• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-efficiency Blue Phosphorescent OLEDs Based on Mixed-host Structure by Solution-processed Method

    2022-05-23 03:08:50WANGZheWURuixiaFENGYangLIUHuaZHOULiang
    發(fā)光學報 2022年5期

    WANG Zhe, WU Rui-xia, FENG Yang, LIU Hua, ZHOU Liang*

    (1. State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China;2. Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China)*Corresponding Authors, E-mail: liuh146@nenu.edu.cn; zhoul@ciac.ac.cn

    Abstract: Blue phosphorescent organic light-emitting diodes(PHOLEDs) which utilized TcTa and CzSi as the mixed-host were fabricated to improve the efficiency by solution-processed method. Additionally, three electron transport materials Tm3PyP26PyB, TmPyPB and TPBi were employed to further enhance the efficiency of devices. The efficiency was improved by optimizing the ratio of host materials and the selection of electron transport material. Finally, the optimal device with the doping ratio TcTa∶CzSi of 6∶1 and 70 nm TPBi layer exhibited the maximum brightness(Bmax), current efficiency(CEmax), power efficiency(PEmax) and external quantum efficiency(EQEmax) of 6 662 cd·m-2, 39.40 cd·A-1, 23.33 lm·W-1 and 19.7%, respectively. Moreover, outstanding current efficiency and external quantum efficiency as high as 33.43 cd·A-1 and 16.7%, respectively, were obtained, even at the practical brightness of 1 000 cd·m-2.

    Key words: organic light-emitting diodes; high efficiency; solution-processed; mixed-host structure; blue emission

    1 Introduction

    Organic light-emitting diodes(OLEDs) are the most promising new display and lighting technology owing to their unique advantages of thinness, quick response, high contrast ratio, energy efficiency and being used in flexible electrical appliances[1-3]. It is widely used in smart phone displays, TV screens and computer monitors,etc. However, due to the limitation in vacuum thermal evaporation technology, OLEDs have encountered great difficulties in meeting the requirements of low-cost and high-resolution for large-size OLED devices. Therefore, solution-processed OLEDs which have a variety of advantages, such as low fabrication cost, easily scalable manufacturing and the potential in producing large-area devices, have attracted great attention[4]. Conventional OLEDs are typically composed of four or more multiple layers of different materials, thus achieving notable increase in efficiency and lifetime. However, it is more difficult to construct so many layers in the case of solution-processed method, because depositing one layer would dissolve its next layer[5]. Up to now, the blue device still has the issue of low efficiency. In this case, improving the efficiency of blue devices fabricated by solution-processed method becomes more challenging[6].

    In recent years, significant improvement has been achieved regarding to solution-processed OLEDs[7-9]. The mixed-host structure has been proposed and its superior advantages in reducing layer structure and improving device performance has been demonstrated. The mixed-host structure used in solution-processed OLEDs is more beneficial for balance the carriers and broaden the recombination zone than the single-host. Chenetal. fabricated blue OLEDs using electron-type host material 2, 7-bis(diphenylphosphoyl-9, 9′-spinodimer[fluorene](SPPO13) and hole-type host material 4,4′,4″-tris(9-carbazolyl)triphenylamine(TcTa)[10]. The luminous efficiency and efficiency roll-off of devices were significantly enhanced and improved by exploiting mixed-host structure than single-host structure. Finally, the optimal device with the doping ratio SPPO13∶TcTa of 6∶3 demonstrated the CEmaxof 34.3 cd·A-1and EQEmaxof 15.2%. Kumaretal.selected poly(N-vinylcarbazole)(PVK) and 1,3-bis(N-carbazolyl)benzene(mCP) as host materials for efficient red-orange TADF solution-processed OLEDs. The efficiency, lifetime and stability of devices were notable improved by reducing the self-aggregation of TADF emitters. Finally, the optimal device realized the EQEmaxof 9.75%, CEmaxof 19.36 cd·A-1and PEmaxof 12.17 lm·W-1by using the mixed-host structure[11]. In addition, the transmission characteristics of the host materials and the well-matched energy levels between the functional layers are also important factors for the optoelectronic performance of devices.

    In this paper, a series of blue phosphorescent devices which utilized iridium(Ⅲ)[bis(4,6-difuorophenyl)pyridinato-N,C2’]picolinate(FIrpic) as emitter were fabricated to enhance device performances by constructing mixed-host structure consist of TcTa and 9-(4-tert-Butylphenyl)-3,6-bis(triphenylsilyl)-9H-carbazole(CzSi). In addition, the selection of electron transport material was optimized to further improve the efficiency of blue phosphorescent devices. The optimal device displayed theBmax, EQEmax, CEmaxand PEmaxup to 6 662 cd·m-2, 19.7%, 39.40 cd·A-1and 23.33 lm·W-1, respectively. Even at the practical brightness of 1 000 cd·m-2, current efficiency and external quantum efficiency reach up to 33.43 cd·A-1and 16.7%, respectively, can still be maintained. The high efficiency blue OLEDs with mixed-host structure have been achieved by selecting appropriate host and electron transport material.

    2 Experiments

    All organic materials and solvents were obtained commercially and used as received without further purification. Indium-tin-oxide(ITO) coated glass with a sheet resistance of 10 Ω·□-1was used as the anode. The ITO glass substrates were cleaned with detergent and de-ionized water and finally dried in an oven before preparing the devices. After that, ITO substrates were treated with UV-ozone for 20 min. Poly(3,4-ethylenedioxythiophene)∶poly(styrene sulfonate)(PEDOT∶PSS) was spin-coated on ITO substrates at 3 000 r/min for 60 s and annealed at 120 ℃ for 20 min. Afterward, the samples were moved into the glove box. The luminescent and host materials were dissolved in chlorobenzene solution at 4 mg·mL-1and 10 mg·mL-1, respectively. After the solutions of luminescent material and host materials were prepared in proportion, they were dropped on the ITO substrate. The light-emitting layer(EML) was spin-coated at 3 000 r/min for 30 s and annealed at 70 ℃ for 30 min. And then, electron transport layer(ETL) was deposited with the rate of 0.1 nm·s-1under vacuum(≤ 3.0×10-5Pa). LiF and Al were deposited in another vacuum chamber(≤ 8.0×10-5Pa) at 0.01 and 1.0 nm·s-1, respectively. The current density-voltage-brightness(J-V-B) characteristics of devices were measured by using a programmable Keithley source measurement unit(Keithley 2400 and Keithley 2000) with a silicon photodiode. The EL and photoluminescence(PL) spectra were measured by using a calibrated Hitachi F-7000 fluorescence spectrophoto-meter.

    3 Results and Discussion

    3.1 Optimization of Doping Ratio of Host Materials

    Fig.1 shows the energy level diagrams of devices and molecular structures of materials used in these devices.PEDOT∶PSS was used as hole injection and transport material. FIrpic was selected as the luminescent material since it is one of the most commonly used blue phosphorescent material. The energy level of host materials should be higher than that of FIrpic(ET=2.62 eV) as far as possible to prevent the energy transfer from guest to host[12-13]. In this case, CzSi and TcTa were employed as the host materials. CzSi(ET=3.02 eV) has a high triplet energy level, which enables effective energy transfer from host to guest and reduces energy loss during the transfer process. Simultaneously, TcTa has excellent hole transport capability, which can compensate the deficiency of solution-processed devices in hole transport. Therefore, the designed TcTa and CzSi mixed-host structure can effectively balance the charge within the EML. In this part of experiment, 1,3,5-tris(6-(3-(pyridin-3-yl)phenyl)pyridin-2-yl) (Tm3PyP26PyB) was chosen as electron transport material due to its excellent electron transport properties. Moreover, LiF and Al were utilized as electron injection material(EIL) and the cathode, respectively. To determine the optimal doping concentration of FIrpic, a series of devices with structure of ITO/PEDOT∶PSS/FIrpic(x%)∶CzSi/Tm3PyP26PyB(60 nm)/LiF(1 nm)/Al(100 nm) were first fabricated and then measured. The 14% doped EML device exhibited CEmax, PEmax,Bmaxand EQEmaxup to 10.26 cd·A-1, 4.68 lm·W-1, 4 163 cd·m-2and 5.6%, respectively. Subsequently,we introduced TcTa as mixed-host together with CzSi based on the above device architecture to investigate the device performances in mixed-host structure.

    Fig.1 Energy levels diagram of the devices used in this work and the molecular structures of FIrpic, CzSi, TcTa, PEDOT∶PSS, Tm3PyP26PyB, TmPyPB, TPBi and DPEPO.

    Figs.2(a)-(c) depict current density-voltage-brightness(J-V-B) characteristics, the current efficiency-current density(ηc-J) characteristics and current efficiency-brightness-power efficiency(ηc-B-ηp) characteristics of devices with different doping ratios of TcTa∶CzSi, respectively. With the increase in the proportion of TcTa, the current density and current efficiency of devices gradually increased. Moreover, the efficiency of different doping ratios varied little with brightness. Generally, the devices with PEDOT∶PSS lack holes within EML due to the large energy gap of hole injection and the high electron mobility of Tm3PyP26PyB, which cause the unbalanced carriers’ distribution and the annihilation of excitons. In addition, electrons can transit directly to the guest molecules because of the same lowest unoccupied molecular orbital(LUMO) levels of Tm3PyP26PyB and FIrpic. Obviously, the recombination zone is near the interface between PEDOT∶PSS layer and EML. Fig.2(d) shows the PL spectra and absorption spectra. The peaks of the PL spectra of TcTa, CzSi and TcTa∶CzSi were at around 395, 375, 389 nm, respectively. The TcTa∶CzSi mixed-host exhibited combined emission of TcTa and CzSi. Therefore, the mixed-host could combine the advantages of the two host materials, which had a good overlap with the absorption spectra of FIrpic, and excitons can transfer from host to FIrpic.Therefore, the hole injection and transport capabilities of the devices could be improved and the recombination zone should be broadened by increasing the doping ratio of TcTa. When the doping ratio of TcTa∶CzSi was 6∶1, the device(device A) achieved the CEmax, PEmax,Bmaxand EQEmaxup to 15.23 cd·A-1, 10.32 lm·W-1, 9 639 cd·m-2and 7.6%, respectively(see Tab.1). Consequently, the mixed-host devices exhibit higher performances compared with single-host devices.

    Fig.2 (a)Current density-voltage-brightness(J-V-B) characteristics of devices with different doping ratios of TcTa∶CzSi. (b)Current efficiency-current density(ηc-J) characteristics of devices with different doping ratios of TcTa∶CzSi. (c)Current efficiency-brightness-power efficiency(ηc-B-ηp) characteristics of devices with different doping ratios of TcTa∶CzSi. (d)Absorption spectra of FIrpic and PL spectra of TcTa, CzSi and TcTa∶CzSi. (e)Normalized EL spectra of devices with different doping ratios of TcTa∶CzSi operating at 10 mA·cm-2. Inset: Photograph of blue OLED. (f)Current density-voltage characteristics of single-hole devices.

    Tab.1 Key properties of devices with different doping ratios of TcTa∶CzSi

    a The data for maximum brightness(B), b Maximum current efficiency(ηc), c Maximum external quantum efficiency(EQE), d Maximum power efficiency(ηp), e Current efficiency(ηc) at the certain brightness of 1 000 cd·m-2, f External quantum efficiency(EQE) at the certain brightness of 1 000 cd·m-2, g Commission Internationale de L’Eclairage coordinates(CIE(x,y)) at 10 mA·cm-2.

    Meanwhile, the characteristic emission peak and shoulder peak of FIrpic were observed at around 470 nm and 500 nm, respectively, as depicted in Fig.2(e)[14-16]. Furthermore, the curve progression is very similar and there is no obvious shift in the spectra, which illustrates the stability of the devices. The host emission could not be found in the spectra, indicating that the energy transfer was almost complete between host and guest.

    To better illustrate the mixed-host structure enhanced the hole transport ability and thus increased the device efficiency, we fabricated a series of single-hole devices with the structure of ITO/PEDOT∶PSS/TcTa/HAT-CN(10 nm)/Al(100 nm), ITO/PEDOT∶PSS/CzSi/HAT-CN(10 nm)/Al(100 nm) and ITO/PEDOT∶PSS/TcTa∶CzSi(6∶1)/HAT-CN(10 nm)/Al(100 nm). As shown in Fig.2(f), it can be clearly seen that the current density of the mixed-host device was higher than that of the single-host devices. It indicated that the mixed-host structure improved the hole transport ability and made the carriers more balanced, improving device efficiency.

    3.2 Selection of Electron Transport Material

    To further improve the EL performances of FIrpic, we optimized the selection of electron transport material, which is a significant factor besides the doping ratio of host materials. 1,3,5-tri(m-pyrid-3-yl-phenyl)benzene(TmPyPB) and 2,2′,2″-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi), which have lower electron mobility than that of Tm3PyP26PyB, were selected as the electron transport materials. A series of devices with the structure of ITO/PEDOT∶PSS/TcTa∶CzSi (6∶1)∶FIrpic(14%)/TmPyPB(Ynm)/LiF(1 nm)/Al(100 nm) and another series of devices with the structure of ITO/PEDOT∶PSS/TcTa∶CzSi(6∶1)∶FIrpic(14%)/DPEPO(10 nm)/TPBi(Znm)/LiF(1 nm)/Al(100 nm) were fabricated and examined by modulating the thickness of the ETL. The electron mobility of TPBi is the lowest among three electron transport materials, which means the slow electrons transport towards EML and causes the shift of recombination zone towards cathode. Therefore, to prevent the transfer of holes into ETL, bis[2-(diphenylphosphino)phenyl]ether oxide(DPEPO) layer was inserted as hole block layer(HBL).

    Current density-voltage-brightness and current efficiency-current density characteristics of Tm3Py-P26PyB based devices with different ETL thicknesses are depicted in Figs.3(a) and 3(b). The turn-on voltage increased gradually and the current density decreased gradually with increasing thickness of Tm3PyP26PyB layer. Obviously, increased thickness of ETL can hinder the transportation of electrons, resulting in increased turn-on voltage and decreased current density. As shown from Fig.3(c), the roll-off of efficiency tended to slow down with the increasing thickness, but the overall device performance was the best at 60 nm in Tab.2. Finally, the device with 60 nm ETL(device A) obtained the CEmaxof 15.23 cd·A-1and EQEmaxof 7.6%.

    Fig.3 (a)Current density-voltage-brightness(J-V-B) characteristics of devices with different thicknesses of Tm3PyP26PyB layer. (b)Current efficiency-current density(ηc-J) characteristics of devices with different thicknesses of Tm3PyP26PyB layer. (c)Current efficiency-brightness-power efficiency(ηc-B-ηp) characteristics of devices with different thicknesses of Tm3PyP26PyB layer. (d)Normalized EL spectra of devices with different thicknesses of Tm3PyP26PyB layer operating at 10 mA·cm-2.

    Tab.2 Key properties of devices with different thicknesses of Tm3PyP26PyB layer

    a The data for maximum brightness(B), b Maximum current efficiency(ηc), c Maximum external quantum efficiency(EQE), d Maximum power efficiency(ηp), e Current efficiency(ηc) at the certain brightness of 1 000 cd·m-2, f External quantum efficiency(EQE) at the certain brightness of 1 000 cd·m-2, g Commission Internationale de L’Eclairage coordinates(CIE(x,y)) at 10 mA·cm-2.

    Similarly, the same trend was found in TmPyPB and TPBi based devices with different thicknesses of ETL. The characteristics of TmPyPB layer with different thicknesses are shown in Figs.4(a)-(c). The characteristics of TPBi layer with different thicknesses are shown in Figs.5(a)-(c). Turn-on voltage and current efficiency increased gradually while current density decreased gradually with increasing thickness of ETL. Finally, the device with 70 nm TmPyPB layer(device B) realized the CEmaxand EQEmaxof 28.44 cd·A-1and 14.4%, respectively(see Tab.3). The device with 70 nm TPBi layer(device C) displayed the CEmaxand EQEmaxup to 39.40 cd·A-1and 19.7%, respectively(see Tab.4).

    Tab.3 Key properties of devices with TmPyPB layer at different thicknesses

    Tab.4 Key properties of devices with TPBi layer at different thicknesses

    a The data for maximum brightness(B), b Maximum current efficiency(ηc), c Maximum external quantum efficiency(EQE), d Maximum power efficiency(ηp), e Current efficiency(ηc) at the certain brightness of 1 000 cd·m-2, f External quantum efficiency(EQE) at the certain brightness of 1 000 cd·m-2, g Commission Internationale de L’Eclairage coordinates(CIE(x,y)) at 10 mA·cm-2.

    Fig.4 (a)Current density-voltage-brightness(J-V-B) characteristics of devices with TmPyPB layer at different thicknesses. (b)Current efficiency-current density(ηc-J) characteristics of devices with TmPyPB layer at different thicknesses. (c)Current efficiency-brightness-power efficiency(ηc-B-ηp) characteristics of devices with TmPyPB layer at different thicknesses. (d)Normalized EL spectra of devices with TmPyPB layer at different thicknesses operating at 10 mA·cm-2.

    a The data for maximum brightness(B), b Maximum current efficiency(ηc), c Maximum external quantum efficiency(EQE), d Maximum power efficiency(ηp), e Current efficiency(ηc) at the certain brightness of 1 000 cd·m-2, f External quantum efficiency(EQE) at the certain brightness of 1 000 cd·m-2, g Commission Internationale de L’Eclairage coordinates(CIE(x,y)) at 10 mA·cm-2.

    Fig.5 (a)Current density-voltage-brightness(J-V-B) characteristics of devices with TPBi layer at different thicknesses. (b)Current efficiency-current density(ηc-J) characteristics of devices with TPBi layer at different thicknesses. (c)Current efficiency-brightness-power efficiency(ηc-B-ηp) characteristics of devices with TPBi layer at different thicknesses. (d)Normalized EL spectra of devices with TPBi layer at different thicknesses operating at 10 mA·cm-2.

    Figs.3(d), 4(d) and 5(d) show the EL spectra of devices with Tm3PyP26PyB, TmPyPB and TPBi as ETL, respectively. The emission peak located at 470 nm with a shoulder at 500 nm. The shoulder peaks tended to rise with the increasing thickness of ETL. The shoulder peak at 500 nm is a triplet induced shoulder emission which associated with the characteristic features of FIrpic molecules. The large change in the shoulder peaks is attributed to the weak micro cavity effects raised from the varied optical path of the photons[17]. With the change of ETL thickness, the EL spectra were altered, which may be ascribe to different micro-cavity effect or the changed corresponding metal-to-ligand charge transfer(MLCT) states within FIrpic molecules[18].

    Device C showed the highest efficiency among the three devices. Compared with CzSi, the energy barriers of the highest occupied molecular orbital(HOMO) levels of Tm3PyP26PyB, TmPyPB and TPBi were 0.5, 0.7, 0.2 eV, respectively, indicating that device B had the best hole blocking ability. In addition, the triplet energies of Tm3PyP26PyB, TmPyPB and TPBi are 2.8, 2.9, 2.7 eV, respectively, which strongly influence device performances[19-20]. The low triplet energy may reduce the effect of confining triplet state excitons within the EML. However, DPEPO in device C acts as a HBL and has a high triplet energy(ET=3.0 eV), which improving the efficiency but also increasing the turn-on voltage. To better understand the mechanisms of performances improvement in these devices, as shown in Fig.6, the distribution of carriers within the EML of these devices was also analyzed. The experimental results showed that electron mobility has great effect on efficiency of the devices[21]. For these devices, the electron mobility of Tm3PyP26PyB(2.76×10-4cm2·V-1·s-1), TmPyPB(~10-5cm2·V-1·s-1) and TPBi(5.6×10-8-2.1×10-5cm2·V-1·s-1) decreases successively[22-24], meaning decreasing electrons within EML under the same conditions. Luminance of device C was lower than those of devices A and B. However, electrons and holes tended to balance in device C and decreasing electron mobility causes the shift of recombination center towards cathode, thus resulting in widening the recombination zone and suppressing the annihilation of excitons within EML.

    Fig.6 Carriers’ distribution of devices A(a), B(b) and C(c)(Symbols ‘-’ and ‘+’ represent electrons and holes, respectively).

    Therefore, device C realized the highest efficiency.

    4 Conclusion

    This work demonstrated that the efficiency of device could be improved by designing mixed-host structure and optimizing the selection of electron transport material. High efficiency blue devices prepared by solution method were achieved by constructing mixed-host structure with the combination of high triplet energy host material with high hole mobility host material. EL efficiency was further improved by selecting a suitable electron transport material. In this case, carriers tended to balance, thus improving device efficiency and reducing exciton quenching. The optimal device with TcTa∶CzSi of 6∶1 and 70 nm TPBi layer displayed theBmax, CEmax, PEmaxand EQEmaxof 6 662 cd·m-2, 39.40 cd·A-1, 23.33 lm·W-1and 19.7%, respectively.

    Response Letter is available for this paper at:http://cjl.lightpublishing.cn/thesisDetails#10.37188/CJL.20220049.

    亚洲国产欧美在线一区| 久久久久免费精品人妻一区二区| 国产 一区 欧美 日韩| 一级av片app| 日本黄色片子视频| 三级毛片av免费| 99热这里只有是精品在线观看| 日韩欧美精品免费久久| 婷婷色av中文字幕| 欧美色欧美亚洲另类二区| 日本撒尿小便嘘嘘汇集6| 久久99热6这里只有精品| 男插女下体视频免费在线播放| 一个人观看的视频www高清免费观看| 91在线精品国自产拍蜜月| 91久久精品国产一区二区成人| 日日干狠狠操夜夜爽| 一夜夜www| 亚洲aⅴ乱码一区二区在线播放| 国产精品久久久久久av不卡| 综合色av麻豆| 免费看美女性在线毛片视频| 综合色av麻豆| 国产精品女同一区二区软件| av视频在线观看入口| 卡戴珊不雅视频在线播放| 69人妻影院| 国产精品久久视频播放| 久久九九热精品免费| 日本欧美国产在线视频| 乱系列少妇在线播放| 国产麻豆成人av免费视频| 免费在线观看成人毛片| 麻豆精品久久久久久蜜桃| 国产一级毛片在线| 亚洲av电影不卡..在线观看| 国内久久婷婷六月综合欲色啪| 久久久久久久久久久丰满| 日韩大尺度精品在线看网址| 国产欧美日韩精品一区二区| 国产成人午夜福利电影在线观看| 欧美日本视频| 一个人看视频在线观看www免费| 熟妇人妻久久中文字幕3abv| 女同久久另类99精品国产91| 日韩一本色道免费dvd| 日本色播在线视频| 婷婷六月久久综合丁香| 婷婷六月久久综合丁香| 国产精品久久久久久精品电影| 日日撸夜夜添| 99在线人妻在线中文字幕| 淫秽高清视频在线观看| 听说在线观看完整版免费高清| 99国产精品一区二区蜜桃av| 午夜免费激情av| 国产中年淑女户外野战色| 一级av片app| 99久久人妻综合| 又黄又爽又刺激的免费视频.| 国产精品野战在线观看| 欧美+日韩+精品| 亚洲色图av天堂| 午夜福利在线观看免费完整高清在 | 男女做爰动态图高潮gif福利片| 亚洲欧美精品专区久久| 久久这里只有精品中国| 亚洲真实伦在线观看| 2021天堂中文幕一二区在线观| 亚洲成人中文字幕在线播放| 久久精品久久久久久噜噜老黄 | 国产精品av视频在线免费观看| 成人国产麻豆网| 久久久久久久久大av| 国产黄a三级三级三级人| 国产视频首页在线观看| av视频在线观看入口| 男人和女人高潮做爰伦理| 久久久久性生活片| 国产单亲对白刺激| 真实男女啪啪啪动态图| 联通29元200g的流量卡| 欧美日韩国产亚洲二区| 人人妻人人澡人人爽人人夜夜 | 成人午夜高清在线视频| 美女cb高潮喷水在线观看| 少妇人妻精品综合一区二区 | 午夜免费男女啪啪视频观看| 久久久久国产网址| 中文亚洲av片在线观看爽| 最好的美女福利视频网| 日韩欧美精品v在线| 免费不卡的大黄色大毛片视频在线观看 | 噜噜噜噜噜久久久久久91| 日日干狠狠操夜夜爽| 亚洲成人久久爱视频| 99热6这里只有精品| 中文字幕制服av| 国产黄色视频一区二区在线观看 | 一边摸一边抽搐一进一小说| 少妇的逼好多水| 97在线视频观看| 久久久久久伊人网av| 国产成人精品婷婷| 国产一区二区亚洲精品在线观看| 我要搜黄色片| 成人无遮挡网站| 夜夜夜夜夜久久久久| av在线老鸭窝| 国产免费男女视频| 国产成人精品久久久久久| 少妇人妻一区二区三区视频| 国产蜜桃级精品一区二区三区| 男女边吃奶边做爰视频| 最近中文字幕高清免费大全6| 亚洲最大成人手机在线| 国内精品宾馆在线| 如何舔出高潮| 国产成人精品一,二区 | 在线观看美女被高潮喷水网站| 午夜福利视频1000在线观看| 99热6这里只有精品| av在线老鸭窝| 伊人久久精品亚洲午夜| av在线蜜桃| 国产一区二区在线观看日韩| 草草在线视频免费看| 最近视频中文字幕2019在线8| 美女内射精品一级片tv| 一进一出抽搐动态| 精品99又大又爽又粗少妇毛片| 免费观看精品视频网站| 熟妇人妻久久中文字幕3abv| 麻豆久久精品国产亚洲av| 18禁黄网站禁片免费观看直播| 我的女老师完整版在线观看| 舔av片在线| 精品久久久久久久末码| 午夜激情欧美在线| 乱码一卡2卡4卡精品| 中国美白少妇内射xxxbb| 国产熟女欧美一区二区| 国产黄片视频在线免费观看| 国产成人a∨麻豆精品| 成人av在线播放网站| 久久精品夜色国产| 亚洲久久久久久中文字幕| 天堂av国产一区二区熟女人妻| av福利片在线观看| 少妇人妻一区二区三区视频| 亚洲国产欧美人成| 18禁裸乳无遮挡免费网站照片| 熟女人妻精品中文字幕| 高清毛片免费看| 国产成人一区二区在线| 国产爱豆传媒在线观看| 少妇丰满av| a级毛片a级免费在线| 男人的好看免费观看在线视频| 欧美成人免费av一区二区三区| av专区在线播放| 国语自产精品视频在线第100页| 午夜福利在线在线| 麻豆国产97在线/欧美| 亚洲欧美清纯卡通| 高清毛片免费看| 成人高潮视频无遮挡免费网站| 男人舔奶头视频| 久久这里只有精品中国| 国产黄色小视频在线观看| 国产精品美女特级片免费视频播放器| 亚洲精品乱码久久久v下载方式| 欧美+日韩+精品| 亚洲欧美精品自产自拍| 精品久久久久久久久亚洲| 久久久精品94久久精品| 亚洲精品影视一区二区三区av| 久久午夜亚洲精品久久| 成年av动漫网址| av在线亚洲专区| 悠悠久久av| 亚州av有码| 中国美女看黄片| 人妻久久中文字幕网| 亚洲欧美成人精品一区二区| 麻豆久久精品国产亚洲av| 国产蜜桃级精品一区二区三区| 国产黄色小视频在线观看| 一进一出抽搐动态| 午夜久久久久精精品| 看十八女毛片水多多多| 日韩av不卡免费在线播放| av免费在线看不卡| 色哟哟·www| 99九九线精品视频在线观看视频| 免费观看的影片在线观看| 欧洲精品卡2卡3卡4卡5卡区| 国产午夜精品论理片| 国产免费一级a男人的天堂| 国产精品,欧美在线| 亚洲五月天丁香| 亚洲欧美精品综合久久99| 一个人看视频在线观看www免费| 久久久久久九九精品二区国产| 亚洲精品色激情综合| 免费人成视频x8x8入口观看| 国产人妻一区二区三区在| 黄色欧美视频在线观看| 精品不卡国产一区二区三区| 男女下面进入的视频免费午夜| 舔av片在线| 午夜激情欧美在线| or卡值多少钱| 一本久久精品| 欧美另类亚洲清纯唯美| 一个人看视频在线观看www免费| 男的添女的下面高潮视频| 精品午夜福利在线看| 最近手机中文字幕大全| 国产久久久一区二区三区| 搞女人的毛片| 只有这里有精品99| 天堂√8在线中文| videossex国产| 99热这里只有精品一区| 内射极品少妇av片p| 国产精品久久久久久亚洲av鲁大| 变态另类丝袜制服| 精品欧美国产一区二区三| 99热这里只有是精品50| 在线天堂最新版资源| 国产精品一及| 一个人观看的视频www高清免费观看| 国产精品蜜桃在线观看 | 国产爱豆传媒在线观看| 亚洲国产欧洲综合997久久,| 国产亚洲精品久久久com| 国产又黄又爽又无遮挡在线| 免费av不卡在线播放| 欧美bdsm另类| 搡老妇女老女人老熟妇| 亚洲人与动物交配视频| 亚洲av中文字字幕乱码综合| 中文字幕av成人在线电影| 综合色av麻豆| 99热这里只有是精品在线观看| 91精品一卡2卡3卡4卡| av在线观看视频网站免费| 黄色视频,在线免费观看| 日本撒尿小便嘘嘘汇集6| 色5月婷婷丁香| 国产精品无大码| 国产黄色小视频在线观看| 久久精品国产99精品国产亚洲性色| 在线播放无遮挡| 亚洲精品日韩在线中文字幕 | 99精品在免费线老司机午夜| 不卡一级毛片| 黑人高潮一二区| 免费搜索国产男女视频| 欧美成人免费av一区二区三区| 大香蕉久久网| 热99在线观看视频| 亚洲国产精品成人综合色| 一级黄片播放器| av专区在线播放| 久久久久久九九精品二区国产| 亚州av有码| 亚洲四区av| 成人美女网站在线观看视频| 欧美日韩一区二区视频在线观看视频在线 | 亚洲人成网站高清观看| 在线天堂最新版资源| 日韩欧美三级三区| 插阴视频在线观看视频| 观看免费一级毛片| 亚洲国产高清在线一区二区三| 国产黄a三级三级三级人| 99热全是精品| 尾随美女入室| 欧美日韩在线观看h| 亚洲av第一区精品v没综合| 精品99又大又爽又粗少妇毛片| 小说图片视频综合网站| 爱豆传媒免费全集在线观看| 亚洲va在线va天堂va国产| 国产色婷婷99| 国产高潮美女av| 久久人人爽人人爽人人片va| 1024手机看黄色片| 国产激情偷乱视频一区二区| 天天躁夜夜躁狠狠久久av| 日韩强制内射视频| 成人鲁丝片一二三区免费| 国产精品国产高清国产av| 久久精品夜夜夜夜夜久久蜜豆| 亚洲精品久久国产高清桃花| av在线老鸭窝| 精品人妻偷拍中文字幕| 激情 狠狠 欧美| 久久久国产成人精品二区| 欧美不卡视频在线免费观看| 国产精品久久久久久精品电影| 高清毛片免费观看视频网站| 亚洲av成人精品一区久久| 天天躁夜夜躁狠狠久久av| 18禁在线播放成人免费| 国产一级毛片在线| 三级经典国产精品| av又黄又爽大尺度在线免费看 | 色综合站精品国产| 欧美3d第一页| 亚洲av二区三区四区| 99热只有精品国产| 国产真实乱freesex| 国产精品不卡视频一区二区| av免费观看日本| 亚洲精品影视一区二区三区av| 男女那种视频在线观看| 国产女主播在线喷水免费视频网站 | 最近2019中文字幕mv第一页| 97超碰精品成人国产| 美女大奶头视频| 97热精品久久久久久| 黄色欧美视频在线观看| 91午夜精品亚洲一区二区三区| 观看美女的网站| 午夜精品国产一区二区电影 | 欧美区成人在线视频| 国产精品日韩av在线免费观看| 亚洲欧美精品综合久久99| 国产亚洲精品久久久久久毛片| 久久精品影院6| 久久人人爽人人片av| 亚洲在久久综合| 久久精品国产亚洲av香蕉五月| 少妇的逼好多水| 麻豆精品久久久久久蜜桃| 网址你懂的国产日韩在线| 99久久中文字幕三级久久日本| 亚洲国产精品成人久久小说 | 噜噜噜噜噜久久久久久91| 极品教师在线视频| 日本黄大片高清| 国产精品精品国产色婷婷| 成熟少妇高潮喷水视频| 国产熟女欧美一区二区| 九色成人免费人妻av| 女人被狂操c到高潮| 国产黄片美女视频| 国产av不卡久久| 精品欧美国产一区二区三| 国产午夜精品论理片| 久久中文看片网| 久久久久性生活片| 天天一区二区日本电影三级| 国产蜜桃级精品一区二区三区| 午夜爱爱视频在线播放| 久久精品国产亚洲av涩爱 | 又爽又黄a免费视频| 国产乱人视频| 一个人观看的视频www高清免费观看| 国产精品电影一区二区三区| 欧美日韩在线观看h| 久久久久九九精品影院| 看黄色毛片网站| 日韩欧美一区二区三区在线观看| 1024手机看黄色片| 麻豆成人av视频| 亚洲一级一片aⅴ在线观看| 午夜激情福利司机影院| 婷婷精品国产亚洲av| 成年女人永久免费观看视频| 精品日产1卡2卡| 国产精品久久久久久久电影| 久久久久久大精品| 亚洲精品乱码久久久v下载方式| 欧美一区二区精品小视频在线| 国产黄色小视频在线观看| 十八禁国产超污无遮挡网站| 男人舔奶头视频| av卡一久久| 麻豆一二三区av精品| 久久99热这里只有精品18| 可以在线观看的亚洲视频| 国产成人freesex在线| 长腿黑丝高跟| 中文字幕制服av| 久久久久久九九精品二区国产| 99国产精品一区二区蜜桃av| 可以在线观看毛片的网站| 少妇人妻一区二区三区视频| 免费观看的影片在线观看| 久久亚洲国产成人精品v| 国产高清激情床上av| 乱系列少妇在线播放| 网址你懂的国产日韩在线| 欧美日韩精品成人综合77777| 99国产精品一区二区蜜桃av| 久久人妻av系列| 亚洲经典国产精华液单| АⅤ资源中文在线天堂| 成人亚洲精品av一区二区| 欧美精品一区二区大全| 一个人免费在线观看电影| 亚洲在线自拍视频| 免费观看a级毛片全部| 99在线视频只有这里精品首页| 大香蕉久久网| 欧美性猛交黑人性爽| 日本在线视频免费播放| 又粗又爽又猛毛片免费看| 欧美xxxx黑人xx丫x性爽| 欧美变态另类bdsm刘玥| 久久精品国产清高在天天线| 久久草成人影院| 国产女主播在线喷水免费视频网站 | 国产乱人偷精品视频| 自拍偷自拍亚洲精品老妇| 最近手机中文字幕大全| 亚洲欧美日韩东京热| 天堂√8在线中文| 亚洲图色成人| 国产午夜精品久久久久久一区二区三区| 国产精华一区二区三区| 国产精品乱码一区二三区的特点| 国产av不卡久久| 99久久成人亚洲精品观看| 黄片无遮挡物在线观看| 老司机影院成人| 国产精品1区2区在线观看.| 欧美性感艳星| 免费观看精品视频网站| 亚洲美女视频黄频| 99热全是精品| 国产一级毛片七仙女欲春2| 免费人成视频x8x8入口观看| 97超碰精品成人国产| 国产成年人精品一区二区| 内地一区二区视频在线| 2021天堂中文幕一二区在线观| 麻豆成人午夜福利视频| 黄色日韩在线| 我要搜黄色片| 国产av麻豆久久久久久久| 日韩制服骚丝袜av| 男人狂女人下面高潮的视频| 国产一区二区三区在线臀色熟女| 午夜精品在线福利| kizo精华| 爱豆传媒免费全集在线观看| 欧洲精品卡2卡3卡4卡5卡区| 久久国产乱子免费精品| 免费在线观看成人毛片| 国产精品一区二区性色av| 国产成人a∨麻豆精品| 亚洲,欧美,日韩| 亚洲精品成人久久久久久| 久久久久性生活片| 麻豆久久精品国产亚洲av| 午夜老司机福利剧场| 国产伦在线观看视频一区| 精品久久国产蜜桃| 男人狂女人下面高潮的视频| 九草在线视频观看| 亚洲精品国产成人久久av| 成人综合一区亚洲| 亚洲av.av天堂| 热99re8久久精品国产| 伦精品一区二区三区| 国产国拍精品亚洲av在线观看| 亚洲精品乱码久久久v下载方式| 日本色播在线视频| 午夜激情福利司机影院| 免费观看在线日韩| 性插视频无遮挡在线免费观看| 国产亚洲精品av在线| 国产精品日韩av在线免费观看| 欧美一级a爱片免费观看看| 九九久久精品国产亚洲av麻豆| 91精品国产九色| 国产精品福利在线免费观看| 熟女人妻精品中文字幕| 黄色一级大片看看| 美女xxoo啪啪120秒动态图| 成人欧美大片| 亚洲国产欧洲综合997久久,| 午夜久久久久精精品| 久久婷婷人人爽人人干人人爱| 一卡2卡三卡四卡精品乱码亚洲| 久久99精品国语久久久| 狂野欧美白嫩少妇大欣赏| 欧美一区二区精品小视频在线| 国内精品宾馆在线| 欧美日韩一区二区视频在线观看视频在线 | 日韩精品青青久久久久久| 久久久久网色| 永久网站在线| 插阴视频在线观看视频| 夫妻性生交免费视频一级片| 亚洲aⅴ乱码一区二区在线播放| 内射极品少妇av片p| 久久综合国产亚洲精品| 97超碰精品成人国产| 久久精品影院6| 啦啦啦观看免费观看视频高清| 国产精品,欧美在线| 又爽又黄a免费视频| 国产高清激情床上av| 人妻久久中文字幕网| 亚洲成人精品中文字幕电影| 一级黄片播放器| 亚洲激情五月婷婷啪啪| 午夜免费激情av| 在线天堂最新版资源| 高清毛片免费观看视频网站| 网址你懂的国产日韩在线| 黄色视频,在线免费观看| 麻豆一二三区av精品| 国产亚洲91精品色在线| 中文在线观看免费www的网站| 婷婷色综合大香蕉| 久久久久性生活片| 男人舔奶头视频| 少妇人妻精品综合一区二区 | 国产一区二区激情短视频| 国产精品野战在线观看| 男女边吃奶边做爰视频| 欧美最黄视频在线播放免费| 国产成人精品婷婷| 国产在视频线在精品| 国产成人91sexporn| 亚洲第一电影网av| 美女国产视频在线观看| 国内久久婷婷六月综合欲色啪| 久久这里只有精品中国| 亚洲第一电影网av| 亚洲av男天堂| 国产亚洲av片在线观看秒播厂 | 男人狂女人下面高潮的视频| 黄片无遮挡物在线观看| 日韩一区二区三区影片| 欧美日本亚洲视频在线播放| 成人鲁丝片一二三区免费| 亚洲欧美日韩无卡精品| 久久草成人影院| 久久人人精品亚洲av| 久久久久性生活片| 黄片无遮挡物在线观看| 国产精品久久久久久久久免| 男女下面进入的视频免费午夜| 亚洲久久久久久中文字幕| 99久久精品热视频| 级片在线观看| 国产高清视频在线观看网站| 欧美潮喷喷水| 日韩强制内射视频| 欧美+日韩+精品| 69av精品久久久久久| .国产精品久久| 春色校园在线视频观看| 我的老师免费观看完整版| 国产黄色视频一区二区在线观看 | 久久99蜜桃精品久久| 麻豆精品久久久久久蜜桃| 日本与韩国留学比较| 国产一级毛片在线| 最新中文字幕久久久久| 看免费成人av毛片| 国产私拍福利视频在线观看| 亚洲不卡免费看| 91麻豆精品激情在线观看国产| 亚洲在线自拍视频| 91aial.com中文字幕在线观看| a级一级毛片免费在线观看| 长腿黑丝高跟| 欧美变态另类bdsm刘玥| 18禁在线播放成人免费| 久久亚洲国产成人精品v| 国产亚洲精品av在线| 久久久久久大精品| 日韩成人伦理影院| 午夜亚洲福利在线播放| 白带黄色成豆腐渣| 亚洲欧美清纯卡通| 一区二区三区高清视频在线| 男人和女人高潮做爰伦理| 欧美精品一区二区大全| 国产日本99.免费观看| 少妇人妻一区二区三区视频| 一卡2卡三卡四卡精品乱码亚洲| www.色视频.com| 黄色欧美视频在线观看| a级毛片a级免费在线| 欧美激情国产日韩精品一区| 欧美成人a在线观看| 亚洲电影在线观看av| 能在线免费观看的黄片| 男人舔奶头视频| 国产v大片淫在线免费观看| 久久亚洲精品不卡| 亚洲人成网站高清观看| 亚洲国产欧美人成| 日日摸夜夜添夜夜添av毛片| 国产黄片视频在线免费观看| 人人妻人人澡人人爽人人夜夜 | 女的被弄到高潮叫床怎么办| 精品一区二区免费观看| 99热精品在线国产| 99九九线精品视频在线观看视频| 岛国毛片在线播放| 国产精华一区二区三区| 亚洲激情五月婷婷啪啪| 中出人妻视频一区二区| 色综合亚洲欧美另类图片|