• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Phase-matching quantum key distribution with light source monitoring

    2022-05-16 07:08:32WenTingLi李文婷LeWang王樂(lè)WeiLi李威andShengMeiZhao趙生妹
    Chinese Physics B 2022年5期
    關(guān)鍵詞:李威

    Wen-Ting Li(李文婷) Le Wang(王樂(lè)) Wei Li(李威) and Sheng-Mei Zhao(趙生妹)

    1Institute of Signal Processing Transmission,Nanjing University of Posts and Telecommunications,Nanjing 210003,China

    2Key Laboratory of Broadband Wireless Communication and Sensor Network Technology,Ministry of Education,Nanjing 210003,China

    Keywords: phase-matching quantum key distribution,source fluctuation,light source monitoring

    1. Introduction

    Quantum key distribution (QKD) is the most successful application in quantum information science, and its security has been proved at the end of the last century.[1–3]It enables distant parties to achieve the secure key by harnessing the laws of quantum mechanics.[4,5]After the first QKD protocol was proposed in 1984,[4]QKD has made great progress in theory and practice,such as decoy-state QKD protocol,[6,7]measurement-device-independent (MDI) protocol,[8,9]and round-robin differential-phase-shift (RRDPS) protocol.[10,11]Usually, photons are used as information carriers in QKD’s implementations. However, the transmission loss of photons has become a major obstacle in practical applications, resulting in the linear key-rate bound (PLOB bound) for QKD system.[12]In fiber-based networks, the transmission rate(η)decreases exponentially with the communication distance,which limits the transmission distance of the practical QKD system.

    Marvelously,a quantum key distribution protocol,named twin field quantum key distribution (TF-QKD) protocol, was proposed in 2018[13]to surpass the PLOB bound[12]and make a quadratic improvement over phase-encoding MDI-QKD protocol.[14]It has attracted much attention recently.[15–21]For TF-QKD protocol,the security problem caused by phase randomization was its main disadvantage. And phase matching quantum key distribution (PM-QKD) protocol[22]was then proposed to resolve the security loophole by adding an extra test mode. PM-QKD protocol could not only exceed the linear key rate limit, but also resist all probe attacks due to the independence of the measurement device. Recently,Maet al.[23]have proposed the reference-frame-independent design for PM-QKD protocol,which can well solve the performance degradation of reference system caused by offset. However,the quantum state prepared at the source was assumed to be an ideal coherent state in the original PM-QKD protocol. Actually, this assumption is not guaranteed in practice, leading to practical secure issues.[24]In addition, there also exists a non-ideal source problem causing the photon number distribution(PND)of the light source to be unknown and the prepared state to no longer be an ideal coherent state.

    On the other hand, light source monitoring (LSM) was proposed to solve the non-ideal source problem by monitoring the photon number distribution (PND) of the non-ideal light source.[25]The monitored statistical parameters can then be used to recalibrate the PND of the light source to estimate the final secret key rate, resulting that the assumption of ideal source is not necessary in QKD process. LSM was successfully applied to MDI-QKD protocol to solve the nonideal source problem theoretically based on the “untagged bits”concept,[26]and then based on a photon number resolving(PNR).[27]LSM was also used for the sending-or-not-sending(SNS)protocol to demonstrate that the security of SNS protocol is still valid under a source with unknown PND.[28]

    In the paper, we propose a PM-QKD with light source monitoring protocol, named PM-QKD-LSM protocol. In the protocol,the non-ideal light source is used to generate the light beam by Alice and Bob independently. After phase and intensity modulation, the light beam is then split to two paths by a beam splitter (BS), where one is input to the LSM module to estimate the probabilities that the light pulse signals contain zero photon, one photon, or two photons, and the other is emitted to the measurement site,Charlie,for detection. By matching phases with each other during post-selection,the key information is encoded into the common phase, and then the key can be obtained through the success detection results.

    The advantages of the proposed PM-QKD-LSM protocol are:(1)it overcomes the problem of non-ideal light source and improves the security of the PM-QKD protocol;(2)its performance under the unknown PND condition (UPC) can almost keep the same as that of PM-QKD protocol under ideal source condition without source fluctuation; (3) it is more independent of the source fluctuation than the PM-QKD protocol;and(4)the performance is almost unchanged as that of PM-QKD protocol under asymmetric channel.

    The contribution of this paper is that we investigate the ability of LSM in solving the non-ideal light source problem in PM-QKD protocol,and discuss the performance of PM-QKDLSM protocol under different source fluctuation.Furthermore,we enrich the work on the performance of PM-QKD-LSM protocol with symmetrical or asymmetrical channel. The results are helpful for the design of the practical PM-QKD system.In addition,the results in the paper show that the protocol we proposed not only solves the problem of non-ideal light source at the light source side,which relaxes the requirements on the light source, but also improves the security of the PM-QKD protocol. The improvement can be addressed from the following two aspects. One is that the LSM module itself has the function of monitoring the probability of the number of photons in our proposed protocol, which can detect the PNS attack. The other one is that the LSM module can also be regarded as a monitoring unit to monitoring the arrival time of the pulses so as to resist the phase-remapping attack.

    The paper is organized as follows. In Section 2, we first present the PM-QKD-LSM protocol, then we use the LSM method to obtain the tight bounds of the parameters for the secret key rate, and discuss the performance of the proposed protocol under the source fluctuation. In Section 3,we present some numerical analysis results. Finally,we draw the conclusions in Section 4.

    2. PM-QKD-LSM protocol

    2.1. The protocol

    The schematic diagram of PM-QKD-LSM protocol is shown in Fig. 1, where the two communication parties, Alice and Bob,generate her(his)coherent state pulses,independently at first. Before sending their coherent state pulses to an untrusted measurement site,Charlie,Alice and Bob use a LSM module individually to estimate the tight bound of the photon number probabilities (PnL(μk),PnU(μk)) on her(his) PND of the light source. Here, the subscribe L (U) andndenote the lower(upper)bound and the photon number(n=0,1,2), respectively. Then, Charlie is expected to perform the interference detection. This interference measurement would match the phases of Alice and Bob’s signals. Conditioned on Charlie’s announcement,there is a correlation between the key information of Alice and Bob.

    Fig.1. The schematic diagram of PM-QKD-LSM protocol. SPD,a single photon detector; VOA, a variable optical attenuator; BS, the beam splitter; IM, intensity modulator; PM, phase modulator. The LSM module consists of a variable optical attenuator and a single photon detector(SPD-A/SPD-B).

    The proposed protocol can be described in detail as follows.

    (ii) Measurement Alice and Bob use the beam splitter(BS) to split the light beam into two paths. One is used for LSM module to estimate the photon number probabilities and the other is sent to the measurement site(Charlie)with transmittancesηa(ηb). By changing the attenuation coefficient(ηi)of the VOA in the LSM module,Alice(Bob)measures the probabilities(Pμk(ηi))that the SPD-A(SPD-B)not responds.Charlie is expected to perform the interference detection and record which detector(right detector or left detector)clicks. A successful detection is defined as that one and only one of the two detectors clicks,denoted byL-click andR-click.

    (vi) Key generation Alice and Bob repeat steps (i)–(v)until they have enough sifted keys. Afterwards, they perform an error correction and privacy amplification on the sifted key bits to get a fully secret key.

    2.2. The security analysis

    In this section,we discuss the security of PM-QKD-LSM protocol.

    As discussed above, PM-QKD-LSM protocol also includes state preparation,measurement,announcement,sifting,parameter estimation and key generation. The first difference between PM-QKD-LSM protocol and original PM-QKD protocol is the state preparation step. In original PM-QKD protocol,Alice(Bob)prepares the coherent state pulse and encodes the key information into the phases of the coherent states. It is assumed that the light source at Alice (Bob) side is a coherent state source with a average photon number which satisfies the Poisson distribution. However, the photon number distribution is unstable in the proposed PM-QKD-LSM protocol due to the non-ideal factors of the light source. Therefore, LSM module is adopted by Alice (Bob) to estimate the photon number probabilities. Obviously, the usage of LSM module does not affect the sooner measurement step, the following announcement and sifting. The second difference is the parameter estimation step, PM-QKD-LSM protocol adds the probability estimations of zero photon, one photon, and two photons precisely, which only has the relationship with the secure key rate, and is discussed in the following subsection. Hence,we only prove that the quantum state prepared in our protocol does not introduce the security problem.

    Hence,it is shown that the quantum state is formally consistent with that of PM-QKD protocol. Moreover,the security proof of PM-QKD protocol[22]can be fully applied to our proposed protocol.

    For the actual system security, the structure of system may introduce some security vulnerabilities. We discuss the security of the proposed protocol against the security vulnerabilities,individually,as follows.

    (i)PNS attack During the proposed protocol,the eavesdropper(Eve)has the chances to intervene and eavesdrop the signal by beam splitting attack(PNS).As PM-QKD protocol,we use the decoy state method in the proposed protocol,that is effectively against PNS attack. In addition, the LSM module used in the proposed protocol can estimate the probabilities of zero photon, single photon and two photon precisely, so that the PNS attack can be detected by Alice(Bob),and the security can be improved.

    (ii)Phase-remapping attack Ideally,the pulses undergo a phase modulation by the phase modulator.If Eve can change the arrival time of the pulses,then the pulses will pass through the phase modulator at different time, resulting in different encoded phases. This phase remapping process allows Eve to launch an intercept-and-resend attack. However, the LSM module can also be approximately regarded as a monitoring unit to monitor the arrival time of the pulses so as to resist this attack.

    (iii) Other practical issues A single photon detector(SPD),together with a variable attenuator,are used in our proposed protocol. The SPD may have a high dark count rate(DCR) when it works at room temperature, which may increase the time of monitoring the results. A high DCR and the increased monitoring time can introduce the overestimation of secret key rate. However,the SPD is set near the light source in our protocol and DCR=10-8?1(in our simulations),[25]which make the increased monitoring time ignored.Of course,the DCR of SPD may fluctuate in the actual environment,and other parameters,such as the detection efficiency of SPD,may drift. One can calibrate all parameters of the monitor in real time,[25]or present a range of parameter drifts and give a reasonable estimation of the lower bound of secret key rate (R)with the worst cases within the fluctuation range.

    2.3. Secret key rate of the protocol

    In PM-QKD-LSM protocol, three different coefficients(η0,η1andη2)are used to concisely estimate the photon number probabilities(PnL(μk),PnU(μk)),and they are controllable.The relation[29]betweenPμk(ηi)andPn(μk)can be described as

    2.4. Source fluctuation

    For a real-life QKD system,the PND of the light source’s signal is not fixed, that is, there is a problem of the light source fluctuation. Importantly, the performance of the PMQKD protocol is greatly degraded in this condition.Therefore,we further discuss the intensity fluctuation for PM-QKD-LSM protocol.

    Specifically, the signal emitted from the light source can be considered as a fluctuated coherent state which has an average photon number with Gaussian-distribution.[27,28]In PMQKD-LSM protocol, the signal after attenuation still has a Gaussian-distribution average photon numberμ, which has a probability distribution of

    whereσμk=σμ0,σis the fluctuation coefficient. With Eqs. (4)–(9), thePn(μk) can be estimated byPμk(ηi) under considering the source fluctuation.[31,32]

    3. Results with numerical simulation

    Table 1. Estimation result of{PnL(μk),PnU(μk)}in the LSM scheme.

    Then,we discuss the performance of the proposed protocol. The parameters are the same as those in Ref.[30],which are listed in Table 2.

    Figure 2 shows the secret key generation rate of the proposed protocol against transmission distance, together with that of original PM-QKD protocol. The results show that PM-QKD-LSM protocol can exceed PLOB bound when the transmission distance is greater than 212 km, and the performance of PM-QKD-LSM protocol (dashed curve) is close to that of the original PM-QKD protocol(solid curve).The ratios of secret key rate between PM-QKD-LSM protocol and PMQKD protocol are about 93.6%,93.0%,92.4%at the distance of 100 km, 200 km, 400 km, and the maximum transmission distances of PM-QKD-LSM protocol and PM-QKD protocol are 504 km and 507 km, respectively, where the maximum transmission distance is calculated asL=LA+LB.

    Table 2. The numerical simulation parameters.

    Fig. 2. The performance of PM-QKD-LSM protocol in comparison with that of PM-QKD protocol with the parameters set in Table 2. For 300 km transmission distance, the secret key rate for PM-QKD-LSM protocol is 2.23×10-6,while it is 2.41×10-6 for PM-QKD protocol.

    Fig. 3. The performance of the PM-QKD-LSM protocol with a nonideal and fluctuated light source compared to the PM-QKD protocol.σ: the fluctuation coefficient. For the PM-QKD-LSM protocol,a small fluctuation σ=1%(solid curve)and a large fluctuation σ=10%(dashdotted curve)are considered.For the PM-QKD protocol,a small fluctuation σ =1%(dashed curve)and a relatively large fluctuation σ =2%(dotted curve)are considered.

    After that,we discuss the performance of both PM-QKD protocol and PM-QKD-LSM protocol under the different fluctuation coefficientσ=σμk/μ0in Fig. 3. The values of intensities for the PM-QKD-LSM protocol and the PM-QKD protocol are optimized, and other simulation parameters are set the same as Table 2. It is shown that the PM-QKD-LSM protocol performs well in the practical systems. For the different fluctuation coefficientσ, the PM-QKD protocol has a obviously weaker performance, as its maximum transmission distance decreases to about 480 km for a small fluctuated light source(σ=1%),then decreases to about 460 km whenσup to 2%. However, for the PM-QKD-LSM protocol, its performances are almost unchanged under the fluctuated condition fromσ=1%toσ=10%.

    The above discussions are under the symmetric condition which satisfyLA=LB. Later, we discuss the performance of PM-QKD-LSM protocol under the asymmetric channel.Hence, we set the transmission distance to satisfyLB-LA=30 km andμA,μB ∈{0,μ/2,ν1/2},whereμ/2 is the signal intensity. Other simulation parameters are set the same as those in Table 2. Figure 5 shows the performance of the PM-QKDLSM protocol and the PM-QKD protocol under the asymmetric channel without source fluctuation,where the transmission distanceL=LB+LA. The results show that PM-QKD-LSM protocol can exceed PLOB bound when the transmission distance is greater than 275 km. The performance of PM-QKDLSM protocol (dashed curve) is almost same to that of PMQKD protocol (solid curve) for all the transmission distance.For 300 km transmission distance,the secret key rate for PMQKD-LSM protocol is 5.13×10-7,while it is 5.70×10-7for PM-QKD protocol,they are smaller than those under symmetric channel.

    Fig. 4. The performance of the PM-QKD-LSM protocol and that of PM-QKD with average intensity method under different source fluctuation. For two different methods,a small fluctuation σ =1%(red curve)and a large fluctuation σ =10%(blue curve)are considered. The solid curves denote the PM-QKD-LSM protocol and dash-dotted curves denote the PM-QKD protocol with average intensity.

    Fig. 5. The performance of the asymmetric PM-QKD-LSM protocol and the PM-QKD protocol without source fluctuate. The transmission distance is set to satisfy LB-LA =30 km, and the abscissa represents the total transmission distance(L=LB+LA).

    We further consider the effect of the light source fluctuation on the asymmetric channel. The fluctuation coefficients are set up toσ=1%andσ=5%,respectively,and the other simulation parameters are the same as those in symmetric case.The results in Fig.6 indicate that the PM-QKD-LSM protocol has a better performance in the case of source fluctuation,even the source fluctuation is 10 times greater than that of asymmetry PM-QKD protocol.

    In addition, we show the performance of the asymmetric PM-QKD-LSM protocol under different fluctuation coefficient versus the different Alice to Charlie transmission distance in Fig.7. The total transmission distance is set to 50 km,and the distance from Alice to Charlie is set from 5 km to 25 km. It can be seen from Fig. 7 that the performance of the asymmetric PM-QKD-LSM protocol with different source fluctuations are almost the same, which indicates the asymmetric PM-QKD-LSM protocol is also robust to the source fluctuation.that of PM-QKD protocol with source fluctuation. The symmetric and asymmetric PM-QKD-LSM protocol are robust to the source fluctuation. It is indicated that the PM-QKD-LSM protocol can still have a long transmission distance with the fluctuated source in practical QKD systems.

    Fig.6. The performance of the asymmetric PM-QKD-LSM protocol for different Alice to Charlie transmission distance under source fluctuation. The transmission distance is set to satisfy LB-LA=30 km,and the abscissa represents the total transmission distance (L=LB+LA). The fluctuation coefficient σ =1% (solid curve) and σ =5% (dashed curve) in the asymmetric PM-QKD-LSM protocol are set, respectively. The fluctuation coefficient σ =0.4%(dash-dotted curve)and σ =0.5%(dotted curve)in the asymmetric PM-QKD protocol are studied,respectively.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos. 61871234 and 62001249) and Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University(Grant No.KF201909).

    Fig.7. The performance of the asymmetric PM-QKD-LSM protocol under different fluctuation coefficient of light source. For the asymmetric channel, the fluctuation coefficient σ =0 (solid curve), a small fluctuation σ =1%(dashed curve)and a large fluctuation σ =5%(dash-dotted curve)are considered.

    4. Conclusion

    In this paper,we apply the LSM module to the PM-QKD protocol to solve the non-ideal source problem in practical QKD systems, where the LSM module is used to estimate the probabilities of zero photon,single photon and two photon precisely. We derive the more rigorous secret key rate under different source fluctuations.The results show that,whether in symmetric or asymmetric cases, the performance of the PMQKD-LSM protocol under UPC is almost the same as those of the PM-QKD protocol without source fluctuation. Moreover, PM-QKD-LSM protocol has a better performance than

    猜你喜歡
    李威
    晨讀
    夜讀(一)
    付明貞、趙蕾蕾、張揚(yáng)、李威作品
    把自媒體做到非洲去
    停止抱怨,你才能所向披靡
    把自媒體做到非洲去
    意林(2019年20期)2019-10-24 21:05:06
    女漢子的春天
    喜劇世界(2016年11期)2016-11-26 07:08:30
    協(xié)議幾經(jīng)變更 房子應(yīng)該歸誰(shuí)
    科長(zhǎng)的微博
    雜文選刊(2013年11期)2013-05-14 13:38:10
    李威作品
    日韩人妻高清精品专区| 午夜老司机福利剧场| 亚洲18禁久久av| 久久99热这里只有精品18| 深夜a级毛片| 国产三级中文精品| 欧美区成人在线视频| 麻豆一二三区av精品| 日韩欧美国产在线观看| 国内精品久久久久久久电影| 好男人在线观看高清免费视频| 中亚洲国语对白在线视频| 国内毛片毛片毛片毛片毛片| 国产精品三级大全| 婷婷六月久久综合丁香| 日本与韩国留学比较| 女同久久另类99精品国产91| 国产精品99久久久久久久久| 天堂av国产一区二区熟女人妻| 日本一二三区视频观看| 日本 欧美在线| 国内毛片毛片毛片毛片毛片| 国产精品爽爽va在线观看网站| 亚洲18禁久久av| 久久99热这里只有精品18| 无遮挡黄片免费观看| 老熟妇仑乱视频hdxx| 九九在线视频观看精品| 搞女人的毛片| 午夜视频国产福利| 成年女人毛片免费观看观看9| 69人妻影院| 亚洲av日韩精品久久久久久密| 丰满的人妻完整版| 精品乱码久久久久久99久播| av在线观看视频网站免费| 亚洲精品日韩av片在线观看| 日韩欧美一区二区三区在线观看| 国产精品一区二区三区四区久久| 在线观看美女被高潮喷水网站 | 国产精品三级大全| 午夜亚洲福利在线播放| 性插视频无遮挡在线免费观看| 亚洲最大成人手机在线| 欧美日韩福利视频一区二区| 亚洲第一欧美日韩一区二区三区| 亚洲男人的天堂狠狠| 一本精品99久久精品77| 级片在线观看| 国产伦精品一区二区三区四那| 9191精品国产免费久久| 特级一级黄色大片| 一级黄色大片毛片| 黄色配什么色好看| 小说图片视频综合网站| 亚洲电影在线观看av| 麻豆久久精品国产亚洲av| 日韩欧美 国产精品| 国内少妇人妻偷人精品xxx网站| 午夜影院日韩av| 欧美午夜高清在线| 精品午夜福利在线看| 舔av片在线| 最近最新免费中文字幕在线| 国产成人aa在线观看| 国产精品久久久久久久久免 | 亚洲色图av天堂| 亚洲国产高清在线一区二区三| 午夜福利高清视频| 午夜免费成人在线视频| 国产一区二区在线观看日韩| 亚洲激情在线av| 天堂√8在线中文| 久久久久久国产a免费观看| 88av欧美| 国产黄a三级三级三级人| 舔av片在线| 欧美黑人巨大hd| www.www免费av| 简卡轻食公司| 首页视频小说图片口味搜索| 亚洲天堂国产精品一区在线| 久久久久久久久中文| 国产伦一二天堂av在线观看| 国产精品乱码一区二三区的特点| 在线天堂最新版资源| 波多野结衣高清无吗| 草草在线视频免费看| 免费高清视频大片| а√天堂www在线а√下载| 给我免费播放毛片高清在线观看| 午夜福利在线观看吧| 嫩草影院入口| 免费观看的影片在线观看| 国产精品久久视频播放| 亚洲五月天丁香| 女人十人毛片免费观看3o分钟| a在线观看视频网站| 国模一区二区三区四区视频| 亚洲精华国产精华精| 嫩草影院入口| a在线观看视频网站| 国产成人影院久久av| 欧美激情在线99| 舔av片在线| а√天堂www在线а√下载| 免费看美女性在线毛片视频| 一夜夜www| 亚洲av一区综合| 国产黄a三级三级三级人| 久久精品影院6| 深夜精品福利| 麻豆国产97在线/欧美| 十八禁网站免费在线| www日本黄色视频网| 国产乱人伦免费视频| 日本成人三级电影网站| 变态另类成人亚洲欧美熟女| 老熟妇乱子伦视频在线观看| 在线观看66精品国产| 伦理电影大哥的女人| 成年版毛片免费区| 国产白丝娇喘喷水9色精品| 激情在线观看视频在线高清| 变态另类成人亚洲欧美熟女| 久久国产精品影院| 国产精品久久久久久久电影| 麻豆成人av在线观看| 国产精品98久久久久久宅男小说| 三级毛片av免费| 51午夜福利影视在线观看| 久久久久久久精品吃奶| 日韩高清综合在线| 日本一二三区视频观看| 99riav亚洲国产免费| 国产中年淑女户外野战色| 一级av片app| 色尼玛亚洲综合影院| 观看免费一级毛片| 精品国内亚洲2022精品成人| 中文字幕av在线有码专区| 91九色精品人成在线观看| 黄色一级大片看看| 麻豆成人av在线观看| 一区二区三区激情视频| 精品一区二区三区视频在线观看免费| 日本黄大片高清| 亚洲精品在线观看二区| 欧美+亚洲+日韩+国产| 国产三级在线视频| 亚洲精品成人久久久久久| 日本 av在线| www.色视频.com| 久久中文看片网| 综合色av麻豆| 日本a在线网址| 日本熟妇午夜| 国产精品伦人一区二区| 干丝袜人妻中文字幕| 亚洲国产精品国产精品| 日本一本二区三区精品| 小蜜桃在线观看免费完整版高清| 色5月婷婷丁香| 日韩成人伦理影院| 99久久九九国产精品国产免费| 国产午夜福利久久久久久| 中文天堂在线官网| 国产精品偷伦视频观看了| 日韩欧美精品v在线| 久久久久久久久大av| 国产av不卡久久| 2018国产大陆天天弄谢| 啦啦啦中文免费视频观看日本| 欧美成人一区二区免费高清观看| 成人漫画全彩无遮挡| 亚洲av电影在线观看一区二区三区 | 五月开心婷婷网| 在线a可以看的网站| 99精国产麻豆久久婷婷| 人妻夜夜爽99麻豆av| 国产免费福利视频在线观看| 国产乱人视频| 国产一区二区三区av在线| 国产伦精品一区二区三区视频9| xxx大片免费视频| 综合色丁香网| 91久久精品国产一区二区成人| 免费观看的影片在线观看| 97精品久久久久久久久久精品| 欧美 日韩 精品 国产| 国产亚洲av片在线观看秒播厂| 真实男女啪啪啪动态图| av在线亚洲专区| 99视频精品全部免费 在线| 国产永久视频网站| av播播在线观看一区| 久久久成人免费电影| 国产视频首页在线观看| 亚洲国产精品成人综合色| 在现免费观看毛片| 超碰97精品在线观看| 亚洲美女搞黄在线观看| 欧美潮喷喷水| 伊人久久精品亚洲午夜| 女人久久www免费人成看片| 国产精品久久久久久久电影| 精品人妻偷拍中文字幕| 国产一区二区在线观看日韩| 亚洲av.av天堂| 久久精品综合一区二区三区| 一区二区三区四区激情视频| 亚洲av免费高清在线观看| 少妇熟女欧美另类| 欧美日韩亚洲高清精品| 精品一区二区三卡| 青春草视频在线免费观看| 小蜜桃在线观看免费完整版高清| 女人久久www免费人成看片| 在线看a的网站| 亚洲精品日韩av片在线观看| 亚洲av免费在线观看| 亚洲精品日本国产第一区| 小蜜桃在线观看免费完整版高清| 国产毛片a区久久久久| 亚洲精品,欧美精品| 亚洲美女视频黄频| 男女国产视频网站| 国产综合精华液| 亚洲高清免费不卡视频| 少妇熟女欧美另类| 青春草视频在线免费观看| 久久鲁丝午夜福利片| 国产永久视频网站| 少妇被粗大猛烈的视频| 久久久久久久午夜电影| 午夜福利视频1000在线观看| 国产在视频线精品| 少妇熟女欧美另类| 国产色爽女视频免费观看| 三级经典国产精品| 国产精品成人在线| 大片电影免费在线观看免费| 亚洲精品国产av成人精品| 成人亚洲精品av一区二区| 成人欧美大片| 亚洲欧美日韩东京热| 神马国产精品三级电影在线观看| 日本猛色少妇xxxxx猛交久久| 一本久久精品| 欧美丝袜亚洲另类| 男人爽女人下面视频在线观看| 亚洲精品第二区| 成年免费大片在线观看| av在线老鸭窝| 久久久久国产网址| 久久99精品国语久久久| 国产成人免费观看mmmm| 99九九线精品视频在线观看视频| 国产在视频线精品| 内地一区二区视频在线| 夜夜爽夜夜爽视频| 九草在线视频观看| 日韩av不卡免费在线播放| 一区二区av电影网| 在线观看国产h片| 好男人在线观看高清免费视频| 免费少妇av软件| av福利片在线观看| 欧美日韩在线观看h| 国产亚洲91精品色在线| 美女cb高潮喷水在线观看| 亚洲人成网站在线播| 黄色配什么色好看| 免费高清在线观看视频在线观看| 午夜激情久久久久久久| 高清欧美精品videossex| 丝袜喷水一区| 国产高清不卡午夜福利| 成人黄色视频免费在线看| 国产精品爽爽va在线观看网站| 国产老妇伦熟女老妇高清| av在线app专区| 欧美激情国产日韩精品一区| 大话2 男鬼变身卡| 少妇丰满av| 亚洲色图综合在线观看| 男人狂女人下面高潮的视频| 男女那种视频在线观看| 久久久久国产网址| 蜜臀久久99精品久久宅男| 啦啦啦中文免费视频观看日本| 丝袜脚勾引网站| 最近最新中文字幕大全电影3| 少妇高潮的动态图| 美女主播在线视频| 超碰av人人做人人爽久久| 韩国av在线不卡| 国产精品国产av在线观看| 人妻夜夜爽99麻豆av| 最近最新中文字幕免费大全7| 午夜福利视频精品| 久久久久久久大尺度免费视频| 亚洲无线观看免费| av在线观看视频网站免费| 狂野欧美激情性xxxx在线观看| 午夜福利视频1000在线观看| 国产v大片淫在线免费观看| a级一级毛片免费在线观看| 国产成人精品久久久久久| 日本wwww免费看| 美女内射精品一级片tv| 久久久久久久国产电影| 一个人看视频在线观看www免费| 国产黄色免费在线视频| 2018国产大陆天天弄谢| 丝袜脚勾引网站| 黄色欧美视频在线观看| 天堂中文最新版在线下载 | 国产精品女同一区二区软件| 日本一二三区视频观看| 国产 一区 欧美 日韩| 全区人妻精品视频| 精品一区二区免费观看| 毛片一级片免费看久久久久| 熟妇人妻不卡中文字幕| 99久久九九国产精品国产免费| 婷婷色综合大香蕉| av卡一久久| 高清毛片免费看| 少妇高潮的动态图| 亚洲伊人久久精品综合| 一级毛片我不卡| 国产成人a区在线观看| 我的老师免费观看完整版| 日韩三级伦理在线观看| 精品一区二区三区视频在线| 欧美潮喷喷水| 成人毛片a级毛片在线播放| 一级片'在线观看视频| 51国产日韩欧美| 国产欧美日韩精品一区二区| 国产女主播在线喷水免费视频网站| 99久久中文字幕三级久久日本| videossex国产| av在线老鸭窝| 成人毛片a级毛片在线播放| 日本猛色少妇xxxxx猛交久久| 狂野欧美白嫩少妇大欣赏| 国产淫语在线视频| 久久热精品热| 大片电影免费在线观看免费| 日韩 亚洲 欧美在线| 午夜免费观看性视频| 久久99精品国语久久久| 少妇裸体淫交视频免费看高清| 亚洲精品456在线播放app| 五月开心婷婷网| 亚洲国产av新网站| 国产亚洲精品久久久com| 日韩欧美一区视频在线观看 | 99热全是精品| 日韩在线高清观看一区二区三区| 蜜臀久久99精品久久宅男| 亚洲国产欧美人成| 建设人人有责人人尽责人人享有的 | 亚洲美女视频黄频| 日韩欧美精品免费久久| 国产成人a区在线观看| 亚洲精品视频女| 亚洲aⅴ乱码一区二区在线播放| 99久久人妻综合| 午夜福利在线观看免费完整高清在| av免费在线看不卡| 美女cb高潮喷水在线观看| 可以在线观看毛片的网站| 亚洲av国产av综合av卡| 深爱激情五月婷婷| 如何舔出高潮| 黄色日韩在线| 我的女老师完整版在线观看| 毛片女人毛片| 人人妻人人看人人澡| 国产真实伦视频高清在线观看| 啦啦啦中文免费视频观看日本| 免费黄网站久久成人精品| 一级毛片黄色毛片免费观看视频| 国产亚洲91精品色在线| 国产精品久久久久久精品古装| 女人久久www免费人成看片| 久久久久久久久大av| 丝袜脚勾引网站| 另类亚洲欧美激情| 亚洲欧美日韩无卡精品| 成人无遮挡网站| 99热这里只有是精品50| 国产精品成人在线| 亚洲aⅴ乱码一区二区在线播放| 老女人水多毛片| 中文字幕av成人在线电影| 免费大片18禁| 在线观看人妻少妇| 国产女主播在线喷水免费视频网站| 我要看日韩黄色一级片| 亚洲在线观看片| 日日啪夜夜撸| 我要看日韩黄色一级片| 干丝袜人妻中文字幕| 91狼人影院| 欧美日韩视频精品一区| 国产高清有码在线观看视频| 成人亚洲精品av一区二区| 亚洲av二区三区四区| 少妇人妻久久综合中文| 一区二区三区乱码不卡18| 国产高清三级在线| 国产爱豆传媒在线观看| 综合色av麻豆| 夜夜爽夜夜爽视频| 男女啪啪激烈高潮av片| 欧美国产精品一级二级三级 | 久久女婷五月综合色啪小说 | 一区二区三区四区激情视频| 成人二区视频| 免费大片黄手机在线观看| 日本wwww免费看| 男插女下体视频免费在线播放| 真实男女啪啪啪动态图| 人妻夜夜爽99麻豆av| 男女国产视频网站| 99热这里只有是精品在线观看| 欧美日本视频| 亚洲熟女精品中文字幕| 好男人视频免费观看在线| 成人亚洲精品av一区二区| 老司机影院毛片| 免费不卡的大黄色大毛片视频在线观看| 一本久久精品| 青春草视频在线免费观看| 男的添女的下面高潮视频| 亚洲最大成人av| 国产精品久久久久久精品古装| 伦理电影大哥的女人| 视频区图区小说| 精品久久久精品久久久| 国产探花在线观看一区二区| 亚洲av中文av极速乱| 久久精品久久精品一区二区三区| 国产在线一区二区三区精| 熟女电影av网| 精品久久国产蜜桃| 超碰97精品在线观看| 国产精品一区二区在线观看99| 97超视频在线观看视频| 久久精品夜色国产| 免费看光身美女| 久久久久久伊人网av| 老司机影院成人| 中文资源天堂在线| 少妇丰满av| 久久久色成人| 91精品一卡2卡3卡4卡| 看非洲黑人一级黄片| 日韩免费高清中文字幕av| 欧美变态另类bdsm刘玥| 国产一区二区在线观看日韩| 美女内射精品一级片tv| 精品亚洲乱码少妇综合久久| 三级国产精品欧美在线观看| 国产高清国产精品国产三级 | 久久久色成人| 91狼人影院| 日本wwww免费看| 午夜爱爱视频在线播放| www.av在线官网国产| 在线观看三级黄色| 日韩一区二区三区影片| 国产精品.久久久| 日韩av免费高清视频| 欧美成人精品欧美一级黄| 日本免费在线观看一区| 国产精品三级大全| 女的被弄到高潮叫床怎么办| 一个人观看的视频www高清免费观看| 久久人人爽av亚洲精品天堂 | 色视频www国产| 老司机影院毛片| 中国国产av一级| 精品久久久噜噜| 精品久久久久久久久亚洲| 乱系列少妇在线播放| 久久女婷五月综合色啪小说 | 国产精品嫩草影院av在线观看| 亚洲欧美日韩东京热| 大片电影免费在线观看免费| 欧美极品一区二区三区四区| 男人舔奶头视频| 国产精品久久久久久av不卡| 国产伦精品一区二区三区四那| 国产精品久久久久久精品电影| 性色av一级| av网站免费在线观看视频| 在线观看免费高清a一片| 看黄色毛片网站| 国产欧美另类精品又又久久亚洲欧美| 久热久热在线精品观看| 国产黄色免费在线视频| 亚洲最大成人手机在线| 亚洲色图av天堂| 99九九线精品视频在线观看视频| 国产探花在线观看一区二区| 久久99热这里只有精品18| 女人被狂操c到高潮| 日韩人妻高清精品专区| 最近手机中文字幕大全| 天天一区二区日本电影三级| 丰满乱子伦码专区| 久久久a久久爽久久v久久| 久久精品久久久久久噜噜老黄| 少妇熟女欧美另类| 边亲边吃奶的免费视频| 久久久久九九精品影院| 伊人久久精品亚洲午夜| 精品久久国产蜜桃| av在线app专区| 国产精品成人在线| 黄色视频在线播放观看不卡| 夜夜看夜夜爽夜夜摸| av卡一久久| 人妻制服诱惑在线中文字幕| 欧美性猛交╳xxx乱大交人| 国产成人一区二区在线| 青春草亚洲视频在线观看| av专区在线播放| 五月玫瑰六月丁香| 免费黄频网站在线观看国产| 九九久久精品国产亚洲av麻豆| 国产日韩欧美亚洲二区| 亚洲伊人久久精品综合| 日日啪夜夜爽| 中国三级夫妇交换| 国产色婷婷99| 国产成人福利小说| 亚洲三级黄色毛片| 国产男女内射视频| 国产精品人妻久久久久久| 国产精品精品国产色婷婷| 国产伦在线观看视频一区| 日韩强制内射视频| 涩涩av久久男人的天堂| 99热国产这里只有精品6| 美女视频免费永久观看网站| 欧美日韩视频精品一区| 久久精品夜色国产| 亚洲精品视频女| a级毛色黄片| 汤姆久久久久久久影院中文字幕| 51国产日韩欧美| 免费高清在线观看视频在线观看| 99热全是精品| 一区二区三区精品91| 久久人人爽人人片av| 国产爱豆传媒在线观看| 麻豆成人午夜福利视频| 两个人的视频大全免费| 亚洲四区av| 三级国产精品欧美在线观看| 99久国产av精品国产电影| 精品熟女少妇av免费看| 男插女下体视频免费在线播放| 插逼视频在线观看| 最后的刺客免费高清国语| 亚洲成人av在线免费| 一级毛片我不卡| 国产av码专区亚洲av| 久久久久九九精品影院| 一级毛片黄色毛片免费观看视频| 最近手机中文字幕大全| 你懂的网址亚洲精品在线观看| 一本久久精品| 精品熟女少妇av免费看| 毛片女人毛片| 国产熟女欧美一区二区| 18禁裸乳无遮挡免费网站照片| 老司机影院毛片| 97热精品久久久久久| 一级毛片黄色毛片免费观看视频| 春色校园在线视频观看| 国产有黄有色有爽视频| 亚洲国产最新在线播放| 精品国产露脸久久av麻豆| 最近手机中文字幕大全| 寂寞人妻少妇视频99o| 中文乱码字字幕精品一区二区三区| 国产午夜福利久久久久久| 五月天丁香电影| 日韩一本色道免费dvd| 亚洲欧美日韩另类电影网站 | 国产成人精品一,二区| 黑人高潮一二区| 成人欧美大片| 综合色av麻豆| 伦精品一区二区三区| 国产黄片视频在线免费观看| 九草在线视频观看| 国产精品久久久久久av不卡| 黄色日韩在线| 婷婷色综合www| 在线看a的网站| 亚洲人与动物交配视频| 免费高清在线观看视频在线观看| 啦啦啦啦在线视频资源| 26uuu在线亚洲综合色| 国产大屁股一区二区在线视频| 一本色道久久久久久精品综合| 日韩电影二区|