• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Characterization of a nano line width reference material based on metrological scanning electron microscope

    2022-05-16 07:09:00FangWang王芳YushuShi施玉書WeiLi李偉XiaoDeng鄧曉XinbinCheng程鑫彬ShuZhang張樹andXixiYu余茜茜
    Chinese Physics B 2022年5期
    關(guān)鍵詞:李偉王芳

    Fang Wang(王芳) Yushu Shi(施玉書) Wei Li(李偉) Xiao Deng(鄧曉)Xinbin Cheng(程鑫彬) Shu Zhang(張樹) and Xixi Yu(余茜茜)

    1National Institute of Metrology,Beijing 100029,China

    2Tongji University,Shanghai 200092,China

    3Shenzhen Institute Technology Innovation,National Institute of Metrology,Shenzhen 518038,China

    Keywords: critical dimension,line width,metrological scanning electron microscopy,traceability

    1. Introduction

    Accurate measurements of nanostructures (e.g., pitch,height,and width)are crucial to manufacturing at the nanometre scale. Discussions regarding CD have dominated research in recent years due to its importance. As described in the International Technology Roadmap for Semiconductors(ITRS),the measurement uncertainty of the physical CD needs to be reduced to 0.7 nm in the year 2024.[1,2]The CD structure generally consists of top CD(TCD), middle CD(MCD),bottom CD (BCD), circular angle, and sidewall angle, as shown in Fig. 1. Restricted by the level of the manufacturing process,most of the CD structure is trapezoidal. Because of variety of TCD and BCD, we usually define MCD as the feature value of CD.Currently, a multitude of techniques have been developed for the CD measurement,for instance,atomic force microscopy (AFM), transmission electron microscopy (TEM),and scanning electron microscopy (SEM). AFM can generate three-dimensional (3D) images of material surfaces with a high spatial resolution near the atomic scale.[3–5]Its image is a combination of the actual surface topography and the tip geometry used during scanning. Normally, the tip geometry should be estimated first, including the detailed parameters,such as tip diameter, vertical edge height, and tip radius.[6–8]Then one can reconstruct the true specimen shape from the distorted image by the morphological operations of dilation and erosion. However,the accurate estimation of the tip geometry is arduous because the AFM scanning can easily result in tip damage. Daiet al.[9]described the standard deviations limited to approximately±5 nm based on the AFM methods.

    Fig.1. Key parameters of a nano line width.

    TEM is a distinguished CD measurement method recently, especially after the entry of the Si{220}lattice parameter (d220=192.0155714×10-12m,uc=0.0000032×10-12m)into the mise en pratique at the 2018 meeting of the Consultative Committee for Length(CCL).[10]If the CD sample contains monocrystalline silicon,the line features and the periodical silicon crystal lattice planes can be clearly visible in an image with the mode of high-resolution transmission electron microscopy(HRTEM)or scanning transmission electron microscopy (STEM).[11]For the internal CD structure made of monocrystalline silicon, its value is the number of crystal planes multiplied by the lattice constant(see Fig. 2(a)). Otherwise, the CD needs to be calculated by the lattice constant and the pixel span of the crystal planes and the line width(see Fig. 2(b)).[1,12]The TEM method is traced to the metre definition of the International System of Units(SI)via the lattice constant and has superior measurement accuracy. However,its measurement needs the sample milled to a lamella with a thickness of approximately 50 nm by a dual-beam FIB instrument or an ion beam thinner,[12]as illustrated in Fig.3. Consequently,the TEM is a destructive measurement that demonstrates inconvenience in terms of the quantity value transfer.

    Fig.2. CD measurement principle based on TEM for monocrystalline silicon(a)within the CD structure and(b)outside the CD structure.

    Fig.3. Sample preparation of the TEM method.

    SEM, based on the secondary electron (SE), is also widely applied to the CD measurement for its high resolution and efficiency.[13–15]Since the SEM method can only obtain the two-dimensional top view of the CD structure,the estimation of the MCD is the distance between the two half intensity points in a line scan.[13]Therefore, an appropriate algorithm is indispensable to extract the widths from the intensity profile after obtaining the SEM images. Currently, the model-based library(MBL)for the CD determination,which was written as an international standard (ISO/DIS 21466.1) in 2019,[16]is a mainstream method. It can be divided into two phases:

    MBL generation The MBL is a set of simulated SE linescan profiles,which is produced by the Monte Carlo(MC)simulation with the experimental and specimen geometric parameters. First,one needs to establish an MBL simulator and a specimen model. The MBL simulator consists of the electron probe model described by a gaussian beam model or a focusing beam model, the SE signal generation model, and the SE signal detection model. The specimen model is generated based on the constructive solid geometry(CSG)method[17]or the finite element triangle mesh (FETM) method[18]with the parameters of its material property and geometry,for instance,top CD,middle CD,bottom CD,height, and sidewall angles.Second,the MBL database can be generated based on the MC simulation.[19]Then the process is repeated for the designed inputs parameters to form the library.

    CD determination After acquisition of an SEM image,one should find the best fit of the measured image of lines with the simulated SE linescan profiles according to the least square method.[15]Within the range of the library data,the CD values can be obtained.

    The results indicate the usefulness of the MBL method for the CD precise extraction from the SEM image. However,for each sample material and CD value, a corresponding library needs to be produced,which is a huge project and inflexible in the actual measurement. As an example,the existing MBL in our laboratory is only suitable for the CD structure manufactured by Au and the CD value greater than 200 nm.

    Fig.4. Manual measurement of the line width.

    In fact,the actual measurement is manual using the SEM integrated software. That is, the profile is obtained by manually pulling a straight line across the two edges on the image,as the green line L0shown in Fig.4. Then one can manually move the two vertical lines L1and L2on the profile to the half intensity position of the two edges. The value of profile widthl=43.61 nm displayed in the image is the measurement result.However,this manual operation method greatly relies upon the experience of the engineers and would inevitably introduce measurement errors. For instance, is the pulled straight line really straight? How does one know whether the junction of two straight lines (L1, L2) and the two edges is the half intensity position? Furthermore, the more detailed process is a black box to us, which would be not conducive to evaluating the reasonableness of the measurement results.

    To solve these problems, this paper presents a more detailed study on the nano line width reference material including its traceability, measurement method and results evaluation based on the metrological SEM.Section 2 introduces the sample,instrument,and measurement algorithm. In section 3,we have evaluated the measurement results in detail from the errors introduced by the sample homogeneity and stability,instrument, algorithm, and repeatability. The limitations of the traceability by the laser wavelength are discussed.Finally,this paper is summarized and concluded in Section 4.

    2. Metrological SEM imaging and image processing

    2.1. Sample and metrological SEM

    The sample TJNIM-160-80-40 prepared at Tongji University was applied in this study (see Fig. 5(a)). The sample has a size of 2.5 mm×2.5 mm×2 mm and consists of three nominal CD values 160 nm,80 nm,and 40 nm.The nanostructure is converted through the thickness of the deposition layer based on the multilayer method.[1]A group of 500 nm SiO2layers,on 160 nm,80 nm and 40 nm Si layers,were deposited on Si(111)wafer surface by radio frequency magnetron sputtering technology. Then the fabrication of the nanostructure is completed by bonding,cutting,grinding,polishing,and selective etching. The thermocompression bonding method is adopted to improve the bonding quality and eliminate the side effect.[20]Figure 5(b)illustrates the layout nanostructure. An SEM image(see Fig.5(c))gives a close view of the line features.

    Fig.5. Photos of the CD sample fabricated at Tongji University: (a)photograph of the sample investigated in this study,(b)schematic diagram showing the layout of the nanostructure,(c)an SEM image showing the measured line feature.

    Fig.6. Photo of the metrological SEM developed by NIM in China.

    In order to realize the precise measurement of the nanostructures by SEM, National Institute of Metrology (NIM) in China has developed a metrological SEM(see Fig.6). As one of the highest measurement standard devices for nanometrology in China,this instrument has integrated a laser interferometer displacement measurement module. The module is based on the Agilent 10706BV high-stability planar interferometer and uses the L-shaped double-reflecting plane mirror as the measuring mirror,which is fixed together with the sample on the nano-stage. Thex,ypositions of the nanopositioning stage are recorded in real time by VC++ and LabVIEW8.5. Consequently, the image scale of the metrological SEM can be traceable to the SI metre definition.

    Hence, samples are all measured by the metrological SEM to ensure the traceability and accuracy of the results in this study.

    2.2. Measurement of the nano line width

    2.2.1. Top, bottom and middle location

    With an e-beam energy of 15 kV and 768 pixels×1024 pixels in the metrological SEM, 160 nm, 80 nm, and 40 nm lines were imaged at the magnification of 110.74×103,125.46×103,and 122.88×103(see Fig.7),respectively. The averaged intensity profiles of the marked area in Figs. 7(a),7(c), and 7(e)are shown in Figs.7(b), 7(d), and 7(f). For the sake of simplicity,we introduce the averaged intensity profile given in Fig. 7(f) as an example. By zooming in the profile(see Fig.8),one can clearly see two important issues concerning the accurate measurement results.

    Fig.7. Measured metrological SEM image and the averaged intensity profile of the marked area: (a)metrological SEM image of 160 nm CD,(b)averaged intensity profile of the marked area in(a),(c)metrological SEM image of 80 nm CD,(d)averaged intensity profile of the marked area in(c),(e)metrological SEM image of 40 nm CD,(f)averaged intensity profile of the marked area in(e).

    Fig. 8. A zoom-in view of the profile marked in the red rectangular window.

    First,there is a significant difference in intensity between the peaks of the left and right edges of the line, leading to questionable top location areas and consequently the top location becomes a major error source. Usually, the background noise is a factor affecting the top location. In our study, the wavelet transform is applied to reject noise. The wavelet basis function is Daubechies 4 wavelet(DB 4)and the decomposition level is 2. In addition,since the sample needs to be fixed on the sample stage by carbon double-sided tape(see Fig.9),the uneven force of the tape on the sample will cause an invisible sample tilt to the naked eyes. Thus, the sample tilt is another factor that may influence the top location. To level the intensity profile,the bottom plane of the profile is linearly fitted. According to the slope of the fitted curve, the incline angleθcan be estimated. Then based on Eq.(1),the profile is rotated clockwise byθaround the point(xc,yc),which can be randomly selected from the matrix.

    Second, at the half intensity position, there may not be two corresponding sampling points at the two edges of the line,which can easily lead to large errors in the measurement results. In order to address this issue, we have established a function modely=F(x)of the intensity profile,and solve the variablex=F-1(Ihalf)at the half intensity.

    Fig.9. Photos of fixing the sample on the sample stage.

    Fig. 10. Comparison of the intensity profile before and after noise rejection and leveling.

    According to the features of the line width and the intensity profile, Gaussian and Lorentz functions are utilized for characterization:

    whereLscaleis the distance of the scale in the metrological SEM image, Δxis the pixel span of the scale, andKis the scaling factor.

    Fig.11. Comparison of the original and model profiles.

    2.2.2. Automatic measurement

    As described in the introduction, there is a lot of uncertainty in the manual extraction of the CD value from the SEM images. Hence,this paper further studies the automatic implementation of the CD measurement.

    Fig.12. Decomposition of the intensity profile.

    The intensity profile can be decomposed into sub-profiles based on the mean-crossing points. Figure 12 is the decomposition of the intensity profile (see Fig. 10), where- is the mean boundary,*is the start and end pixel of the sub-profile,Spixel(i)is the start pixel of theith sub-profile,Epixel(i)is the end pixel of theith sub-profile, ΔIand pixel span are the attributes of the sub-profile. As can be seen, the two edges are included in the same sub-profile. That is due to the fact that their intensity is significantly higher than the background and they can be regarded as anomaly. Hence, we can adopt machine learning methods to identify those anomalies in the intensity profiles. Due to the limitation of sample size, thekmeans algorithm,the most studied and widely used method in unsupervised learning,is applied to anomaly identification.

    According to the decomposition of the intensity profile,each sub-profile can be described by the feature vectorpi,

    The intensity profile (see Fig. 10) is decomposed into 150 sub-profiles. Each sub-profile has a 1×2 feature vector. Hence,Dis a 150×2 matrix. The initial mean vectorμ1=p1,μ2=p2. The mean vectorsμ1andμ2are not updated in the twelfth iteration. Then the iteration stops. Figure 13 shows the result of cluster division in part of the iteration process. Finally,the cluster division is

    Fig.13.The result of the k-means algorithm(k=2)after each iteration:(a) 1st iteration, (b) 5th iteration, (c) 10th iteration, (d) 11th iteration.Noise sample points and CD sample points are represented by black dots and red dots,respectively.

    The sub-profile corresponding top75is given in Fig.14.It shows thatp75is exactly the CD we need to identify. The start pixelSpixel(75)and end pixelEpixel(75)of the sub-profilep75can be easily obtained by indexing because the pixel information of each sub-profile has been stored during profile decomposition.

    After accurately identifying the two edges of the CD,the intensity profile is divided into two segments and characterized based on Eq.(3):

    Then,Itop,IbottomandIhalfare estimated according to the top,bottom and middle location method.Finally,the CD valueWis calculated by Eq. (5). The process of CD estimation is given in the flow chart(see Fig.15).

    Fig.14. The sub-profile corresponding to p75.

    Fig.15. Flow chart of CD estimation.

    3. Experimental investigations

    Based on the proposed method,researchers A and B have measured the TJNIM-160-80-40 sample six times with the metrological SEM separately, and take the average value as the standard value of the line width,as listed in Table 1. During the experiments, the parameters of the metrological SEM were set to 15 kV e-beam energy and 768 pixels×1024 pixels. For the setup of magnification,it should ensure that there is a complete line width in the field of view. The environmental conditions of the instrument are temperature(20±0.5)°C,and relative humidity≥60%.

    3.1. Evaluation of measurement results

    Standard deviation is the basic issue in evaluating the measurement results. Measurement errors mainly come from the sample, instrument, algorithm, and repeatability. Their corresponding uncertainty is denoted asu1,u2,u3andu4.Therefore,the combined standard uncertainty is wherec1,c2,c3, andc4are the sensitivity coefficients.According to “Guide to the Expression of Uncertainty in Measurement”,[21]these uncertainties are analyzed as follows.

    Table 1. Measurement results of the line width sample.

    (1) Sample The uncertaintyu1of the sample is mainly composed of homogeneity and stability:

    wherem=6 andn=10.The sum of squares of the within-unit is

    whereν1=m-1=5 andν2=m(n-1)=54. Therefore,the homogeneity uncertaintiesshfor the 160 nm, 80 nm, and 40 nm CDs are 0.39 nm,0.37 nm,and 0.46 nm,respectively.

    Stability is used to describe the time distribution characteristics of the CD value and can be evaluated by the variation of multiple measurements for different time intervals at the same position in the sample. Fitting the obtained data points to a linear functionW=b1t+b0,wheretis the time andWis the CD value,we can get the stability uncertainty

    In this study,the time period is one year,respectively,in July 2020, August 2020, September 2020, November 2020,January 2021, March 2021, and June 2021. Hence,t=[0,1,2,4,8,12] andT=12. The stability uncertaintiesstof the 160 nm, 80 nm, and 40 nm CDs are 0.24 nm, 0.60 nm,and 0.60 nm,respectively. Their uncertaintiesu1are 0.46 nm,0.71 nm,and 0.76 nm according to Eq.(11).

    Fig.16. Measurement position for homogeneity test.

    (2)Instrument The sample to be measured is magnified and imaged by the metrological SEM. The basic unit of the digital image is the pixel,and the actual size represented by a pixel is closely related to the magnification of the microscope and the resolution of the image analysis system.Therefore,the measurement system needs to be calibrated during the measurement process. The uncertainty introduced by the calibration of the instrument is evaluated by the type-B evaluation.The “Certificate for Examination of Measurement Standard”of the metrological SEM shows the relative expanded uncertainty isUrel=3%,k=2. Then the uncertaintyu2is

    whereWnis the nominal CD value.Thus the instrument uncertaintiesu2of the 160 nm,80 nm,and 40 nm CDs are 2.40 nm,1.20 nm,and 0.60 nm.

    (3) Algorithm In the algorithm, we define the top locationItopas half of the peak intensity of the two edges,as displayed in Eq. (2). The inconsistency of the peak intensity of the left and right edges causes the uncertainty ofItop. The bottom locationIbottomis the mean value of the baseline intensity. The connection between the edge and the baseline is not abrupt, but there is a smooth transition area. The uncertainty of whereIbottomtakes the transition area will affect the measurement result. Therefore, the uncertainty of the algorithm needs to be considered.

    Fig.17. Measurement position for homogeneity test.

    Figure 17 is a schematic diagram of the variation range ofItopandIbottom. The maximum relative measurement error

    Table 2. Measurement uncertainty evaluation.

    3.2. Discussion

    The method proposed in this article can meet the measurement requirements of a CD value≥40 nm. However,because the method defined by the laser wavelength traceability to the SI metre definition is limited by interference fringe subdivision and nonlinearity,its measurement uncertainty cannot be further reduced. The traceability method may no longer be applicable with the CD value decreasing.For example,the CD below 32 nm in the integrated circuit requires a measurement uncertainty of less than 10%, in which the proposed method would not guarantee to meet. At present, the TEM method based on the crystal lattice has excellent performance at the atomic scale. However, enough attention needs to be paid to its limitations,such as the destructive measurement and the location of the structure edges which are influenced by the contrast, oxygen layers, and the surface roughness, to improve measurement accuracy. Therefore,the following work will focus on the research of atomic scale nanometrology based on TEM.

    4. Conclusion

    This paper introduces a nano line width reference material with the 160 nm,80 nm,and 40 nm nominal CD values that are measured by a metrological scanning electron microscope and are traceable to the SI metre definition by the laser wavelength.The proposed method adopts noise rejection,leveling profile,half intensity, model characterization, and other ways to improve the CD measurement accuracy. The automatic identification and measurement of the CD are realized based on the intensity profile decomposition and thek-means algorithm. We experimentally analyze the uncertainty caused by the sample,instrument,algorithm,and repeatability. The relative standard uncertaintiesUrel(k=2)of the 160 nm,80 nm,and 40 nm CDs are 3.9%,4.3%, and 6.5%, respectively. Therefore, the reference material can be applied to calibrating the length value of the scanning electron microscope and other nanometer measurement equipment.

    Acknowledgements

    This work was supported by the National Key Research and Development Program of China (Grant No.2020YFF0218403)and the Basic Scientific Research Operating Fund of NIM(Grant No.AKYZD2007-1).

    猜你喜歡
    李偉王芳
    最佳波段組合的典型地物信息提取
    “田”野里的樂趣
    “制造”年獸
    王芳:帶貨“一姐”如何煉就?
    出版人(2020年10期)2020-10-26 06:26:52
    立秋吃什么
    孟母三遷
    The Application of Storytelling in English Writing
    喜行僧
    校園歌聲(2009年2期)2009-03-07 03:07:38
    av国产精品久久久久影院| 久久久亚洲精品成人影院| 18禁国产床啪视频网站| 欧美激情高清一区二区三区 | 91aial.com中文字幕在线观看| 在线观看免费日韩欧美大片| 久久99蜜桃精品久久| 国产精品欧美亚洲77777| 又黄又粗又硬又大视频| 国产成人精品一,二区| 午夜福利一区二区在线看| 欧美日韩一区二区视频在线观看视频在线| 亚洲伊人久久精品综合| 亚洲欧洲日产国产| 日韩 亚洲 欧美在线| 久久久久久久亚洲中文字幕| 免费女性裸体啪啪无遮挡网站| 亚洲欧洲国产日韩| 亚洲欧洲精品一区二区精品久久久 | 国产亚洲欧美精品永久| 老司机影院成人| 极品少妇高潮喷水抽搐| 色94色欧美一区二区| 日本av免费视频播放| 伦理电影免费视频| 国产乱来视频区| 亚洲精品久久成人aⅴ小说| 天堂中文最新版在线下载| 亚洲精品aⅴ在线观看| 亚洲一级一片aⅴ在线观看| 午夜日韩欧美国产| 97在线人人人人妻| 肉色欧美久久久久久久蜜桃| 日韩三级伦理在线观看| 欧美日韩av久久| 欧美在线黄色| 中文天堂在线官网| 亚洲av成人精品一二三区| 亚洲 欧美一区二区三区| 一区二区三区激情视频| 亚洲图色成人| 性高湖久久久久久久久免费观看| 久久精品国产自在天天线| 一级毛片 在线播放| 日日爽夜夜爽网站| 女人被躁到高潮嗷嗷叫费观| 岛国毛片在线播放| 一区二区av电影网| 一区二区三区乱码不卡18| 久久精品国产鲁丝片午夜精品| 亚洲经典国产精华液单| 七月丁香在线播放| 制服人妻中文乱码| 99热网站在线观看| 免费黄频网站在线观看国产| 一本久久精品| 久久精品国产综合久久久| 欧美人与性动交α欧美软件| 最近手机中文字幕大全| 国产精品久久久久成人av| 女人高潮潮喷娇喘18禁视频| 亚洲欧美一区二区三区黑人 | 自线自在国产av| 国产一区二区三区综合在线观看| 亚洲欧美成人综合另类久久久| 91精品国产国语对白视频| 国产精品久久久久久久久免| 夫妻性生交免费视频一级片| 一级片'在线观看视频| 国产精品熟女久久久久浪| 国产又爽黄色视频| 18在线观看网站| 亚洲欧洲精品一区二区精品久久久 | 免费观看无遮挡的男女| 亚洲美女搞黄在线观看| 免费观看av网站的网址| 国产精品免费大片| 成人二区视频| 99精国产麻豆久久婷婷| 国产亚洲欧美精品永久| 韩国av在线不卡| 亚洲,欧美精品.| 久久99蜜桃精品久久| 人人妻人人添人人爽欧美一区卜| 日日啪夜夜爽| 一级毛片黄色毛片免费观看视频| 中文字幕色久视频| 亚洲欧美精品综合一区二区三区 | 精品午夜福利在线看| av不卡在线播放| 巨乳人妻的诱惑在线观看| 成年人免费黄色播放视频| 日本欧美视频一区| 啦啦啦在线免费观看视频4| 日本爱情动作片www.在线观看| 999精品在线视频| 久久鲁丝午夜福利片| 国产极品粉嫩免费观看在线| 夜夜骑夜夜射夜夜干| 国产日韩欧美在线精品| 亚洲av国产av综合av卡| xxxhd国产人妻xxx| 精品亚洲成国产av| 免费观看av网站的网址| 久久久久人妻精品一区果冻| 久久精品国产亚洲av天美| 成人亚洲欧美一区二区av| 国产97色在线日韩免费| 国产精品久久久久久精品电影小说| 两个人免费观看高清视频| 亚洲精品自拍成人| 久久 成人 亚洲| 亚洲国产精品国产精品| 欧美精品人与动牲交sv欧美| 黑人猛操日本美女一级片| 国产乱来视频区| 老汉色av国产亚洲站长工具| av免费在线看不卡| 美女国产高潮福利片在线看| 久久精品国产亚洲av涩爱| 欧美日韩精品成人综合77777| 少妇猛男粗大的猛烈进出视频| 乱人伦中国视频| 亚洲成色77777| 爱豆传媒免费全集在线观看| 午夜激情av网站| 欧美黄色片欧美黄色片| av片东京热男人的天堂| 侵犯人妻中文字幕一二三四区| 亚洲,欧美精品.| 69精品国产乱码久久久| 中文乱码字字幕精品一区二区三区| 亚洲精品久久成人aⅴ小说| 只有这里有精品99| 国产免费一区二区三区四区乱码| 午夜免费男女啪啪视频观看| 精品一区二区免费观看| 九色亚洲精品在线播放| 人妻一区二区av| 最黄视频免费看| 久久精品国产综合久久久| 巨乳人妻的诱惑在线观看| 国产黄色免费在线视频| 亚洲欧美一区二区三区久久| 18禁国产床啪视频网站| 中国三级夫妇交换| 三级国产精品片| 欧美日本中文国产一区发布| 精品午夜福利在线看| 一边摸一边做爽爽视频免费| 国产成人精品在线电影| 可以免费在线观看a视频的电影网站 | 春色校园在线视频观看| 欧美+日韩+精品| 日韩不卡一区二区三区视频在线| 国产黄色视频一区二区在线观看| videosex国产| 精品一区在线观看国产| 高清在线视频一区二区三区| 母亲3免费完整高清在线观看 | 国产色婷婷99| 欧美亚洲 丝袜 人妻 在线| 国产免费视频播放在线视频| 自线自在国产av| 人妻 亚洲 视频| 国产成人精品久久久久久| 99久久中文字幕三级久久日本| 亚洲一区中文字幕在线| 黄片小视频在线播放| 搡女人真爽免费视频火全软件| 老司机亚洲免费影院| 考比视频在线观看| 最新中文字幕久久久久| 亚洲五月色婷婷综合| 日本黄色日本黄色录像| 99热网站在线观看| 成人二区视频| 伊人亚洲综合成人网| 久久久久久久久免费视频了| 男女午夜视频在线观看| 久久精品亚洲av国产电影网| 国产精品熟女久久久久浪| 久久亚洲国产成人精品v| 日本wwww免费看| 成年人午夜在线观看视频| 国产毛片在线视频| av片东京热男人的天堂| 国产成人欧美| 日韩一本色道免费dvd| 久久青草综合色| tube8黄色片| 久久99精品国语久久久| 亚洲精品日本国产第一区| 亚洲精品美女久久久久99蜜臀 | 国产精品一国产av| 精品久久久精品久久久| 亚洲国产精品999| 精品一区二区免费观看| 超碰97精品在线观看| 国产精品av久久久久免费| 国产片内射在线| 欧美成人午夜免费资源| 中文欧美无线码| 日韩欧美精品免费久久| kizo精华| 国产一区亚洲一区在线观看| 韩国精品一区二区三区| 国产极品天堂在线| 2021少妇久久久久久久久久久| 日韩在线高清观看一区二区三区| 少妇的丰满在线观看| 妹子高潮喷水视频| 久久免费观看电影| 嫩草影院入口| 欧美人与善性xxx| 中文字幕色久视频| 丝瓜视频免费看黄片| 天天躁夜夜躁狠狠久久av| 在线观看免费高清a一片| 一区二区日韩欧美中文字幕| 国产欧美日韩综合在线一区二区| 天堂俺去俺来也www色官网| 免费高清在线观看日韩| 日本爱情动作片www.在线观看| 欧美在线黄色| 亚洲av男天堂| 日韩一区二区三区影片| 寂寞人妻少妇视频99o| 观看美女的网站| 日韩视频在线欧美| 日韩精品有码人妻一区| 婷婷色av中文字幕| freevideosex欧美| 午夜福利影视在线免费观看| 看十八女毛片水多多多| 天堂8中文在线网| 波多野结衣av一区二区av| 如日韩欧美国产精品一区二区三区| 热99国产精品久久久久久7| 久久婷婷青草| 中文天堂在线官网| 国产一区二区三区av在线| 制服人妻中文乱码| 91成人精品电影| 这个男人来自地球电影免费观看 | 亚洲少妇的诱惑av| 午夜av观看不卡| 国产精品嫩草影院av在线观看| 日本黄色日本黄色录像| 成人18禁高潮啪啪吃奶动态图| 欧美av亚洲av综合av国产av | av在线播放精品| 午夜免费观看性视频| 日韩精品有码人妻一区| 国产一级毛片在线| 国产极品天堂在线| 亚洲欧美一区二区三区国产| 满18在线观看网站| 日韩欧美精品免费久久| 成人免费观看视频高清| 最近中文字幕高清免费大全6| 日韩电影二区| 女人精品久久久久毛片| 欧美成人午夜免费资源| 日韩中字成人| 国产精品久久久久久精品古装| 大话2 男鬼变身卡| 久久精品国产综合久久久| 高清视频免费观看一区二区| www.精华液| 十八禁高潮呻吟视频| 国产精品无大码| 国产老妇伦熟女老妇高清| 国产一区二区激情短视频 | 黄色配什么色好看| 综合色丁香网| 国产不卡av网站在线观看| 一级毛片 在线播放| 欧美成人精品欧美一级黄| 久久久亚洲精品成人影院| 日韩免费高清中文字幕av| 久久久久国产网址| 黑人欧美特级aaaaaa片| 亚洲精品一二三| av网站在线播放免费| 亚洲伊人色综图| 一区在线观看完整版| 人妻少妇偷人精品九色| 中文字幕人妻丝袜制服| 一级毛片我不卡| 久久久久国产网址| 看免费av毛片| 亚洲久久久国产精品| 国产亚洲午夜精品一区二区久久| 波多野结衣av一区二区av| 日韩伦理黄色片| 国产精品一二三区在线看| 亚洲av日韩在线播放| 欧美日韩国产mv在线观看视频| 亚洲在久久综合| 多毛熟女@视频| 波多野结衣av一区二区av| 久久久久精品久久久久真实原创| 如何舔出高潮| 国产 一区精品| 狂野欧美激情性bbbbbb| 男的添女的下面高潮视频| 亚洲综合精品二区| 熟女电影av网| 午夜福利影视在线免费观看| 久久久国产精品麻豆| xxxhd国产人妻xxx| 国产探花极品一区二区| 精品少妇久久久久久888优播| 国产午夜精品一二区理论片| 日本猛色少妇xxxxx猛交久久| 男女午夜视频在线观看| 七月丁香在线播放| 国产亚洲精品第一综合不卡| 成人国产av品久久久| 美女中出高潮动态图| 久久久久久伊人网av| 亚洲精品国产av蜜桃| 一区二区三区精品91| 亚洲欧美一区二区三区国产| 一级,二级,三级黄色视频| 中文乱码字字幕精品一区二区三区| 叶爱在线成人免费视频播放| 久久午夜福利片| 亚洲中文av在线| 最近中文字幕高清免费大全6| 人妻一区二区av| 亚洲欧洲精品一区二区精品久久久 | 超碰97精品在线观看| 这个男人来自地球电影免费观看 | 侵犯人妻中文字幕一二三四区| 尾随美女入室| 国产国语露脸激情在线看| 伦理电影免费视频| 久久久久久久国产电影| 国产黄色免费在线视频| 9191精品国产免费久久| 考比视频在线观看| 亚洲熟女精品中文字幕| videossex国产| 亚洲欧美色中文字幕在线| 久久99精品国语久久久| 午夜日韩欧美国产| 亚洲三级黄色毛片| 成人黄色视频免费在线看| 九色亚洲精品在线播放| 视频在线观看一区二区三区| 少妇熟女欧美另类| 日韩av在线免费看完整版不卡| 欧美日韩av久久| 人体艺术视频欧美日本| 久久久久人妻精品一区果冻| 亚洲精品国产av蜜桃| 妹子高潮喷水视频| 永久网站在线| 好男人视频免费观看在线| 欧美日本中文国产一区发布| av天堂久久9| av在线app专区| 中文字幕人妻熟女乱码| 国产精品久久久久久精品电影小说| 久久国产精品大桥未久av| 亚洲国产精品一区三区| 国产色婷婷99| 成人国产麻豆网| 97精品久久久久久久久久精品| 色网站视频免费| 成人漫画全彩无遮挡| 欧美av亚洲av综合av国产av | 亚洲色图 男人天堂 中文字幕| 色婷婷久久久亚洲欧美| 中文字幕另类日韩欧美亚洲嫩草| 一二三四中文在线观看免费高清| 亚洲男人天堂网一区| 男女边吃奶边做爰视频| 亚洲欧美色中文字幕在线| 99热国产这里只有精品6| 国产精品一二三区在线看| 男的添女的下面高潮视频| 99久久综合免费| 精品少妇黑人巨大在线播放| 欧美日韩亚洲国产一区二区在线观看 | 狠狠精品人妻久久久久久综合| 2022亚洲国产成人精品| 亚洲精品国产av成人精品| 亚洲精品美女久久久久99蜜臀 | 亚洲精品一二三| 亚洲av成人精品一二三区| 少妇人妻精品综合一区二区| 伦理电影大哥的女人| av一本久久久久| 久久精品国产鲁丝片午夜精品| 香蕉国产在线看| 亚洲国产色片| 日韩熟女老妇一区二区性免费视频| 久久ye,这里只有精品| 巨乳人妻的诱惑在线观看| 成人黄色视频免费在线看| 国产黄色视频一区二区在线观看| 日本-黄色视频高清免费观看| 亚洲精品av麻豆狂野| 久久国产精品男人的天堂亚洲| 久久久精品国产亚洲av高清涩受| 日韩 亚洲 欧美在线| 欧美日韩综合久久久久久| 两个人看的免费小视频| 亚洲精品乱久久久久久| 欧美 日韩 精品 国产| 久久精品夜色国产| 伊人久久大香线蕉亚洲五| 国产精品麻豆人妻色哟哟久久| 精品国产乱码久久久久久男人| 国产国语露脸激情在线看| 日日摸夜夜添夜夜爱| 中文字幕制服av| 国产一区二区激情短视频 | 亚洲国产av影院在线观看| 久久午夜福利片| 亚洲第一av免费看| 边亲边吃奶的免费视频| 美女xxoo啪啪120秒动态图| 亚洲成人一二三区av| 亚洲久久久国产精品| 免费播放大片免费观看视频在线观看| 国产在视频线精品| 天天影视国产精品| 在线看a的网站| 亚洲情色 制服丝袜| 久久久久久久大尺度免费视频| 久久久久久久久久久免费av| 免费不卡的大黄色大毛片视频在线观看| av女优亚洲男人天堂| 国产不卡av网站在线观看| 69精品国产乱码久久久| av国产久精品久网站免费入址| 人人澡人人妻人| 国产精品一区二区在线不卡| 欧美亚洲日本最大视频资源| 人人妻人人澡人人爽人人夜夜| 爱豆传媒免费全集在线观看| 少妇人妻精品综合一区二区| 免费大片黄手机在线观看| 桃花免费在线播放| 黄色视频在线播放观看不卡| 久久久久精品人妻al黑| 精品一区二区三区四区五区乱码 | 国产精品一二三区在线看| 伦精品一区二区三区| 亚洲欧美成人综合另类久久久| 一级毛片我不卡| 免费少妇av软件| 亚洲一码二码三码区别大吗| 亚洲情色 制服丝袜| 国产乱人偷精品视频| 交换朋友夫妻互换小说| 色视频在线一区二区三区| 亚洲少妇的诱惑av| 亚洲av国产av综合av卡| 久久精品久久精品一区二区三区| 精品人妻一区二区三区麻豆| 亚洲精品视频女| 精品国产国语对白av| 欧美变态另类bdsm刘玥| 国产一区二区三区av在线| 丰满少妇做爰视频| 热99久久久久精品小说推荐| 少妇人妻 视频| 国产成人aa在线观看| 国产在线免费精品| 中文字幕色久视频| 亚洲图色成人| 国产一区二区三区av在线| www日本在线高清视频| 欧美最新免费一区二区三区| 国产男人的电影天堂91| 久热久热在线精品观看| 永久免费av网站大全| 在线观看免费高清a一片| 午夜免费观看性视频| 婷婷色综合大香蕉| 一二三四在线观看免费中文在| 国产高清不卡午夜福利| 国产亚洲午夜精品一区二区久久| 乱人伦中国视频| 国产精品免费视频内射| 女性生殖器流出的白浆| 欧美少妇被猛烈插入视频| 成年av动漫网址| 国产成人精品久久二区二区91 | 高清视频免费观看一区二区| 精品午夜福利在线看| 久久精品夜色国产| 交换朋友夫妻互换小说| 一区二区三区四区激情视频| 一区二区日韩欧美中文字幕| av片东京热男人的天堂| 国产精品国产三级国产专区5o| 色网站视频免费| 9色porny在线观看| 在线观看人妻少妇| 91aial.com中文字幕在线观看| 亚洲欧美清纯卡通| 国产在线视频一区二区| 大片电影免费在线观看免费| 国产乱人偷精品视频| 91aial.com中文字幕在线观看| 超碰成人久久| av有码第一页| 中文字幕最新亚洲高清| 国产一级毛片在线| 欧美精品人与动牲交sv欧美| 国产免费视频播放在线视频| 久久毛片免费看一区二区三区| 色吧在线观看| 亚洲成人一二三区av| av网站免费在线观看视频| 嫩草影院入口| 欧美激情 高清一区二区三区| 日韩大片免费观看网站| 建设人人有责人人尽责人人享有的| 久久国产精品大桥未久av| 久久久久久久久免费视频了| 久久久国产欧美日韩av| 欧美亚洲 丝袜 人妻 在线| 中文乱码字字幕精品一区二区三区| 黄色一级大片看看| 伦理电影免费视频| 欧美av亚洲av综合av国产av | 亚洲精品aⅴ在线观看| 丝袜美足系列| 精品少妇黑人巨大在线播放| 一边亲一边摸免费视频| 国产野战对白在线观看| 观看av在线不卡| 韩国av在线不卡| 黄频高清免费视频| 亚洲 欧美一区二区三区| 考比视频在线观看| 日韩中文字幕视频在线看片| 自线自在国产av| 亚洲激情五月婷婷啪啪| 欧美人与性动交α欧美软件| 久久久久精品人妻al黑| 久久久精品94久久精品| 精品一区二区三卡| 欧美人与性动交α欧美精品济南到 | 亚洲熟女精品中文字幕| 亚洲一区中文字幕在线| 成人亚洲欧美一区二区av| 在线观看美女被高潮喷水网站| 秋霞伦理黄片| 少妇的丰满在线观看| 黑人巨大精品欧美一区二区蜜桃| 午夜av观看不卡| 秋霞在线观看毛片| a级毛片在线看网站| www日本在线高清视频| 成人亚洲欧美一区二区av| 精品少妇内射三级| 九草在线视频观看| 观看美女的网站| 午夜福利,免费看| 激情五月婷婷亚洲| 80岁老熟妇乱子伦牲交| 2018国产大陆天天弄谢| videos熟女内射| 日韩制服骚丝袜av| 久久久久久免费高清国产稀缺| 国产黄色免费在线视频| 国产精品免费视频内射| 交换朋友夫妻互换小说| 在线 av 中文字幕| 亚洲欧美一区二区三区黑人 | 国产一区二区三区综合在线观看| 国产高清国产精品国产三级| av视频免费观看在线观看| 久久久国产一区二区| 国产又爽黄色视频| xxx大片免费视频| 欧美97在线视频| 又粗又硬又长又爽又黄的视频| 国产日韩欧美在线精品| 亚洲一级一片aⅴ在线观看| 丁香六月天网| 国产极品粉嫩免费观看在线| 精品国产超薄肉色丝袜足j| 国产成人精品久久二区二区91 | 精品人妻一区二区三区麻豆| 精品福利永久在线观看| 久久久久人妻精品一区果冻| 18禁观看日本| 黄频高清免费视频| 美女xxoo啪啪120秒动态图| 国产欧美日韩一区二区三区在线| 大香蕉久久成人网| 麻豆乱淫一区二区| 这个男人来自地球电影免费观看 | 最近手机中文字幕大全| 中文字幕人妻丝袜制服| 五月天丁香电影| 人成视频在线观看免费观看| 亚洲国产精品成人久久小说| 伊人亚洲综合成人网| 日韩 亚洲 欧美在线| 久久久亚洲精品成人影院| 国产黄色视频一区二区在线观看| 成人毛片a级毛片在线播放| 欧美日韩av久久| 男女啪啪激烈高潮av片| 亚洲精品成人av观看孕妇|