一进一出gif抽搐免费| 伦理电影大哥的女人| 偷拍熟女少妇极品色| 精品国内亚洲2022精品成人| 天堂动漫精品| 中文在线观看免费www的网站| 亚洲精品日韩av片在线观看| 成人鲁丝片一二三区免费| 国产精品综合久久久久久久免费| 春色校园在线视频观看| 熟女电影av网| 色播亚洲综合网| 色5月婷婷丁香| 琪琪午夜伦伦电影理论片6080| 乱码一卡2卡4卡精品| 少妇丰满av| 成人鲁丝片一二三区免费| 亚洲 国产 在线| 精品欧美国产一区二区三| 亚洲专区国产一区二区| 中亚洲国语对白在线视频| 亚洲最大成人中文| 天美传媒精品一区二区| 内射极品少妇av片p| 亚洲无线在线观看| 波多野结衣巨乳人妻| 波多野结衣高清作品| 级片在线观看| 一进一出好大好爽视频| 国产在视频线在精品| 午夜福利欧美成人| 校园春色视频在线观看| 少妇丰满av| 免费看av在线观看网站| 国产一区二区三区av在线 | 国产淫片久久久久久久久| 久久久久久久久久黄片| 午夜久久久久精精品| 日本 av在线| 免费看日本二区| 精品人妻1区二区| 18禁黄网站禁片午夜丰满| 国产一区二区三区视频了| 最后的刺客免费高清国语| 看十八女毛片水多多多| 夜夜爽天天搞| 波野结衣二区三区在线| 国模一区二区三区四区视频| 亚洲精品一卡2卡三卡4卡5卡| 亚洲av熟女| 不卡视频在线观看欧美| 亚洲av熟女| 日韩国内少妇激情av| 俄罗斯特黄特色一大片| 国产伦在线观看视频一区| 色综合站精品国产| 午夜视频国产福利| 国产一区二区三区在线臀色熟女| 中文资源天堂在线| 日本免费a在线| 欧美高清成人免费视频www| 久久精品综合一区二区三区| 天堂av国产一区二区熟女人妻| 亚洲av成人av| 免费一级毛片在线播放高清视频| 国国产精品蜜臀av免费| 赤兔流量卡办理| 色综合站精品国产| 精品国内亚洲2022精品成人| 色噜噜av男人的天堂激情| 在现免费观看毛片| 人妻制服诱惑在线中文字幕| 国产成年人精品一区二区| 亚洲四区av| 亚洲最大成人中文| 亚洲av成人av| 最新在线观看一区二区三区| 特级一级黄色大片| 3wmmmm亚洲av在线观看| 一区二区三区免费毛片| 日韩大尺度精品在线看网址| 美女免费视频网站| 桃红色精品国产亚洲av| 在线播放无遮挡| 男女下面进入的视频免费午夜| 简卡轻食公司| 韩国av一区二区三区四区| www.色视频.com| 少妇人妻精品综合一区二区 | 听说在线观看完整版免费高清| 尤物成人国产欧美一区二区三区| 成人国产麻豆网| 亚洲人成网站在线播| 欧美bdsm另类| 欧美高清性xxxxhd video| 国内揄拍国产精品人妻在线| 日韩欧美国产在线观看| 亚洲熟妇中文字幕五十中出| 日韩大尺度精品在线看网址| 亚洲内射少妇av| 日日摸夜夜添夜夜添小说| 久久久久久久午夜电影| 亚洲中文日韩欧美视频| 我要搜黄色片| 亚洲av五月六月丁香网| 中国美女看黄片| 国产视频一区二区在线看| a在线观看视频网站| 九九在线视频观看精品| 在现免费观看毛片| 91午夜精品亚洲一区二区三区 | 小蜜桃在线观看免费完整版高清| 99热这里只有精品一区| 此物有八面人人有两片| 禁无遮挡网站| 国产精品亚洲美女久久久| 国产私拍福利视频在线观看| 麻豆精品久久久久久蜜桃| 老司机深夜福利视频在线观看| 在线免费观看的www视频| 国产精品伦人一区二区| 亚洲专区中文字幕在线| 久久午夜亚洲精品久久| 变态另类成人亚洲欧美熟女| 99国产精品一区二区蜜桃av| 搞女人的毛片| 免费看美女性在线毛片视频| 欧美日本视频| 国产一区二区三区在线臀色熟女| 少妇的逼水好多| 色哟哟·www| 国产av麻豆久久久久久久| 精品久久久久久久久av| 啦啦啦韩国在线观看视频| 长腿黑丝高跟| 亚洲av成人精品一区久久| 亚洲精品一区av在线观看| 久久久久国内视频| 亚洲成av人片在线播放无| 国产蜜桃级精品一区二区三区| 亚洲一区高清亚洲精品| 久久精品91蜜桃| 欧美激情在线99| 国产免费男女视频| 国产一区二区在线av高清观看| 国内久久婷婷六月综合欲色啪| 色在线成人网| 狂野欧美白嫩少妇大欣赏| 在线a可以看的网站| 国产一区二区三区在线臀色熟女| 99热精品在线国产| 精品久久久久久久久av| 中文字幕久久专区| 国产蜜桃级精品一区二区三区| 99热6这里只有精品| 日韩中文字幕欧美一区二区| 听说在线观看完整版免费高清| av在线老鸭窝| 波多野结衣高清无吗| 给我免费播放毛片高清在线观看| 国语自产精品视频在线第100页| 偷拍熟女少妇极品色| 久久国产精品人妻蜜桃| 九九久久精品国产亚洲av麻豆| 91精品国产九色| 精品久久久久久,| 干丝袜人妻中文字幕| 神马国产精品三级电影在线观看| 99精品久久久久人妻精品| 国产亚洲精品久久久久久毛片| 国产成人影院久久av| 又紧又爽又黄一区二区| 欧美成人性av电影在线观看| 尾随美女入室| 中文字幕熟女人妻在线| 搡老熟女国产l中国老女人| 欧美性猛交黑人性爽| 免费人成在线观看视频色| 亚洲精品色激情综合| 中文字幕久久专区| 亚洲精品粉嫩美女一区| 真人做人爱边吃奶动态| 中文字幕熟女人妻在线| 日韩一区二区视频免费看| 香蕉av资源在线| 国内精品宾馆在线| 亚洲电影在线观看av| 亚洲成人久久爱视频| 国产精品无大码| 国内久久婷婷六月综合欲色啪| 国产男人的电影天堂91| 国产伦一二天堂av在线观看| 成人无遮挡网站| 国产不卡一卡二| 国产在视频线在精品| 有码 亚洲区| 国产精品99久久久久久久久| 99riav亚洲国产免费| 国产乱人视频| 精品99又大又爽又粗少妇毛片 | 亚洲美女搞黄在线观看 | 精品欧美国产一区二区三| 人人妻,人人澡人人爽秒播| 亚洲人成网站在线播| 天堂动漫精品| 中文资源天堂在线| 最近最新免费中文字幕在线| 一区二区三区高清视频在线| 啦啦啦啦在线视频资源| 国产精品av视频在线免费观看| 日韩大尺度精品在线看网址| 美女xxoo啪啪120秒动态图| 亚洲成人久久性| 国产中年淑女户外野战色| 日本与韩国留学比较| 97超级碰碰碰精品色视频在线观看| 一进一出抽搐gif免费好疼| 日本 欧美在线| 中文资源天堂在线| 舔av片在线| 国产午夜精品论理片| 亚洲狠狠婷婷综合久久图片| 少妇的逼水好多| 在线免费观看的www视频| 级片在线观看| 国产 一区精品| 男人和女人高潮做爰伦理| 国产午夜精品论理片| 长腿黑丝高跟| 久久久久精品国产欧美久久久| 国产av在哪里看| 国产成人影院久久av| 不卡视频在线观看欧美| 99九九线精品视频在线观看视频| 国产又黄又爽又无遮挡在线| 国产一区二区在线观看日韩| 两人在一起打扑克的视频| 国产精品一区二区性色av| 欧美成人性av电影在线观看| 色5月婷婷丁香| 国产精品三级大全| 午夜精品一区二区三区免费看| 亚洲美女视频黄频| 久久草成人影院| av国产免费在线观看| 人妻久久中文字幕网| 欧美bdsm另类| 高清在线国产一区| 美女高潮喷水抽搐中文字幕| 少妇的逼好多水| 国产单亲对白刺激| 欧美日韩精品成人综合77777| 婷婷丁香在线五月| 一a级毛片在线观看| 久久精品国产亚洲av天美| 九九久久精品国产亚洲av麻豆| 人妻久久中文字幕网| 午夜免费成人在线视频| 欧美xxxx性猛交bbbb| 中文字幕人妻熟人妻熟丝袜美| 国产精品一区二区性色av| 99在线视频只有这里精品首页| 亚洲第一电影网av| 国产熟女欧美一区二区| 校园人妻丝袜中文字幕| 精品福利观看| 精品欧美国产一区二区三| 精品人妻偷拍中文字幕| 精品人妻熟女av久视频| 久久人人精品亚洲av| 成熟少妇高潮喷水视频| avwww免费| 尤物成人国产欧美一区二区三区| 搡女人真爽免费视频火全软件 | 亚洲人成网站在线播| 成年女人永久免费观看视频| 老熟妇乱子伦视频在线观看| 国产成人aa在线观看| 国产免费av片在线观看野外av| 亚洲成av人片在线播放无| 桃红色精品国产亚洲av| 久久国产乱子免费精品| 欧美最黄视频在线播放免费| 久久6这里有精品| 国产乱人视频| 又爽又黄a免费视频| 一级毛片久久久久久久久女| 麻豆久久精品国产亚洲av| 男人狂女人下面高潮的视频| 天堂动漫精品| 伦理电影大哥的女人| 一级黄片播放器| 亚洲av美国av| 国产精品国产高清国产av| 美女 人体艺术 gogo| 久久久久久伊人网av| 特级一级黄色大片| 国产人妻一区二区三区在| 国产蜜桃级精品一区二区三区| 搡老熟女国产l中国老女人| 国模一区二区三区四区视频| 12—13女人毛片做爰片一| 桃色一区二区三区在线观看| 在线免费观看的www视频| 少妇熟女aⅴ在线视频| 99久久精品国产国产毛片| 此物有八面人人有两片| 欧美日韩亚洲国产一区二区在线观看| 国产成人福利小说| 女同久久另类99精品国产91| 成年女人毛片免费观看观看9| 精品久久久久久久久av| 日本成人三级电影网站| 久久精品国产99精品国产亚洲性色| 国产黄a三级三级三级人| 日韩,欧美,国产一区二区三区 | 在线观看一区二区三区| 18+在线观看网站| 日本欧美国产在线视频| 日本 av在线| 欧美日韩国产亚洲二区| 在线免费十八禁| 亚洲av.av天堂| 日韩,欧美,国产一区二区三区 | 成人国产麻豆网| 中国美白少妇内射xxxbb| 国产淫片久久久久久久久| 国产精品久久久久久精品电影| 欧美人与善性xxx| 人妻少妇偷人精品九色| 国产精品,欧美在线| 色综合色国产| 亚洲人成伊人成综合网2020|