Ye Tian and Baili Su
(School of Engineering College, Qufu Normal University, Rizhao 276826, Shandong, China)
Abstract: For a type of high-order discrete-time nonlinear systems (HDNS) whose system models are undefined, a model-free predictive control (MFPC) algorithm is proposed in this paper. At first, an estimation model is given by the improved projection algorithm to approach the controlled nonlinear system. Then, on the basis of the estimation model, a predictive controller is designed by solving the finite time domain rolling optimization quadratic function, and the controller’s explicit analytic solution is also obtained. Furthermore, the closed-loop system’s stability can be ensured. Finally, the results of simulation reveal that the presented control strategy has a faster convergence speed as well as more stable dynamic property compared with the model-free sliding mode control (MFSC).
Keywords: nonlinear system; compact dynamic linearization (CDL); model predictive control (MPC); model-free control (MFC); projection algorithm
Thecontrollerdesignisusuallyfoundedonthemathematicalmodelwiththecontrolledprocesspreciselygiveninmoderncontroltheory.However,themodel-basedcontrolalgorithmsoftencannotachievetheexpectedeffectintheactualproductionapplicationduetotheunmodeleddynamicsanduncertainvariousfactorsinthemodelingprocess.Inthewakeoftheprogressofscienceandtechnology,becauseoftheincreasingscaleofindustrialproductionandtheincreasingcomplexityofthenonlinearsystemintheactualproductionprocess,wecannotgetaprecisesystemmodelinrelationtothecontrolledprocess.Therefore,weconsiderdesigningcontrolmethodswhicharenotbasedonprecisemathematicalmodels.
MFCmethodisakindofdata-drivencontrol(DDC)methods.Itonlyusesthecurrentandpastinput/outputdata(IOD)ofthecontrolledprocesstopredictfuturedynamics.ThemainMFCmethodsintheearlystudiesarebasedonthespeciallinearsystemstructureandthegradientestimationmethodbasedontheIODofthecontrolledsystemforgeneralnonlinearsystems.Just-in-timemodelingisakeystepindata-drivencontrol.Just-in-timemodeling,alsocalledtheinstance-basedlearning[1],on-demandmodel[2],ordelaylearning[3],isfirstproposedinRef.[4].Therefore,asaneffectivecontrolmethod,scholarshavecarriedoutextensiveresearchonMFCmethodinrecentyears.Ref.[5]putsforwardamodel-freeadaptivecontrolmethod(MFAC)inlinewiththeCDLtechnologyregardingakindofHDNS.ThedesignofthecontrolleronlyutilizestheIODofthecontrolledobjecttoensurecontrolperformanceandtheconvergencetowardstrackingerrors.Inallusiontoakindofordinarydiscrete-timenonlinearsystemswhicharemulti-inputandmulti-outputsystems(MIMO),Ref.[6]proposesadata-drivenMFACalgorithmbasedonpseudo-partialderivatives,andtheCDLandpartialdynamiclinearization(PDL)arediscussedrespectively.Ref.[7]changesthenonlineartime-varyingtrafficnetworkdescriptionintothesimplifieddatamodel,sothatthemodel-freemodelhasbeensuccessfullyappliedinpractice.
MPCisafinitetimeoptimizationcontrolmethodgeneratedfromindustrialprocess.MPCincludesthreefundamentalcharacteristicswhicharemodelprediction,rollingoptimization,andfeedbackcorrection.Itisacontrolstrategythatusesthesystemdynamicmodeltopredictthefuturesystemresponse.BecauseMPChastheadvantagesoflowrequirementonmodel,easyon-linecalculation,andoptimizationdesign,inrecentyearsmanyscholarshavecombinedMPCwithmodel-freemethodtoproduceabatchofhigh-qualitycontrolmethods.Atthebeginningofthe21stcentury,somescholarscombinedMFACwithMPCandputforwardthemodel-freeadaptivepredictivecontrolmethod[8].However,thismethodrequiresthepredictionofthepan-modelfeaturevectorsatfuturemoments,andthecontroleffectisnotidealduetotheimpreciseprediction.Therefore,inrecentyears,ithasbecomeahottopicforsomeresearcherstousethelinearmodeldescribedbypseudopartialderivativematrix(PPDM)tocharacterizetheHDNS,andithasbeenappliedinvariousdomains,forexample,food,chemical,industry,aviation,andsoon.Ref.[9]presentsanMFACmethodforakindofnonlinearsystemswhicharedepictedbynonlinearautoregressivemovingaveragemodelbasedonRefs.[5]and[6].Ref.[10]studiestherelationshipbetweenMFPCandMPCwhichisgroundedonparameterestimation.Thenoisepollutionconditionisaddedintothehypothesis,andtheobtaineddataareoptimizedtoobtainmoreaccuratedata.Ref.[11]introducesanMFPCmethodfornonlinearsystemsbasedonpolynomialregressionexpression.TheMFPCmethodbasedonthelinearregressionvectorofIODisextendedtothepolynomialregressionvector.Ref.[11]isgeneralizedtoMIMOsystemsinRef.[12]whichrealizesitsapplicationinwastewatertreatment.Ref.[13]proposesamodel-freepredictivehybridsensitivity(PHS)H∞controlmethodbasedontheIODtoobtaintheoptimalPHSperformancebyusingthemaximumminimizationmethod.Furthermore,itappliesthecontrolstrategytothesolarpowergridsystem.However,theseMFPCalgorithmsoftenrequirealargeamountofcomputationandneedtosolvecomplexnonlinearprogrammingproblemsonline,soitisnotfaciletoacquiretheexplicitanalyticsolutions.InallusiontoakindofHDNSwhichhaveunknowndynamics,anMFSCapproachbasedonthesystem'sIODandtheconstructionofanadaptiveobservertodeterminethePPDMisproposedinRef.[14].Butthismethodhassomelimitationsinsystemselectionandhashigh-frequencytremor,sothecontrolofsomecomplexindustrialprocesseswillbecomedifficultandunsatisfactory.
ThispaperproposesanMFPCmethodforakindofHDNSwhichareapproachedbyanestimationsystem.Comparedwithothernonlinearcontrolalgorithms,itnotonlyrequireslesscomputation,butalsosolvestheoptimizationproblem,andstablestheclosedloopsystem.Theremainderofthearticleisdescribedbrieflyasfollows:inSection1,theCDLtechniqueisusedtoestablishadata-drivenmodelregardingHDNS.InSection2,anestimationsystemisdesignedandtheestimationofthePPDMisgiven.InSection3,thepredictionmodelisestablished,andtheappropriatecontrollawisobtainedafterrollingoptimization.Then,therationalityandeffectivenessofthemethodareverifiedviathesimulationresultsfromSection4.Intheend,thesumming-upisarrangedinSection5.
ConsidertheHDNSbelow,whichhasanextendedexternalinput:
(1)
wherexi∈R(i=1,2,…,n),y∈R,andu∈Rarestatevariables,output,andinputofthesystem,respectively.txi,jandtudenotesystemorders.Thefunctionsfi(·)(i=1,2,…,n)representtheunidentifiedsmoothfunctions.
CDLmethodintroducestheconceptofPPDMandpseudo-order,andonlyconsidersthedynamicrelationshipbetweenthenextmoment’soutputvariationandthecurrentmoment’sinputvariation.CDLtechnologycanbeusedtotransformtheHDNSintoalineartime-varyingdynamicdatamodelwithscalarparameters.InordertoadopttheCDLapproach,wemakethefollowingassumption.
Assumption 1Partialderivativeregardingfi(·) (i=1,2,…,n-1)inrelationtox1(t), …,xi-1(t),xi+1(t),andpartialderivativeregardingfn(·)inrelationtox1(t),…,xn-1(t),u(t)keepcontinuous.Justforthesakeofpresentation,leti=1,2,…,n,ifi=n,then,xn+1(t)=u(t).
Theorem 1Groundedontheaboveassumption,system(1)canberepresentedasthefollowingform:
ΔX(t+1)=Η(t)Λ(t)
(2)
where
ΔX(t+1)=[Δx1(t+1),…,Δxn(t+1)]T
Λ(t)=[Δx1(t),…,Δxn(t),Δu(t)]T
Δxi(t+1)=xi(t+1)-xi(t)
Δu(t)=u(t)-u(t-1)
whereH(t)∈Rn×(n+1)standsforPPDM,γijrepresentsγij(t).
ProofLet
xl-1(t-txl-1,i),xl(t-1),xl(t-1),…,
xl(t-txli),…,xi+1(t),…,xi+1(t-
txi+1,i))(l=1,…,i-1,i+1)
Fromsystem(1),theequationisrepresentedasfollows:
Δxi(t+1)=?i+ξi
(3)
where
(4)
(5)
AccordingtotheLagrangemeanvaluetheorem,hereupon
(6)
Similarly,ξiisredescribedasfollows:
(7)
where
gib(x(t))=gib(x1(t-1),…,x1(t-tx1i-1),…,xb-1(t-txb-1,i-1),xb(t),xb(t-1),…,xb(t-
txbi-1),…,xi+1(t),…,xi+1(t-txi+1,i-1))
Inallusiontoeveryfixedt,thefollowingequationwhichinvolvethevectorωi(t)isconsidered.
gi,i+1=ωi(t)ΔΨ(t)
(8)
ξi=βi1(t)Δx1(t)+…+βi,i-1(t)Δxi-1(t)+
βi,i+1(t)Δxi+1(t)
(9)
where
(10)
FromEq.(9),thefollowingequationcanbeobtained:
IncombinationwithEqs.(6)and(9),Δxi(t+1)isrewrittenasfollows:
Δxi(t+1)=γi1Δx1(t)+…+γi,i-1Δxi-1(t)+
γi,i+1Δxi+1(t)
(11)
where
(12)
FromEq.(11),Eq.(1)canberepresentedinanotherformasEq.(2).
Thetime-varyingparametersoftheunknownPPDMareestimatedusinganapproximationinthissection.Manyalgorithmscanbechosen,forexample,theleakagerecursiveleastsquaresalgorithm,theimprovedprojectionalgorithm,ortheleastsquaresalgorithmwhichhastime-varyingforgettingfactor.Here,animprovedprojectionalgorithmisusedtoestimatePPDM.
DividingH(t),Λ(t)intoblocks,then
X(t+1)=X(t)+Η1(t)Λ1(t)+Η2(t)Δu(t)
(13)
whereX(t),X(t+1)∈Rn,H(t)∈Rn×(n+1),H1(t)∈Rn×n,H2(t)∈Rn,Λ1(t)∈Rn,andΛ(t)∈Rn+1.
Anestimationsystemisdesignedasfollows:
(14)
Let
f(x,u,Η1)=Η1(t)Λ1(t)+Η2(t)Δu(t)
(15)
ReferringtoRef.[15],theimprovedprojectionalgorithmisusedtoestimatePPDM.Thepseudopartialderivativeestimationcriteriaisselectedasfollows:
(16)
(17)
Similarly,
(18)
wheretheconstantμ1,μ2>0aretheweightfactor.
(19)
Remark 1:InEq.(16),asquaretermwithaweightingfactorofμ1isintroducedtopenalizelargeparametererrors,whichmakestheestimationalgorithmrobustwhenthereareindividualabnormaldata.ItcanbeseenfromEqs.(17)and(18)thattheintroductionofμ1,μ2canavoidtheoccurrenceofzerodenominator.
Remark 2:Thefactorsθ1andθ2areaddedtoEqs.(17)and(18)toenhancethegeneralityofthealgorithm.
Inthispart,theestimationsystem(14)isutilizedasapredictionmodeltodesignapredictioncontroller.
AccordingtoEq.(13),thesystemmodelcanbeexpressedasfollows:
(20)
UnfoldingX(t+s)(s=1,2,…,N-1),whichareontherightsideofEq.(20),Eq.(20)canberewrittenasfollows:
XM(t)=PX(t)+Η1M(t)Λ1M(t)+Η2M(t)ΔU(t)
(21)
where
XM(t)=[XT(t+1),XT(t+2),…,XT(t+N)]T
P=[I,I,…,I]T
ΔU(t)=[Δu(t),Δu(t+1),…,Δu(t+N-1)]T
whereI∈Rn×nistheidentitymatrix,H1M(t)∈RnN×nN,H2M(t)∈RnN×N,P∈RnN×n,ΔU(t)∈RN,Λ1M(t)∈RnN,andXM(t)∈RnN.
Attimet,giventhepredictionofthestatesabouttheestimationsystem(14).Similarly,itcanbeinterpretedasfollows:
(22)
where
FromEqs.(21)and(22),thefollowingequationcanbededuced:
(23)
whereEM(t)=[ET(t+1),ET(t+2),…,ET(t+N)]Thequadraticfunctionofrollingoptimizationinfinitetimedomainisusedastheperformanceindex:
(24)
ReferringtoRef.[16],substituteEq.(23)toEq.(24).Thereis
(25)
(26)
Let
u(t)=u(t-1)+ΞΔU(t)
(27)
whereΞ=[1,0,…,0],Ξ∈R1×N.Thesystemcanbestabilizedbyusingthecontroller(27).
Basedontheaboveanalyses,thebasicstepsoftheMFPCalgorithmproposedinthispaperareasfollows:
Step 4:Applyu(t)tosystem(13)toobtainthesystemstatesatthetimeoft+1.
Step 5:Lett=t+1andkeepuptoStep1.
Inthispart,threesimulationexamplesareusedtoprovetheabovealgorithm.
Example 1:
Thetunneldiodeisacrystaldiodewhosemaincurrentcomponentisthetunneleffectcurrent.Ithassuchcharacteristicsashighspeedandhighrunningfrequency.Hence,thetunneldiodeiswidelyusedinsomeswitchingcircuitsandhighfrequencyoscillationcircuits.Inthispart,thenonlinearmodeloftunneldiodecircuitistakenasaninstancetoprovethefeasibilityoftheMFPCalgorithm.
ConsideringthetunneldiodecircuitwhichisdescribedinFig1,whereL,C,R,andDrepresentinductance,capacitance,resistance,andthetunneldiode,respectively,iandvarethecurrentandvoltagepassingthroughthecorrespondingcomponent.ThecharacteristicofthiscircuitisiD=h(vD).Definex1=vC,x2=iL,E=u.Inthiscase,L=5,C=2,R=1.5,andh(x1)=17x1-103x12+229x13areselected.AccordingtoKirchhoff'slawofcurrentandvoltage,thecontrolsystemisdescribedasfollows:
Fig. 1 Tunnel diode circuit
Fig.2 State x1
Fig.3 State x2
Fig.4 Input u
Fromthesimulationresultsofthetunneldiodecircuit,itcancometotheconclusionsthattheMFPCalgorithmproposedinthisarticlecanwarrantthatthesystemstatesarefinallystableforthediscretenonlinearsystemwithunknownsystemmodel.TheovershootoftheMFPCalgorithmissmallerandthesystemconvergesfasterincomparisonwiththeMFSCalgorithm.
Example 2:
ThestirredtanksystemunderastandardmodelingassumptionistakenasaninstancetoprovethefeasibilityoftheMFPCalgorithm.Thecontrolsystemisdescribedasfollows:
Fig.6 State x1
Fromtheabovesimulationresults,itcanbeseenthatbothcontrollerscanwarrantthatthesystemstatesarefinallystableforthediscretenonlinearsystemwithunknownsystemmodel.However,theMFPCcanreachstabilityataboutt=100s,whiletheMFSCcanbestableataboutt=200s.Moreover,comparedwiththeMFSC,theMFPChaslessovershoot.
Fig.7 State x2
Fig. 8 Input u
Example 3 (Robust problem):
ForthesysteminExample1,anonlinearperturbationtermisaddedtothesystemmodel:
Assumingthatthediscretetime,initialvalue,andparametersremainunchangedasinExample1.ThesimulationconsequencesonthebasisoftheabovearegiveninFigs.10-12.
Fig.10 State x
Fig.11 Input u
Itisclearfromtheabovesimulationfindings,theMFPCsuggestedinthischaptercanstillmakethesystemstableafteraddingthenonlineardisturbancetermintothesystem.Therefore,theMFPChasgoodrobustness.
Inthisarticle,anMFPCmethodisdevisedforakindofHDNSwhosesystemmodelsareundefined.Thesystemexpressedbypseudo-partialderivativematrixisobtainedbycompactformdynamiclinearizationmethod.Theimprovedprojectionalgorithmisusedtodesignanestimationsystemtoapproximatethecontrolledsystem.Anappropriatepredictivecontrollerisdesignedandtheexplicitanalyticalsolutionofthecontrolisobtained,whichfinallymakesthesystemstable.TheMFPCapproachhasexcellentrobustnessandstabilityaccordingtothesimulationconsequences.ComparedwiththeMFSCmethod,theMFPCmethodproposedinthispaperhassmallerovershootandfastersystemconvergence.Futureworksgroundedonthisarticleshouldcomprise:
1)expandingtheproposedMFPCtoMIMOnonlinearsystems;
2)thecontrolproblemsofotherspecialtypesofnonlinearsystemssuchasfractionalordersystemswithtimedelay.
Journal of Harbin Institute of Technology(New Series)2022年2期