• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Filling up complex spectral regions through non-Hermitian disordered chains

    2022-05-16 07:08:18HuiJiangandChingHuaLee
    Chinese Physics B 2022年5期

    Hui Jiang and Ching Hua Lee

    Department of Physics,National University of Singapore,Singapore 117551,Republic of Singapore

    Keywords: non-Hermitian skin effect,disordered chain,disorder localization,non-Hermitian spectra

    1. Introduction

    The spectra of non-Hermitian systems lie in the 2D complex plane,and can exhibit intriguing geometric and topological spectral transitions.[1–16]In particular, it is known[17–20]that if the spectrum under periodic boundary conditions(PBCs)is a loop that encloses a nonvanishing region,the spectrum of the same system under semi-infinite boundary conditions(SIBCs)will fill up the interior of this loop. This intriguing fact is due to the non-local nature of the non-Hermitian skin effect (NHSE), which has inspired numerous theoretical and experimental[21–25,25,25–35]developments and challenged various longheld paradigms in physics. The NHSE, which arises in non-Hermitian lattices with broken reciprocity, amplifies and pumps all states towards a boundary, such that the effects of boundary hoppings become non-perturbatively large.[36–68]

    Intuitively, a semi-infinite 1D lattice system can have a spectrum that fills up a 2D region because its eigenstates only need to satisfy boundaries conditions on one side, and are hence free to accumulate against it with any spatial decay length. As such, an eigenstate is characterized by two continuous variables: its wavenumber and decay length,the latter which possesses no Hermitian analog. However, true semiinfinite systems can neither be numerically nor experimentally simulated,and their non-Hermitian properties have so far been mathematical curiosities.

    In this work,we show how to construct finite 1D systems whose spectra nevertheless fill up the 2D interiors of their PBC spectra. This is achieved with appropriately designed disordered couplings which mathematically simulate the effects of semi-infinite boundaries,namely,the co-existence of a continuum of different decay length scales of the skin eigenstates.Notably,the density of states in the 2D complex plane can be fine-tuned towards a variety of desired profiles by tuning the disorder distribution. While it is arguably easy to fill up a 2D spectral region with the eigenenergies of many separate (uncoupled)1D chains,doing so with a single chain is nontrivial due to the non-local effects of NHSE accumulation that can propagate across very distant parts of the chain.[55,56]As such,our construction can be construed as a stochastic means to subtly control the distribution of skin decay lengths,and also the propagation of skin accumulation tendencies.

    2. Exploring the complex energy plane by tuning boundary conditions

    The starting point of our work is the observation that,by modifying the boundary conditions of a non-Hermitian system with unbalanced hoppings, we can access a continuum of complex energy spectra,and thus sweep across the interior of the PBC loop.[54–56,69]This is thanks to the non-Hermitian lattice’s extreme sensitivity to the boundary conditions,a phenomenon commonly known as the non-Hermitian skin effect.In the extreme limit of open boundary conditions(OBCs),the eigenenergy continuum is given by whereE(k) is the dispersion of the original HamiltonianH(k), andκcis the imaginary part of the momentum that represents the boundary localization of the former bulk eigenstates,[20–23,37–40,70,71]which now decay like~e-κcx. In general,κccan be a complicated function ofk, and is determined by the condition that ˉE(k),k ∈[0,2π)does not enclose any nonzero area.[23,24,36–38,71–76]But for the purpose of this work,κcremains as a constant.

    Interpolatingκfromκcto 0,the energy spectrumE(k+iκ) will start off as the OBC energy spectrum, and continuous evolve till it coincides with the PBC spectrum atκ=0,in the process passing through the entire region enclosed by the PBC loop. Below,we describe how to physically access such intermediate values ofκby tuning the boundary hoppings.

    Using the Hatano–Nelson model[14,43,69,77–79]for convenient illustration,since it only has nearest neighbor unbalancing hoppings,we have

    withE=tz+t′/zandz=exp(-κ+ik). Solving this characteristic equation givesκ,as shown in Table 1,which can then be substituted into ˉE=E(k+iκ) to yield the spectrum (see Appendix A).It is seen that under OBCs,κonly depends on the relative amplitudest/t′of the left/right hoppings. However, when the boundary and bulk hoppings are not equal,κwill depend either ont/μort′/μ′, depending on the relative strength oftandt′as well as whetherμμ′ortt′is larger.

    Table 1. Approximate analytic forms of κ of the model Eq. (1) in various regimes, for large L. Here, κc =1/2log(t/t′), the value of κ where the spectrum collapses into the OBC spectrum that encloses zero area. With appropriate tuning of boundary hoppings μ,μ′,we will be able to obtain any κ that lies between the PBC and OBC cases,i.e.,[0,κc].

    The upshot is that if we take the boundary hoppingsμ,μ′to be random numbers from(0,t)and(0,t′),the energy spectrum will fall within the PBC spectral loop and, after multiple random trials,the combined energy spectra will fill up the loop,as shown in Fig.1(b). So far,this is not very surprising,since we are using an ensemble of 1D systems to fill up a 2D region. In the following sessions, we shall demonstrate how we can instead construct a single 1D system whose eigenenergies fill up the interior of a spectral loop.

    Fig.1. Filling up a spectral ellipse with a large number of separate Hatano–Nelson chains with random boundary hoppings. Panels(a1)and(a2)show the random distributions of μ,μ′ boundary hoppings, while (b) shows the combined energy spectra E (red crosses) from 40 different random trials,which fill up the interior of the elliptical PBC loop of the model given by Eq.(2)with parameters t =2,t′=1,L=50. From Table 1,only the distribution P(μ)affects the filling,which here forms“bands”of approximately equal density due to the chosen step-like distribution of P(μ). The energies from an illustrative(μ,μ′)pair is indicated in light blue.

    3. Filling 2D spectral region with a 1D non-Hermitian lattice

    Previously, we filled the 2D spectral region enclosed by the PBC loop via an ensemble of 1D chains. However, to do the same with a single 1D chain is a nontrivial feat, even for one constructed by concatenating many 1D chains. This is because the NHSE relentlessly pump all states towards one direction,including across the concatenated chains,thereby fundamentally modifying their individual nature. Specifically,we expect different behavior from boundary hoppings that close up the individual 1D chains, compared to those that connect many 1D chains into one long periodic chain.

    To construct a bona fide 1D lattice whose spectrum does fill up a 2D spectral region, we instead consider a modelH[Fig.2(a)]of the form whereαis the chain index, andnlabels the sites in theα-th chain, whose eigenstates|ψα〉are localized at boundaries ofαchain — skin states. The second termHbcontains all the random couplings between adjacent chainsαandα+1, and takes the form

    andΞα,Ξ′αareM×Mrandom matrices whose elements represent their random couplings between the chains. Together,they connect the chains into a long PBC loop via 2NM2random couplings. Even for the weak random coupling, the eigenstates are localized states rather than skin states, which can be importance weighted combination of|ψα〉. And the system with localized eigenstates becomes insensitive to the boundary conditions. As elaborated later,the coupling lengthM ∈[1,L] profoundly affects the filling, as demonstrated in Fig.2(c)and subsequent figures.

    We choose the random couplings matrix elementsξeiφofΞα,Ξ′αfrom a random ensemble with amplitudesξGaussian distributed with mean 0 and varianceσ,and phaseφuniformly distributed[Fig.2(a)].Taking sizeNL ?1 of system to avoid random uncertainties,we set the results as single disorder realization.Since the spectrum changes dramatically when the inter-chain couplings are small, analogous to the boundary couplings discussed in the previous section, the coupling amplitude varianceσsignificantly affects the filling behavior[Fig.2(b)].

    To quantify how completely and evenly the spectral loop region is filled by the eigenenergies, we introduce two metrics: Cr, the coverage rate and Pr, the participation rate. To define the coverage rate(Cr),we divide the interior region of the PBC loop(spectrum ofHαunder PBCs)intoNparts(for a largeN);then we count the numberN′of parts which contain one or more eigenvalues ofHEq. (4) within itself. The ratio

    is the coverage rate Cr. The larger the Cr, the more complete is the energy filling;a small Cr indicates that the filling occurs very inhomogeneously. This definition of Cr remains meaningful even when the PBC loop is irregular and it is hard to directly see how well it is filled by the eigenenergies. Next,we also define the participation rate(Pr),which represents the fraction of eigenenergies ofHthat are within the PBC loop ofHα,i.e.,

    where num(E)is the number of eigenenergies within the PBC loop, andNLis the total number of sites in our lattice model Eq.(4). A high participation rate indicates that few eigenenergies are outside the PBC loop.

    Fig. 2. Filling of spectral region from a single long chain with disordered couplings. (a) Structure of our 1D chain model Eqs.(4–6), which consists of N Hatano–Nelson chain segments(green and yellow)that are randomly coupled to adjacent chains via their first and last M sites, as given by matrices Ξ and Ξ′. The hopping amplitudes ξ ∈(0,σ) are Gaussian random distributed,and phases φ are uniformly distributed. (b)The dependence of the coverage rate(Cr)Eq.(8)and participation rate(Pr)Eq.(9)on the hopping amplitude variance σ,for different M.While Cr is generally insensitive to σ,it improves significantly with M. Pr remains almost complete at 1 for σ ≤0.1,beyond which it decreases. Panels(c1)–(c4)show the energy spectrum at different σ and M combinations as indicated in(b);as M increases,the interior eigenvalues within the spectral loop proliferate,finally resulting in a filled spectral interior. Excessive σ, however, causes the filling to exceed the PBC loop boundaries. (d)The best filling spectrum from(b),with representative eigenstates shown in(e). Generally,more localized states occur deeper in the loop interior. EOBC and EPBC refer to the eigenenergies of base model Hα Eq.(5).

    From Fig.2(b),it is evident that the longer the rangeMof the inter-chain random couplings, the better the coverage Cr.This is because short-ranged inter-chain couplings inΞα,Ξ′αonly couple sites close to the end of the chains,and the entire lattice is still akin to a long PBC chain with somewhat complicated couplings. Indeed, at smallM, the spectrum ofHis still a well-defined loop[Fig.2(c1)],which by definition covers the PBC interior region very poorly. AsMincreases,more distant sites between adjacent chains are randomly coupled,and some eigenenergies start to appear in the interior of the spectral loop ofH[Fig. 2(c2)]. They almost always appear in its interior because disorder generically breaks translation invariance,thereby allowing for localized skin mode accumulation.These localized modes have larger effectiveκby virtue of their shorter decay lengths,and hence tend towards the interior of the spectral loop. This is further examined in the next section;here we mention that intuitively,we expect these random coupling-induced localized skin modes energies to be closer to the real line because the net effect of many random couplings is to prevent any state from being amplified or attenuated too many times consecutively. Finally, the coverage Cr reaches its maximum[Fig.2(b)]whenM=L,i.e.,when all sites in our lattice Eqs.(4)–(6)are randomly coupled. In this limit,all vestiges of a PBC spectral loop are gone,and we observe a continuous eigenstate density within the PBC spectral loop ofHα.

    The filling of the 2D spectral region can be further optimized by tweaking the probability distribution of the individual inter-chain hopping strengthsξeiφ. We shall keep the phaseφas being uniformly distributed,and just vary the varianceσof the Gaussian-distributed amplitudeξ(with zero mean). As shown in Fig.2(c), the cloud of eigenenergies becomes larger asσgrows,since stronger random couplings invariably perturb their“trapped”localized skin modes energies more strongly. We obtain the best filling withM=L, and when the eigenenergy cloud just fills the PBC spectral loop ofHαwithout going out of it. This occurs at a critical value ofσ=σc,where the participation ratio Pr just starts to decrease from 1[Fig.2(b)].

    So far, we have only used the Hatano–Nelson model Eq. (5) as the base modelHα. As a model with a simple elliptical PBC loop,it is an appropriate paradigmatic model for disorder spectral filling. However, our approach also works for generic models with nontrivial spectral winding loops.

    For instance,let us add to the disorder couplingHbEq.(6)a different base Hamiltonian given by[40]

    which has hoppingsasites to the left with amplitudet, and hoppingsbsites to the right with amplitudet′, as illustrated in Fig. 3(a). TheseHαformNidentical chains with open boundary conditions, connected to each other by disordered couplings just as before Eqs.(4)and(6).

    In the same way, we can also get the best filling conditions. The larger the Cr, the better the spectral region filling,in Fig. 3(c). There have the same results with the previous Hatano–Nelson model,the value ofMis closer toL,the better PBC loop-filled energy spectrum. Similarly, the model with the best loop-filled energy spectrum can be obtained(M=L),and the optimal distribution of random couplingsξexp(iφ)for Fig.3(d)can be obtained by considering the coverage rate(Cr)and participation rate(Pr).

    Fig.3.Filling of spectral region from a single long heterogeneous chain with disordered couplings. (a)Base lattice structure of our model Eq.(10)with next-nearest neighbor hoppings; random hoppings linking them (shown in Fig.2)having amplitudes ξ ∈(0,σ)that are Gaussian random distributed,and phases φ that are uniformly distributed. (b)Division of the irregularly shaped PBC loop into large N parts for the computation of Cr. (c)Dependence of Cr[Eq.(8)]and Pr[Eq.(9)]on the hopping amplitude variance σ,for different M. While Cr increases only slightly with σ,it improves significantly with M. Pr remains almost complete at 1 for σ ≤0.15,beyond which it decreases. Panels(c1)–(c4)show the spectra at different σ and M combinations as indicated in(c);as M or σ increases,interior eigenvalues within the spectral loop proliferate,finally resulting in a filled spectral interior. (d)The best filling spectrum from(c),with representative eigenstates shown in(e). Generally,more localized states occur deeper in the loop interior. EOBC and EPBC refer to the eigenenergies of base model Hα Eq.(10).

    4. Spectral filling and skin localization

    A major inspiration for our approach has been the semiinfinite boundary condition, which is consistent with the coexistence of a continuum of eigenstate decay lengths (skin depths).[19–21,23,36–39,41,42,45,71,80]Within our approach, the filling of the spectral loop is indeed intimately related to the realization of a continuum of spatial localization lengths. To quantify localization, we recall the definition of the inverse participation ratio(IPR)[15,81–85]

    with|Ψ〉= ∑α,nψα,n|α,n〉a chosen eigenstate of the full HamiltonianH. If a state is perfectly localized on only one site,the IPR takes the maximal value 1. In contrast, if a state is uniformly spread overNLstates,IPR=(NL)-1→0.

    We next consider what can be reasonable expectation of the extent of localization for states within the spectral loop.States in a disordered system are invariably randomly shaped,but it is conceivable that they inherit the localization length of the clean background systemHα,stochastically speaking. For a particular state with energyE,its expected(clean)skin depthκ-1is given through

    wherekis an unimportant wavenumber andEαis the energy of the 1-component modelHα. On the PBC loop, the clean system harbors Bloch states,andκ=0. Generally,states further from the PBC loop correspond to largerκ,and should be more localized.

    In Fig.4,we indeed observe a correlation between weaker expected localizationκand weaker numerically determined localization (smaller IPR) of the actual eigenstates. Conversely, for eigenenergies closer toEOBC, whereκ →κc, the eigenstates tend to be most localized(large IPR,red). This is also consistently observed for the base modelHαEq.(10)with asymmetric hopping distances,albeit with slightly weaker correlation.

    Fig.4. Locality(IPR)vs. inverse skin depth κ. (a)IPR Eq.(11)and(b)κ Eq. (12) of each eigenstate of our disordered chain Eqs. (4)–(6) at parameters of best filling (σ =0.1,M =20). Generally, small κ (green), which correspond to delocalized Bloch states in the base model Eq. (5), indeed correlate with relatively delocalized states in the disordered chain(low IPR,green). Panels (c) and (d) show the same plots with the base Hamiltonian described by Eq.(10),with similar conclusions.

    5. Discussion

    In this work, we have devised a way to construct disordered 1D non-Hermitian chains Eqs.(4)–(6)exhibiting eigenspectra that fill up the interiors of 2D regions in the complex energy plane.The filling extent and density can be adjusted by tuning the probability distributions of the random couplings,and effectively simulates the effects of SIBCs,which are physically unattainable.

    It is interesting to compare our mechanism with that of random matrices, i.e., the Gaussian unitary, orthogonal and symplectic ensembles, etc, which can also produce evenly spaced eigenvalues within circular regions in the complex plane, akin to electrons in a quantum Hall fluid.[86–94]What is markedly different is the extent of non-locality required: In our setup [Fig. 2(a)], random inter-segment couplings extend across at mostMsites,and in the thermodynamic limit of largeN,the entire chain can still be considered as a long PBC chain withNnearest-neighbor coupled unit cells,each having a fixedL ≥Mnumber of components. However,in classical random matrix ensembles,the random elements represent all possible couplings, which in this context can be as far asNL/2 number of sites. Furthermore,our approach can easily be generalized to fill up arbitrarily-shaped regions by choosing the base HamiltonianHαwith a similarly shaped PBC loop.

    From a more general viewpoint, our constructive approach offers an avenue for stochastically “augmenting” the dimensionality of a 1D system,such that it possesses characteristics normally associated with 2D systems,such as 2D density of states. The probability distributions associated with the random couplings provide additional degrees of freedom that may ultimately emulate extra dimensions. Finally, we mention that our models can readily be physically implemented in media that admit long-ranged couplings, such as classical electrical circuits[13,16,21,25–27,32,34,35,95–107]and quantum computers,[10,108–119]and with some adaptation even Rydberg atom lattices with long-ranged interactions.[117–129]Since the non-local couplings only need to be randomly distributed according to certain loosely defined distributions, our approach is intrinsically tolerant to significant levels of noise.

    Appendix A: Detailed analysis of sensitivity to boundary conditions

    We study how the simplest illustrative non-Hermitian model Eq.(2)

    Combining the above results, we obtain Table 1 in the main text.

    By comparing with numerically obtained spectra,Fig.A1 verifies the correctness of the approximate analytical results obtained above and given in Table 1.

    Now,if the boundary hoppingsμandμ′were to be random numbers from(0,t)and(0,t′),the PBC energy spectrum would be ellipses of all different aspect ratios, and after multiple random trials, the combined energy spectrum would fill up the PBC loop, as shown in Fig. A2(a2). Note that this filling is sensitive to the direction of skin mode accumulation,so ift >t′, only the case in Fig. A2(a2) and not that of Fig. A2(b2) will occupy the interior of the PBC loop. To maintain an approximately uniform filling density, we have concocted a step-like distribution given by

    Fig. A1. Near-perfect agreement of analytically approximated spectra (black) with numerical spectra (red) for the 4 cases discussed above: μμ′ ?tt′ (a1), (a2); μμ′ ?tt′ (b1), (b2); μ /=0,μ′ =0 (c1), (c2); μ =0,μ′ /=0 (d1), (d2). The red crosses represent numerical results of Hamiltonian Eq. (A1), and the black points show the results (analytical approximate solution) from Table 1. Other parameters are t =2, t′ =1, N =100. Since t >t′, an exponentially small part of the state can feel μ′ =0 (μ =0), and the system still behaves like it is under PBCs (OBCs), as in (c) and (d).Qualitatively similar conclusions apply to(a)and(b).

    Fig.A2. Combined energy spectrum(a2),(b2)of Hamiltonian Eq.(A1)with 2000 random trials of μ,μ′ picked from distributions P as given in(a1),(b1)when t′<t and μμ′<tt′,neither E nor z has anything to do with μ′. Other parameters are t=2,t′=1,N=50.

    wherexrepresents eitherμorμ′.

    Appendix B: Effect of relative strengths of random couplings

    We now study the effect of tuning the overall strength of the random couplings inHbby considering the parametrization

    We recover the results of the main text whenλ=1, and that of the clean non-Hermitian chain whenλ=0. In the latter limit,κmust correlate poorly with the IPR, since the system is essentially that of the OBC clean system,with only a single inverse skin depth. Note that withλ,the best fillingσamplitude is also rescaled by a factor ofλ.

    From Fig.B1, the correlation is poor for smallλ, as expected,since the system is not too different from an OBC system with small amounts of disorder. This is evident in the“flattening”of the spectrum in the complex energy plane. The correlation as well as the filling improves asλincreases.distancesM.

    Fig.B1. IPR vs. κ of our model under the rescaling λ of the random couplings. Eigenenergies are colored by the IPR Eq.(11)(a1)–(c1)or κ Eq.(12)(a2)–(c2). Panels(a3)–(c3)show the correlation between IPR and κ. The correlation,although imperfect,is best at larger disorder strengths such as λ ≈0.6.

    Fig.B2. IPR vs. κ of our model(λ =1)for different maximal random coupling distances M. Eigenenergies are colored by the IPR Eq.(11)(a1)–(c1)or κ Eq.(12)(a2)–(c2).Panels(a3)–(c3)show the correlation between IPR and κ.The correlation is best at smaller disorder coupling

    In general, it is also found from Fig. B2 that the correlation improves asMdecreases. This is not surprising, since smallerMimplies fewer random couplings,thereby increasing the reliability ofκfrom the base HamiltonianHαas a measure of the locality for the entire HamiltonianH.That said,it is still with maximalM=Lthat we obtain the best fillings.

    精品国产三级普通话版| 少妇熟女aⅴ在线视频| 中文字幕熟女人妻在线| 日本色播在线视频| 亚洲最大成人中文| 久久久a久久爽久久v久久| 久久久久精品国产欧美久久久| 午夜福利成人在线免费观看| 校园春色视频在线观看| 精品午夜福利视频在线观看一区| 老司机午夜福利在线观看视频| 国产aⅴ精品一区二区三区波| 国产乱人偷精品视频| 少妇熟女aⅴ在线视频| 久久人人精品亚洲av| 国产精品日韩av在线免费观看| 午夜老司机福利剧场| 亚洲av电影不卡..在线观看| 网址你懂的国产日韩在线| 日本五十路高清| 久久久久久国产a免费观看| 天天躁日日操中文字幕| 国产成人影院久久av| 久久精品综合一区二区三区| 一进一出好大好爽视频| 久久婷婷人人爽人人干人人爱| 日韩一本色道免费dvd| 久久热精品热| 国产午夜精品久久久久久一区二区三区 | 免费看av在线观看网站| 国产精品av视频在线免费观看| 国产高清视频在线播放一区| 亚洲五月天丁香| 俺也久久电影网| 欧美成人一区二区免费高清观看| 日韩 亚洲 欧美在线| 亚洲美女搞黄在线观看 | 日本免费一区二区三区高清不卡| av天堂在线播放| 黑人高潮一二区| 中国国产av一级| 亚洲精品粉嫩美女一区| 国产成年人精品一区二区| 一进一出好大好爽视频| 国产成年人精品一区二区| 久久久精品欧美日韩精品| 国产精品久久视频播放| av黄色大香蕉| 成人av一区二区三区在线看| 国产高清视频在线观看网站| 少妇人妻精品综合一区二区 | 小蜜桃在线观看免费完整版高清| 欧美又色又爽又黄视频| 观看美女的网站| 欧美3d第一页| 不卡视频在线观看欧美| 男女下面进入的视频免费午夜| 亚洲av熟女| 精品午夜福利视频在线观看一区| 亚洲色图av天堂| 欧美bdsm另类| 午夜免费激情av| 国产又黄又爽又无遮挡在线| 午夜福利在线观看免费完整高清在 | 99久久精品热视频| 久久久久国内视频| 国产大屁股一区二区在线视频| 亚洲人成网站在线播放欧美日韩| 深夜a级毛片| 亚洲性夜色夜夜综合| 韩国av在线不卡| 中文资源天堂在线| 91av网一区二区| 亚洲av第一区精品v没综合| 国产精品伦人一区二区| 黄色配什么色好看| 99热网站在线观看| 国产欧美日韩一区二区精品| 日韩成人伦理影院| 五月伊人婷婷丁香| 免费人成视频x8x8入口观看| 黄色欧美视频在线观看| 老熟妇仑乱视频hdxx| 国国产精品蜜臀av免费| 麻豆av噜噜一区二区三区| 国产伦一二天堂av在线观看| 国产不卡一卡二| 少妇猛男粗大的猛烈进出视频 | 亚洲无线观看免费| 一a级毛片在线观看| 少妇猛男粗大的猛烈进出视频 | 亚洲色图av天堂| 日韩制服骚丝袜av| 亚洲精品国产av成人精品 | 亚洲最大成人av| 在线看三级毛片| 亚洲无线观看免费| 久久亚洲精品不卡| 久久午夜亚洲精品久久| 午夜免费男女啪啪视频观看 | 国内久久婷婷六月综合欲色啪| 在线观看免费视频日本深夜| 欧美一区二区国产精品久久精品| 麻豆乱淫一区二区| 久久久久国产网址| 99热只有精品国产| 国产中年淑女户外野战色| 日韩在线高清观看一区二区三区| 国内揄拍国产精品人妻在线| 精品一区二区三区视频在线| 熟妇人妻久久中文字幕3abv| 一区福利在线观看| 久久久色成人| 一个人看视频在线观看www免费| 最新中文字幕久久久久| 18禁裸乳无遮挡免费网站照片| 亚洲人成网站高清观看| 国产三级中文精品| 日日干狠狠操夜夜爽| 内地一区二区视频在线| 亚洲一区二区三区色噜噜| 成人特级av手机在线观看| 夜夜夜夜夜久久久久| 色5月婷婷丁香| 精品久久久久久久久亚洲| av卡一久久| 精品午夜福利视频在线观看一区| av在线蜜桃| 露出奶头的视频| 91精品国产九色| 亚洲av二区三区四区| 97超视频在线观看视频| 99热全是精品| 久久鲁丝午夜福利片| 国产高清激情床上av| 午夜福利视频1000在线观看| 久久久久免费精品人妻一区二区| 国产精品一及| 97超级碰碰碰精品色视频在线观看| 国产精品乱码一区二三区的特点| 国产男人的电影天堂91| 久久精品国产99精品国产亚洲性色| 成年版毛片免费区| 亚洲精品色激情综合| 三级毛片av免费| 国产免费男女视频| 草草在线视频免费看| 国产精华一区二区三区| 日日摸夜夜添夜夜添av毛片| 在线免费观看的www视频| 成人性生交大片免费视频hd| 国产白丝娇喘喷水9色精品| 国产精品国产三级国产av玫瑰| 国产成人aa在线观看| 欧美激情国产日韩精品一区| 国产成年人精品一区二区| 中文字幕免费在线视频6| 免费无遮挡裸体视频| 精品午夜福利在线看| 麻豆精品久久久久久蜜桃| 日韩精品中文字幕看吧| 国产av不卡久久| 男插女下体视频免费在线播放| 99久久精品一区二区三区| 亚洲自拍偷在线| 99久久无色码亚洲精品果冻| av专区在线播放| 色在线成人网| 一本一本综合久久| 伦精品一区二区三区| 久久99热这里只有精品18| 精品欧美国产一区二区三| 久久久欧美国产精品| 3wmmmm亚洲av在线观看| 午夜福利视频1000在线观看| 欧美激情国产日韩精品一区| 亚洲熟妇熟女久久| 一进一出抽搐动态| 国产探花极品一区二区| 亚洲18禁久久av| 三级毛片av免费| 成年版毛片免费区| 91久久精品国产一区二区三区| 欧美另类亚洲清纯唯美| 日韩人妻高清精品专区| 深爱激情五月婷婷| 在线免费十八禁| 久久精品国产鲁丝片午夜精品| 日韩一区二区视频免费看| 日韩精品中文字幕看吧| 欧美三级亚洲精品| 美女黄网站色视频| 欧美日韩乱码在线| 少妇人妻精品综合一区二区 | 丝袜美腿在线中文| 韩国av在线不卡| 国产色婷婷99| 亚洲人成网站在线播放欧美日韩| 91av网一区二区| 免费大片18禁| 国产人妻一区二区三区在| 国产在视频线在精品| 亚洲最大成人中文| 国产真实伦视频高清在线观看| 麻豆国产97在线/欧美| 在现免费观看毛片| 国内久久婷婷六月综合欲色啪| 白带黄色成豆腐渣| 久久人人精品亚洲av| 九色成人免费人妻av| 可以在线观看的亚洲视频| 波多野结衣巨乳人妻| 国产乱人视频| 性色avwww在线观看| 亚洲国产日韩欧美精品在线观看| 黑人高潮一二区| 男人狂女人下面高潮的视频| 国产免费一级a男人的天堂| 精品免费久久久久久久清纯| 99热精品在线国产| 搡女人真爽免费视频火全软件 | 女同久久另类99精品国产91| 国产精品女同一区二区软件| 精品久久久噜噜| 国产精品无大码| 免费观看的影片在线观看| 熟妇人妻久久中文字幕3abv| 97在线视频观看| 亚洲欧美精品综合久久99| 国产高潮美女av| 少妇猛男粗大的猛烈进出视频 | 精品一区二区三区人妻视频| 男女视频在线观看网站免费| 91在线观看av| 国产亚洲91精品色在线| 精品久久久久久久久久久久久| 日日啪夜夜撸| 欧美色视频一区免费| 99久久九九国产精品国产免费| 国产成年人精品一区二区| 亚洲成人久久爱视频| 日韩欧美在线乱码| 亚洲欧美精品自产自拍| 日韩欧美一区二区三区在线观看| 一进一出好大好爽视频| 91久久精品国产一区二区成人| 国产单亲对白刺激| 国产亚洲精品av在线| 男人舔奶头视频| 十八禁网站免费在线| 99riav亚洲国产免费| 如何舔出高潮| 亚洲中文日韩欧美视频| 日本五十路高清| 成人漫画全彩无遮挡| 中文字幕精品亚洲无线码一区| 国产探花在线观看一区二区| 波野结衣二区三区在线| 欧美bdsm另类| 校园人妻丝袜中文字幕| 中出人妻视频一区二区| 大香蕉久久网| av国产免费在线观看| 色哟哟·www| 亚洲欧美日韩高清专用| 欧美国产日韩亚洲一区| 精品不卡国产一区二区三区| 色综合亚洲欧美另类图片| 日本免费a在线| 老司机午夜福利在线观看视频| 伦理电影大哥的女人| 成人国产麻豆网| 少妇猛男粗大的猛烈进出视频 | 日本五十路高清| 欧美人与善性xxx| 国产伦精品一区二区三区四那| 少妇被粗大猛烈的视频| 国产精品一区www在线观看| 亚洲精品456在线播放app| 欧美最新免费一区二区三区| 免费高清视频大片| 可以在线观看的亚洲视频| 97超碰精品成人国产| 老熟妇仑乱视频hdxx| 欧美日韩乱码在线| 午夜精品国产一区二区电影 | 国产男靠女视频免费网站| 俄罗斯特黄特色一大片| 亚洲精品456在线播放app| 婷婷亚洲欧美| 日韩中字成人| videossex国产| 国产色爽女视频免费观看| 欧美一区二区精品小视频在线| 久久久精品欧美日韩精品| 极品教师在线视频| 少妇高潮的动态图| 国产私拍福利视频在线观看| 可以在线观看的亚洲视频| 两性午夜刺激爽爽歪歪视频在线观看| 无遮挡黄片免费观看| 男女做爰动态图高潮gif福利片| 日韩人妻高清精品专区| 久久人人爽人人爽人人片va| 亚洲国产精品成人久久小说 | 国产亚洲精品久久久com| 淫妇啪啪啪对白视频| 亚洲欧美精品自产自拍| 国产黄a三级三级三级人| 麻豆乱淫一区二区| 黄色配什么色好看| 精品一区二区免费观看| 国产片特级美女逼逼视频| 精品久久久久久久人妻蜜臀av| av天堂在线播放| 丝袜美腿在线中文| 国产 一区 欧美 日韩| 老司机午夜福利在线观看视频| 欧美激情久久久久久爽电影| 菩萨蛮人人尽说江南好唐韦庄 | 桃色一区二区三区在线观看| 国产av一区在线观看免费| 国产高清视频在线播放一区| 亚州av有码| 在线看三级毛片| 国产成人一区二区在线| 最新中文字幕久久久久| 日本欧美国产在线视频| 成人欧美大片| 一进一出抽搐gif免费好疼| 女人十人毛片免费观看3o分钟| 真实男女啪啪啪动态图| 亚洲精品成人久久久久久| 午夜精品在线福利| 午夜日韩欧美国产| 亚洲国产日韩欧美精品在线观看| 91狼人影院| 美女免费视频网站| 色播亚洲综合网| 欧美成人免费av一区二区三区| 白带黄色成豆腐渣| 色吧在线观看| 老司机午夜福利在线观看视频| 久久精品人妻少妇| 亚洲精品久久国产高清桃花| 国产伦在线观看视频一区| 天堂√8在线中文| 久久久久久久久久久丰满| 国产三级在线视频| 老司机影院成人| 黄色一级大片看看| 噜噜噜噜噜久久久久久91| 淫妇啪啪啪对白视频| 久久精品国产亚洲av香蕉五月| 亚洲国产精品成人综合色| 99在线视频只有这里精品首页| 99热这里只有精品一区| 中文字幕av成人在线电影| 禁无遮挡网站| 不卡视频在线观看欧美| 精品一区二区免费观看| 午夜激情福利司机影院| 一个人看的www免费观看视频| 一级毛片电影观看 | 黄色一级大片看看| 国产一区二区亚洲精品在线观看| 成年女人毛片免费观看观看9| 变态另类成人亚洲欧美熟女| 欧美一区二区国产精品久久精品| 精品无人区乱码1区二区| .国产精品久久| 国产精品一区二区三区四区久久| 亚洲欧美中文字幕日韩二区| 日韩大尺度精品在线看网址| 日韩人妻高清精品专区| 美女xxoo啪啪120秒动态图| 久久久久性生活片| 三级国产精品欧美在线观看| 欧美性猛交黑人性爽| 日本一二三区视频观看| a级一级毛片免费在线观看| 日韩人妻高清精品专区| 日日干狠狠操夜夜爽| 亚洲在线观看片| 97碰自拍视频| 日韩欧美精品免费久久| 小蜜桃在线观看免费完整版高清| 日韩制服骚丝袜av| 日日摸夜夜添夜夜爱| 大又大粗又爽又黄少妇毛片口| 精品人妻视频免费看| 麻豆成人午夜福利视频| 网址你懂的国产日韩在线| 成人av在线播放网站| 成人一区二区视频在线观看| 日本色播在线视频| 国产亚洲av嫩草精品影院| 两性午夜刺激爽爽歪歪视频在线观看| 美女大奶头视频| 99久久无色码亚洲精品果冻| 国产精品人妻久久久久久| 五月玫瑰六月丁香| 久久国内精品自在自线图片| 久久久久国产网址| 亚洲av成人av| 人妻久久中文字幕网| 91久久精品电影网| 日本a在线网址| 蜜桃久久精品国产亚洲av| 深夜a级毛片| 国产片特级美女逼逼视频| 尾随美女入室| 日本精品一区二区三区蜜桃| 国产麻豆成人av免费视频| 身体一侧抽搐| 欧美成人a在线观看| 午夜免费男女啪啪视频观看 | 国产av麻豆久久久久久久| av免费在线看不卡| 一卡2卡三卡四卡精品乱码亚洲| 波多野结衣高清无吗| 久久久久国内视频| 亚洲,欧美,日韩| 亚洲无线在线观看| 别揉我奶头 嗯啊视频| 中文字幕av成人在线电影| 国产亚洲精品久久久com| 少妇高潮的动态图| 最近视频中文字幕2019在线8| 天堂影院成人在线观看| 99国产极品粉嫩在线观看| 日本一二三区视频观看| 亚洲专区国产一区二区| 岛国在线免费视频观看| 亚洲精华国产精华液的使用体验 | 国国产精品蜜臀av免费| 国产乱人偷精品视频| 亚洲美女黄片视频| 简卡轻食公司| 永久网站在线| 一个人观看的视频www高清免费观看| 日韩在线高清观看一区二区三区| 男女边吃奶边做爰视频| 免费观看精品视频网站| 国产精品一区二区三区四区久久| 十八禁国产超污无遮挡网站| 嫩草影视91久久| 国产精品嫩草影院av在线观看| 国产亚洲精品久久久久久毛片| 18禁在线播放成人免费| 少妇的逼水好多| 亚洲国产欧美人成| 成人美女网站在线观看视频| 亚州av有码| 直男gayav资源| 久久精品人妻少妇| 99久国产av精品国产电影| 中国美白少妇内射xxxbb| 国国产精品蜜臀av免费| 黄色欧美视频在线观看| 深夜精品福利| 亚洲人成网站高清观看| 久久精品国产亚洲av香蕉五月| 偷拍熟女少妇极品色| 亚洲av成人精品一区久久| 菩萨蛮人人尽说江南好唐韦庄 | 大型黄色视频在线免费观看| 久99久视频精品免费| 大型黄色视频在线免费观看| 麻豆国产av国片精品| 国产精品亚洲一级av第二区| 一区二区三区免费毛片| 亚洲人成网站高清观看| 香蕉av资源在线| 国产 一区 欧美 日韩| 91麻豆精品激情在线观看国产| 国产成人aa在线观看| 中文亚洲av片在线观看爽| 一边摸一边抽搐一进一小说| 欧美最新免费一区二区三区| 国产精品久久久久久av不卡| 伦精品一区二区三区| 国产精品精品国产色婷婷| 亚洲中文日韩欧美视频| 久久久久久久午夜电影| a级一级毛片免费在线观看| 亚洲精品国产成人久久av| 一级毛片aaaaaa免费看小| 国产高清激情床上av| 国产av一区在线观看免费| 日韩欧美一区二区三区在线观看| 久久国内精品自在自线图片| 国内精品一区二区在线观看| av在线播放精品| 国产成人一区二区在线| 久久综合国产亚洲精品| 国产激情偷乱视频一区二区| 男女边吃奶边做爰视频| 日日摸夜夜添夜夜添av毛片| 亚州av有码| 观看免费一级毛片| 在线免费观看的www视频| 精品久久久久久久久久久久久| 久久精品夜夜夜夜夜久久蜜豆| 亚洲成a人片在线一区二区| 亚洲国产精品sss在线观看| 啦啦啦啦在线视频资源| 自拍偷自拍亚洲精品老妇| 色视频www国产| 午夜影院日韩av| 国产v大片淫在线免费观看| 美女免费视频网站| 欧美另类亚洲清纯唯美| 久久精品久久久久久噜噜老黄 | 91久久精品国产一区二区三区| 尾随美女入室| 国产黄色小视频在线观看| 国产精品人妻久久久久久| 免费大片18禁| 91狼人影院| av视频在线观看入口| 亚洲专区国产一区二区| 一级毛片我不卡| 白带黄色成豆腐渣| 欧美在线一区亚洲| 黄色配什么色好看| 69av精品久久久久久| 日韩精品中文字幕看吧| 搡老妇女老女人老熟妇| 中国美白少妇内射xxxbb| 综合色丁香网| 亚洲av五月六月丁香网| 色播亚洲综合网| 黄色一级大片看看| 亚洲av第一区精品v没综合| 久久亚洲国产成人精品v| 一级毛片久久久久久久久女| 欧美日本视频| 我要搜黄色片| 国产白丝娇喘喷水9色精品| 成人无遮挡网站| 欧美不卡视频在线免费观看| 美女内射精品一级片tv| 波野结衣二区三区在线| videossex国产| 91在线观看av| a级毛片a级免费在线| 91狼人影院| 校园人妻丝袜中文字幕| 免费无遮挡裸体视频| 亚洲婷婷狠狠爱综合网| 全区人妻精品视频| 国产精品嫩草影院av在线观看| 国产高潮美女av| 在线看三级毛片| 亚洲精品在线观看二区| 一进一出抽搐动态| 国产乱人视频| 亚洲成人久久爱视频| 午夜福利高清视频| 久久久国产成人免费| 国产成人精品久久久久久| av女优亚洲男人天堂| 身体一侧抽搐| 桃色一区二区三区在线观看| 男女下面进入的视频免费午夜| 亚洲图色成人| 婷婷六月久久综合丁香| 99热这里只有是精品50| 精品午夜福利在线看| 99热这里只有是精品50| 高清日韩中文字幕在线| 淫妇啪啪啪对白视频| 男女边吃奶边做爰视频| 中文字幕av在线有码专区| 俄罗斯特黄特色一大片| 日本熟妇午夜| 精品久久久久久久末码| 精品一区二区三区视频在线观看免费| 亚洲欧美中文字幕日韩二区| 欧美又色又爽又黄视频| 又爽又黄无遮挡网站| avwww免费| 日本一本二区三区精品| 国产精品日韩av在线免费观看| 亚洲无线观看免费| 欧美激情在线99| 成人特级黄色片久久久久久久| 国产真实乱freesex| 国产精品福利在线免费观看| 午夜精品国产一区二区电影 | 观看免费一级毛片| 有码 亚洲区| 国产伦在线观看视频一区| 日韩av在线大香蕉| 亚洲第一区二区三区不卡| 最近的中文字幕免费完整| 国产真实伦视频高清在线观看| 亚洲不卡免费看| 国产精品一区二区三区四区久久| 在线国产一区二区在线| 日本a在线网址| 成人综合一区亚洲| 色综合色国产| 亚洲av熟女| 熟女电影av网| 久久久国产成人免费| 22中文网久久字幕| 老司机福利观看| 十八禁网站免费在线| 欧美激情国产日韩精品一区| 99久久精品国产国产毛片| 午夜影院日韩av| 男女那种视频在线观看| 少妇裸体淫交视频免费看高清|