• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Penumbra lunar eclipse observations reveal anomalous thermal performance of Lunakhod 2 reflectors

    2022-05-16 07:09:04TianQuanGao高添泉CaiShiZhang張才士HongChaoZhao趙宏超LiXiangZhou周立祥XianLinWu吳先霖HsienchiYeh葉賢基andMingLi李明
    Chinese Physics B 2022年5期
    關(guān)鍵詞:李明

    Tian-Quan Gao(高添泉), Cai-Shi Zhang(張才士), Hong-Chao Zhao(趙宏超), Li-Xiang Zhou(周立祥),Xian-Lin Wu(吳先霖), Hsienchi Yeh(葉賢基), and Ming Li(李明)

    MOE Key Laboratory of TianQin Mission,TianQin Research Center for Gravitational Physics&School of Physics and Astronomy,Frontiers Science Center for TianQin,CNSA Research Center for Gravitational Waves,Sun Yat-sen University(Zhuhai Campus),Zhuhai 519082,China

    Keywords: lunar laser ranging,corner-cube reflector arrays,dihedral angle errors,penumbra lunar eclipse

    1. Introduction

    The lunar laser ranging (LLR) data is of great scientific significance. It can be used to verify the relativistic equivalence principle,[1,2]the invariability of light speed and post-Newtonian gravity.[3]Alley[4]proposed to place the cornercube reflector arrays (CCRs) on the surface of the moon to carry out LLR experiment. On July 21,1969,the CCRs were placed on the moon surface at predetermined position, and then the U.S. Lick Observatory[5]successfully observed the laser ranging echo signal from the Apollo 11 reflectors with 3 m telescope. On August 30,the 2.7 m telescope of the Mc-Donald Observatory[6]in the U.S.also received echo signals.Following that,the Pic du Midi Observatory(France)and the Tokyo Observatory(Japan)successfully reached the echo signal from these reflectors.[4]Scientists at Yunnan Observatories successfully achieved LLR at 532 nm, which is the first time to measure the distance between the earth and the moon in China.[7]Apart from the Apollo 11 CCRs, there were also Apollo 14, Apollo 15, Lunakhod 1 and Lunakhod 2 (L2) reflector arrays,while the Lunakhod 1 was only received by the former Soviet Union’s Crinean Observatory(2.6 m telescope)and the French Pic du Midi Observatory(1.06 m telescope)at the beginning of its placement.[8]

    During the process of laser ranging, there are many factors affecting the number of photoelectrons in the echo detection, such as earth–moon distance, atmospheric transmittance, CCR reflection area, divergence angle and reflection efficiency. Two problems were identified when Murphy and other scientists carried out LLR observations.[9–15]The signal strength returned from CCRs was about ten times lower than the theoretical prediction calculated value, and the effective echo signal intensity of the CCRs was further reduced when the moon phases were within 20°of a full moon. Scientists from different countries have analyzed the attenuation of the LLR effective echo during the full moon. For example,Goodrow and Murphy[16]analyzed the influence of temperature upon energy distribution of the far-field diffraction pattern(FFDP), and suggested that the central intensity of the FFDP emerging from the CCRs was severely diminished when differences of even a few degrees of Kelvin existed across CCRs,but they did not give the effect of far-field diffraction energy on the number of echo photons received,and the effect of dihedral angle errors on FFDP was not described. Murphy[17]used a lunar eclipse to conduct the LLR experiment and investigated the effect of temperature on the effective echo intensity of the Apollo CCRs, but they did not analyze Lunakhod 2 reflectors. Then, in order to increase the efficiency of LLR,a next-generation single lunar CCR was developed by Currie.[18]Martini[19]focused on its thermal influence upon the energy distribution of the FFDP.Otsubo,[20]Zhou,[21]and He[22]also examined the effect of the dihedral angle errors on the far-field diffraction energy distribution,but they did not do space experiments.

    Because of the special position of L2,the data of L2 can be used to study the lunar libration more effectively.The study of L2 is of great significance. The goal of this paper is to build up a model and analyze the effect of dihedral angle errors of L2 on FFDP.We interpret the complex amplitude distribution of the output beam caused by dihedral angle errors of a nonideal CCR based on the geometry of the CCR. LLR experiments which use superconducting nanowire single photon detectors(SNSPDs)at 1064 nm wavelength are conducted during a penumbral eclipse. This is the first time that SNSPDs are used for LLR.In our research, LLR experiment is performed on the CCRs of L2 during the penumbra lunar eclipse period.Based on data processing,it concludes that the effective echo intensity of L2 is sensitive to dihedral angle errors changed.

    2. LLR system

    The LLR system has been designed and installed at Zhuhai, as shown in Fig.1. The system consists of electrical system and optical system. The optical system is divided into imaging tracking system and echo photon receiving system.The LLR system with the newly fabricate SNSPDs is shown in Fig.2(a). As the performance of SNSPDs is much better than that of avalanche photodiode (APD) at infrared wavelengths,our system using SNSPDs at 1064 nm wavelength is more promising to obtain higher detection efficiency and a higher signal to noise ratio. A telescope,as shown in Fig.2(b),with a diameter of 1.2 m, is used not only to emit laser but also to receive photons which are reflected by the target. Another important equipment in the ranging system is the high repetitive, picosecond pulse laser. Researchers at Shanghai Institute of Optics and Fine Mechanics obtained a single energy of 10 mJ with a pulse width of 13 ns at a pulse repetition rate of 250 Hz at 1064 nm.[23]Shanghai Astronomical Observatory used a 60 W nanosecond green laser at 200 Hz for debris laser ranging.[24]In this paper,a laser with wavelength of 1064 nm,a pulse width of 80 ps,a repetition frequency of 100Hz and a single pulse energy of 300 mJ is used,as shown in Fig.2(c).

    Fig.1. LLR system. Laser transmission and reception are switched by the rotating mirror. Two kinds of filters with bandwidth of 0.15 nm and 10 nm are used for background suppression. Small field of view imaging camera is used to image the target and achieve high precision pointing.

    Fig.2. (a)SNSPDs. SNSPDs with an intrinsic quantum efficiency of 80%and a dark count rate of 100 cps at 1064 nm wavelength are developed and introduced to TianQin laser ranging observatory in China. (b)1.2 m laser ranging telescope. Co-axis-aperture laser ranging telescope. The telescope carries out high-precision tracking of the target with a pointing accuracy of 2′′. (c)Laser with 1064 nm wavelength,300 mJ single pulse energy,80 ps laser pulse width and 100 Hz repetition frequency.

    Compared with 532 nm, the usage of 1064 nm wavelength in LLR help to achieve high atmospheric transmittance and larger number of photons contained under the same energy condition. Then compared with the Grasse observatory,a higher repetition rate laser is used in this experiment to improve the detection signal-to-noise ratio of the system. Compared with Apache observatory, we used SNSPDs[25–27]for LLR to improve detection probability.

    3. Thermal analysis of CCRs

    The effect of temperature will introduce additional phase,shown as[16]

    whereλ0is the vacuum wavelength,n0is the refractive index,δTis departure from some reference temperature,βis thermo-optic coefficient,αis the thermal expansion coefficient,andlis geometric path length.

    CCRs of Apollo are designed with specialized shading structures, but L2 does not have such structures, making it more susceptible to environmental influences. We consider that temperature changes will produce dihedral angle errors.There are three dihedral angle errors in the CCRs when they are heated,which cause changes of the additional vector of the beam distribution of the outgoing light field. The additional vector dFof the reflected beam after three reflections from the reflective surface of the reflectors is calculated when there are three dihedral angle errors, and the coordinate system of the corner reflector is established as described in reference[21]whereN0is the normal direction of the bottom surface of the reflector.

    The additional optical path of the outgoing laser beam caused by the dihedral angle errors are calculated to satisfy the following relation:

    whereλris the laser wavelength,Ais effective diffraction region which depends on the aperture of the CCR,krefers to the wave number andErepresents the complex amplitude of the reflected beam. The other parameters in the formula can be referred to reference.[21]

    When the specifications of the system parameters are given, the received photon number can be directly derived from the FFDP of the CCR.According to the radar equation,the received photon number of the LLR system can be given by

    whereRis the range from the target to the observation station,λis the laser wavelength,his Planck’s constant,cis the light speed,ETis the pulse energy,Tais the atmospheric transmittance,σis the total cross section of the retroreflectors,Aris the aperture of the receiving telescope,btandbrare the optical system efficiencies of the transmitting and receiving systems,ηpointingis the attenuation coefficient of pointing error,ηturbulenceis the attenuation coefficient of atmospheric turbulence,andηqis the quantum efficiency. Diffraction spot energy directly affected the number of effective echo photons.

    4. Energy distribution of FFDP of CCRs

    The effective echo intensity received by the ground station from the CCRs is not only related to the detection performance of the system,but also is mainly affected by the energy distribution of the FFDP of CCRs, as shown in Eq. (7). The dihedral angle errors designed of standard CCRs are 0°to get higher energy without any extra phase difference. The FFDP energy distribution is analyzed without dihedral angle errors,as shown in Fig.3. The FFDP of a standard CCR presented a circular distribution with the strongest central energy and relatively weak surrounding energy. Goodrow analyzed effect of the temperature gradient on the diagonal reflection of far-field energy,and he thought that the expansion coefficient of Apollo reflector was small, so the influence of this part was ignored.However, the L2 is not designed to block light, so temperature changed have a significant influence on the deformation of the dihedral angle. Here we intend to focus on the analysis of dihedral angle errors which are caused by temperature,and calculate the far-field energy distribution.

    The aberration caused by the measured target is an important factor affecting the amount of echo energy the station receive,as shown in Fig.3. The range of aberration involved in LLR is 3.5 μrad–7 μrad. The red circle in Fig.3 represents the far-field energy corresponding to a velocity aberration of 3.5 μrad. The energy intensity at aberration of 3.5 μrad is about 3 times of that of 7 μrad.

    Fig.3. The energy distribution of the FFDP when CCRs have no dihedral angle errors. The red circle indicate the target velocity aberration which reaches 3.5 μrad.

    Fig.4. The energy distribution of the FFDP when CCRs have the dihedral angle errors. The dihedral angle errors are 1′′, 1′′ and 1′′, respectively.

    Influenced by the temperature,CCRs undergo thermal deformation,which is reflected in the dihedral angle errors. It is found that the FFDP is deformed and the energy distribution appeared to separate. The effective echo intensity accepted by the station decreased sharply, as shown in Fig. 4. When the dihedral angle errors caused by temperature change are the factor to be taken into consideration with the three dihedral angle errors reaching 1′′,1′′and 1′′respectively,the energy is reduced by 2 orders of magnitude at the 3.5 μrad aberration,compared with ideal CCR.

    The influence of temperature on the dihedral angle errors of the CCRs is a dynamic process,so the energy distribution of the CCRs with different dihedral angle errors is simulated in this paper,as shown in Fig.5. In the range of velocity aberration(3.5 μrad–7 μrad),the larger the dihedral angle errors,the smaller the energy. When the velocity aberration is 3.5 μrad,the energy will be reduced by a factor of 100 times when the dihedral angle errors change from 0′′to 1′′.

    Fig.5. The relative intensity of CCRs. The x-coordinate represents the velocity aberration,and the vertical axis is energy intensity.

    5. LLR experiment

    The moon entered the penumbra of the earth on November 30, 2020 and we carried out the LLR experiment on the L2 during this period. Since the CCRs of A11,A14,A15 and L1 were no longer in the penumbra of the earth at the time of the experiment, the analysis was not performed here. Table 1 records the time information of the start and end of the penumbra lunar eclipse. The penumbra lunar eclipse started at 15:30 pm on November 30 (Beijing time) and ended at 19:56 pm. The whole process lasted for 4 hours and 26 minutes. The LLR system in TianQin station is used to carry out the experiment. The system parameters are shown in Table 2.

    Table 1. Penumbra lunar eclipse timetable.

    Table 2. System parameters.

    Figure 6 shows the position of the sun and the earth,when the penumbra lunar eclipse occur. According to the orbital dynamics,the earth blocked part of the sun and the moon entered the earth’s penumbra, in which time the temperature of the moon surface decreased. The LLR experiment recorded the change of effective echo rate when CCRs entered and left the penumbra of the earth, as shown in Fig.7. The abscissa represents time and the ordinate represents the ranging residual.By analyzing Fig.7,it is obtained that the effective echo rate of the CCRs in the penumbra of the earth is larger than that of its absence. The average effective echo rate and peak effective echo rate statistics of L2 are collected,as shown in Fig.8.In Fig.8,four groups of experimental results are recorded,of which two groups are corner reflectors in the penumbra of the earth and two groups are out of penumbra. Table 3 records the distance measurement for the L2 from 19:00 to 21:00. When L2 is in the penumbra of the earth,the average effective echo rate is revealed to reach 0.02 photons/s, and that at the peak effective echo rate is 0.18 photons/s. In particular, due to the deformation of the CCRs,we will no longer be able to get effective echo signals, when L2 removes out of the penumbra 11 minutes later. In particular,compared with the previous L2 full moon period experimental data, the effective echo rate is significantly enhanced. When L2 CCRs are moving out of the penumbra of the earth, its average effective echo rate experiences a downward trend, as shown in Fig. 9(a). Figure 9(a)shows the statistics of effective echo rate after L2 leaves the earth penumbra for 10 minutes. It results that the effective echo rate of L2 decrease fast, and shows an exponential law.Finally,the effective echo rate is reduced by 2 orders of magnitude. Figure 9(b) shows the relationship between received energy and dihedral angle errors.From the theoretical calculation,it can be obtained that the received energy decreases with the increase of dihedral angle errors. When the dihedral angle errors reach 1′′, the energy intensity of the energy decreases by 2 orders of magnitude as compared with that without the dihedral angle errors. The theoretical calculation matches the experimental results.

    Fig. 6. Penumbra lunar eclipse. The orbits of the sun, the earth and their respective positions during the penumbra lunar eclipse. The blue point represents the solar orbit, and the red point refers to the earth’s orbit. The black circle is the earth,and the yellow disk is the sun. The overlapping part indicate the occurrence of a penumbra lunar eclipse.

    Fig.7. Residuals of LLR.Red dots represent echo signals and blue dots represent noise. The top picture shows L2 is in the penumbra of the earth. The middle picture illustrates the signal intensity of L2 moving out of the penumbra of the earth within 10 minutes. The bottom picture shows the signal intensity 30 minutes after L2 is removed from the penumbra of the earth.

    Table 3. LLR experiment.

    Fig. 8. Statistics of effective echo rate of LLR. Blue quadrilateral presents the average effective echo rate and green circle refers to the peak effective echo rate.

    Fig.9.(a)Effective echo rate of L2 after leaving the penumbra of the earth for 10 minutes. The abscissa represents the experiment time and the ordinate represents the effective echo rate. The blue square represents the experimental effective echo rate, and the red curve is the fitting result of the experimental data. (b)Theoretical calculation of relation between relative intensity and dihedral angle errors.

    6. Conclusion

    On September 27, 1996 and November 21, 2010, the OCA Observatory in France and the Apache Point station in the United States performed LLR experiment under lunar eclipse conditions. The main targets of their measurement and analysis were the Apollo series CCRs. The Apache Point Observatory focused on the influence of thermal gradients on the energy distribution of FFDP.Being different from Apache Point Observatory,this paper focuses on the measurement and analysis of the effective echo intensity of the L2 CCRs under the condition of the penumbra lunar eclipse, and calculates the influence of dihedral angle errors on FFDP. It concludes that when the dihedral angle errors is 1′′, the energy will decrease 100 times. In the experiment,it is found that after CCRs are moved out of the penumbra 10 minutes,effective echo begins to decline rapidly,and the decline trend shows exponential law. In a very short time interval,the effective echo rate decreases by two orders of magnitude. Finally, the signal will disappear 11 minutes after the CCRs leave penumbra.We believe that dihedral angle errors ultimately affect the echo energy of L2.

    Acknowledgements

    We are very grateful to Rui Ge and Biao Zhang from Nanjing University for their help installing and debugging the SNSPDs. Thanks to Huizhong Duan from Sun Yat-sen University for his contributions in theoretical direction.

    Project supported by the National Natural Science Foundation of China(Grant No.12033009).

    猜你喜歡
    李明
    An improved ISR-WV rumor propagation model based on multichannels with time delay and pulse vaccination
    Single-molecular methodologies for the physical biology of protein machines
    “下雨”沒商量
    Speeding up generation of photon Fock state in a superconducting circuit via counterdiabatic driving?
    李明
    買書
    AnAnalysisofCohesiveDevicesinARoseforMissCaroline
    三角函數(shù)熱點(diǎn)連連看
    我在生氣
    特別文摘(2016年15期)2016-08-15 19:19:14
    見義勇為
    亚洲精品456在线播放app| 日本三级黄在线观看| 国产成人91sexporn| av.在线天堂| 伊人久久精品亚洲午夜| 午夜免费男女啪啪视频观看| 插阴视频在线观看视频| 欧美精品国产亚洲| 少妇人妻一区二区三区视频| 人妻夜夜爽99麻豆av| 国产伦在线观看视频一区| 国产精品蜜桃在线观看| 水蜜桃什么品种好| 久久人人爽av亚洲精品天堂 | 寂寞人妻少妇视频99o| 日韩,欧美,国产一区二区三区| 联通29元200g的流量卡| 精品99又大又爽又粗少妇毛片| 久久精品夜色国产| 禁无遮挡网站| 国产免费一区二区三区四区乱码| 日本爱情动作片www.在线观看| 男女边吃奶边做爰视频| 亚洲av成人精品一二三区| 午夜福利在线在线| 91久久精品电影网| 夫妻性生交免费视频一级片| 黄色欧美视频在线观看| 可以在线观看毛片的网站| 日韩成人伦理影院| 亚洲精品一二三| 成人亚洲精品一区在线观看 | 一级爰片在线观看| 禁无遮挡网站| 成人无遮挡网站| 毛片一级片免费看久久久久| 国产免费一区二区三区四区乱码| 美女内射精品一级片tv| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 最新中文字幕久久久久| 久久精品国产自在天天线| 亚洲成人中文字幕在线播放| 一级毛片 在线播放| 又大又黄又爽视频免费| 成人毛片60女人毛片免费| 一个人看视频在线观看www免费| 不卡视频在线观看欧美| a级一级毛片免费在线观看| 中国美白少妇内射xxxbb| 亚洲最大成人中文| 人人妻人人爽人人添夜夜欢视频 | 午夜日本视频在线| 深夜a级毛片| 亚洲自偷自拍三级| 中国国产av一级| 精品少妇久久久久久888优播| 六月丁香七月| 午夜爱爱视频在线播放| 欧美成人午夜免费资源| av黄色大香蕉| 午夜精品国产一区二区电影 | 又爽又黄a免费视频| 午夜免费男女啪啪视频观看| 97人妻精品一区二区三区麻豆| 久久人人爽av亚洲精品天堂 | 在线精品无人区一区二区三 | 久久精品久久精品一区二区三区| 成人二区视频| 赤兔流量卡办理| 久久热精品热| 激情五月婷婷亚洲| 成年免费大片在线观看| 色综合色国产| 最新中文字幕久久久久| 插阴视频在线观看视频| 亚洲av中文字字幕乱码综合| 中文字幕av成人在线电影| 日本猛色少妇xxxxx猛交久久| 午夜爱爱视频在线播放| 特级一级黄色大片| www.色视频.com| 97热精品久久久久久| 国产大屁股一区二区在线视频| 国产欧美亚洲国产| 日韩伦理黄色片| 毛片一级片免费看久久久久| 夜夜爽夜夜爽视频| 边亲边吃奶的免费视频| 亚洲欧洲日产国产| 久热久热在线精品观看| av天堂中文字幕网| 国产亚洲91精品色在线| 久久99热6这里只有精品| 亚洲无线观看免费| 美女主播在线视频| 能在线免费看毛片的网站| 新久久久久国产一级毛片| 成人亚洲欧美一区二区av| 各种免费的搞黄视频| 国产亚洲精品久久久com| 男女那种视频在线观看| 国产极品天堂在线| 亚洲色图综合在线观看| 新久久久久国产一级毛片| 日本-黄色视频高清免费观看| 国产精品人妻久久久影院| 在现免费观看毛片| 国产成人一区二区在线| 精华霜和精华液先用哪个| 免费观看性生交大片5| 99热这里只有精品一区| 成人毛片60女人毛片免费| 一级毛片电影观看| 欧美 日韩 精品 国产| 国产成人精品福利久久| 五月玫瑰六月丁香| 日韩 亚洲 欧美在线| 少妇的逼水好多| 国产极品天堂在线| 毛片一级片免费看久久久久| 亚洲丝袜综合中文字幕| 精品人妻视频免费看| 久久97久久精品| 国产久久久一区二区三区| 最近中文字幕2019免费版| 最近最新中文字幕免费大全7| 久久国内精品自在自线图片| 久久这里有精品视频免费| 亚洲精品日韩在线中文字幕| 69av精品久久久久久| 国产大屁股一区二区在线视频| 纵有疾风起免费观看全集完整版| 综合色丁香网| 亚洲av在线观看美女高潮| 最近中文字幕2019免费版| 欧美精品国产亚洲| 欧美日韩亚洲高清精品| 午夜福利在线观看免费完整高清在| 国产av不卡久久| 亚洲欧美日韩另类电影网站 | 精品熟女少妇av免费看| 美女xxoo啪啪120秒动态图| 嘟嘟电影网在线观看| 五月开心婷婷网| 一本色道久久久久久精品综合| 亚洲精品日本国产第一区| 欧美变态另类bdsm刘玥| 男女下面进入的视频免费午夜| 免费观看性生交大片5| 丝袜脚勾引网站| 国产高清三级在线| 日韩欧美精品v在线| 91久久精品国产一区二区成人| 水蜜桃什么品种好| 中国美白少妇内射xxxbb| 午夜福利在线在线| 日韩强制内射视频| 午夜精品国产一区二区电影 | 久久韩国三级中文字幕| 久久久精品免费免费高清| 国产精品福利在线免费观看| 国语对白做爰xxxⅹ性视频网站| 成人一区二区视频在线观看| 99热国产这里只有精品6| 插阴视频在线观看视频| 欧美人与善性xxx| 亚洲美女视频黄频| 最近的中文字幕免费完整| 欧美+日韩+精品| 日韩伦理黄色片| 美女内射精品一级片tv| 久久亚洲国产成人精品v| 久久精品国产自在天天线| 国产亚洲av嫩草精品影院| 午夜免费观看性视频| 免费观看a级毛片全部| 大片免费播放器 马上看| 老师上课跳d突然被开到最大视频| 国产高潮美女av| av在线天堂中文字幕| 亚洲久久久久久中文字幕| 身体一侧抽搐| 啦啦啦中文免费视频观看日本| av在线app专区| 欧美精品人与动牲交sv欧美| av在线播放精品| 最近最新中文字幕大全电影3| 欧美精品人与动牲交sv欧美| 一区二区三区免费毛片| 尾随美女入室| 国产精品人妻久久久影院| 国产精品一二三区在线看| 国产黄片美女视频| 偷拍熟女少妇极品色| 直男gayav资源| 久久久久久九九精品二区国产| 青青草视频在线视频观看| 国产亚洲av片在线观看秒播厂| 男人舔奶头视频| 免费观看无遮挡的男女| 日韩欧美一区视频在线观看 | 男女啪啪激烈高潮av片| 欧美成人一区二区免费高清观看| 少妇的逼水好多| 亚洲欧美成人综合另类久久久| 丝袜脚勾引网站| 少妇高潮的动态图| 狂野欧美激情性xxxx在线观看| 精品99又大又爽又粗少妇毛片| 欧美精品一区二区大全| 一级毛片aaaaaa免费看小| 国产真实伦视频高清在线观看| 亚洲综合精品二区| 国产成人精品福利久久| 久久ye,这里只有精品| 精品亚洲乱码少妇综合久久| 身体一侧抽搐| 欧美成人一区二区免费高清观看| 国产成人freesex在线| 欧美精品国产亚洲| 日日啪夜夜爽| 亚洲熟女精品中文字幕| 国产成人aa在线观看| 网址你懂的国产日韩在线| 国产男人的电影天堂91| 成年av动漫网址| 日韩欧美 国产精品| 免费观看性生交大片5| 中文字幕久久专区| 菩萨蛮人人尽说江南好唐韦庄| 一级黄片播放器| av天堂中文字幕网| av在线播放精品| 可以在线观看毛片的网站| 搡女人真爽免费视频火全软件| 下体分泌物呈黄色| 亚洲成人av在线免费| 国产视频首页在线观看| 免费人成在线观看视频色| 美女主播在线视频| 麻豆精品久久久久久蜜桃| 国产老妇女一区| 我要看日韩黄色一级片| 亚洲丝袜综合中文字幕| 国产一区亚洲一区在线观看| 九九爱精品视频在线观看| 国内精品美女久久久久久| 啦啦啦在线观看免费高清www| 国模一区二区三区四区视频| 欧美日韩亚洲高清精品| 国产精品久久久久久久久免| 美女视频免费永久观看网站| 在线观看一区二区三区激情| 黄色一级大片看看| 少妇人妻一区二区三区视频| av在线天堂中文字幕| 国产视频内射| 搞女人的毛片| 3wmmmm亚洲av在线观看| 国精品久久久久久国模美| 狠狠精品人妻久久久久久综合| 久久久亚洲精品成人影院| videossex国产| 欧美日本视频| 精品久久国产蜜桃| 国产色婷婷99| 国产精品国产三级国产av玫瑰| 美女高潮的动态| 国产成人精品久久久久久| 丝袜美腿在线中文| 中文资源天堂在线| 各种免费的搞黄视频| 久久久久久久国产电影| 中文欧美无线码| 丝袜脚勾引网站| 最近中文字幕2019免费版| 黄色怎么调成土黄色| a级一级毛片免费在线观看| 高清日韩中文字幕在线| 亚洲av不卡在线观看| 国内少妇人妻偷人精品xxx网站| 欧美xxxx黑人xx丫x性爽| 国产伦理片在线播放av一区| 欧美国产精品一级二级三级 | 欧美 日韩 精品 国产| 中文字幕av成人在线电影| 亚洲综合精品二区| 亚洲成人av在线免费| 国产高清有码在线观看视频| 中国美白少妇内射xxxbb| 大码成人一级视频| 亚洲国产精品国产精品| 在线观看一区二区三区| a级毛色黄片| 国产免费一级a男人的天堂| 午夜福利视频精品| 国产一区二区三区综合在线观看 | 国产美女午夜福利| 人体艺术视频欧美日本| 噜噜噜噜噜久久久久久91| 亚洲久久久久久中文字幕| 国产午夜精品久久久久久一区二区三区| 热99国产精品久久久久久7| 国产精品.久久久| 少妇裸体淫交视频免费看高清| 欧美变态另类bdsm刘玥| 国产一区亚洲一区在线观看| 99热全是精品| 国产毛片a区久久久久| 色吧在线观看| 三级国产精品片| 人妻制服诱惑在线中文字幕| 免费av毛片视频| 午夜爱爱视频在线播放| 国产毛片a区久久久久| 国产欧美另类精品又又久久亚洲欧美| 国产精品久久久久久av不卡| 中文字幕人妻熟人妻熟丝袜美| 午夜福利在线观看免费完整高清在| 国产亚洲最大av| 天堂网av新在线| 高清日韩中文字幕在线| 国产大屁股一区二区在线视频| 亚洲美女视频黄频| 99久久人妻综合| 日本午夜av视频| 免费在线观看成人毛片| 午夜日本视频在线| 久久精品国产亚洲网站| 国产亚洲5aaaaa淫片| 简卡轻食公司| 亚洲av欧美aⅴ国产| 色婷婷久久久亚洲欧美| 国内精品美女久久久久久| 男插女下体视频免费在线播放| 成人免费观看视频高清| 亚洲国产精品成人综合色| 特级一级黄色大片| av在线播放精品| 在线精品无人区一区二区三 | 国产精品一二三区在线看| 亚洲精品亚洲一区二区| 亚洲精品成人av观看孕妇| 亚洲精品aⅴ在线观看| 2021少妇久久久久久久久久久| 精品国产一区二区三区久久久樱花 | 免费观看在线日韩| 美女cb高潮喷水在线观看| 久久女婷五月综合色啪小说 | 国产伦理片在线播放av一区| 国产综合精华液| 色5月婷婷丁香| 亚洲精品国产色婷婷电影| 可以在线观看毛片的网站| 国产成人精品婷婷| a级一级毛片免费在线观看| 精品久久久久久久久av| 小蜜桃在线观看免费完整版高清| 激情五月婷婷亚洲| 色5月婷婷丁香| 国产精品精品国产色婷婷| 成人午夜精彩视频在线观看| 欧美少妇被猛烈插入视频| 久久这里有精品视频免费| 国产男女内射视频| 久热这里只有精品99| 午夜激情久久久久久久| 免费人成在线观看视频色| 2018国产大陆天天弄谢| 波多野结衣巨乳人妻| 成人特级av手机在线观看| 小蜜桃在线观看免费完整版高清| 卡戴珊不雅视频在线播放| 91狼人影院| 欧美一区二区亚洲| 国产欧美亚洲国产| 美女内射精品一级片tv| 欧美区成人在线视频| 一区二区三区免费毛片| 精品熟女少妇av免费看| av卡一久久| 99久久九九国产精品国产免费| 久久久久久久精品精品| 九草在线视频观看| 18禁在线无遮挡免费观看视频| 国产男女超爽视频在线观看| 国产亚洲av嫩草精品影院| 永久网站在线| 亚洲人与动物交配视频| 黄片无遮挡物在线观看| 亚洲人成网站在线播| 精品国产乱码久久久久久小说| 精品99又大又爽又粗少妇毛片| 国产真实伦视频高清在线观看| 国产一级毛片在线| 国产精品秋霞免费鲁丝片| 精品亚洲乱码少妇综合久久| 国产一区亚洲一区在线观看| 久热这里只有精品99| 国产视频首页在线观看| 国产毛片在线视频| 一二三四中文在线观看免费高清| 精品国产一区二区三区久久久樱花 | 国产黄色免费在线视频| 欧美日韩国产mv在线观看视频 | 可以在线观看毛片的网站| 成人黄色视频免费在线看| 国产精品熟女久久久久浪| 国产精品一区二区三区四区免费观看| 91精品伊人久久大香线蕉| 成人亚洲欧美一区二区av| 好男人视频免费观看在线| 大陆偷拍与自拍| 一个人观看的视频www高清免费观看| 波野结衣二区三区在线| 99久国产av精品国产电影| 寂寞人妻少妇视频99o| 亚洲欧美中文字幕日韩二区| 亚洲av国产av综合av卡| 女人被狂操c到高潮| 一区二区三区精品91| 啦啦啦啦在线视频资源| 看非洲黑人一级黄片| 熟妇人妻不卡中文字幕| 国产精品一及| 99久久精品一区二区三区| 久久久精品欧美日韩精品| 搞女人的毛片| 我要看日韩黄色一级片| 国产精品一区二区三区四区免费观看| 美女xxoo啪啪120秒动态图| 国产欧美亚洲国产| 国产在视频线精品| 日韩人妻高清精品专区| 国产一级毛片在线| 亚洲av.av天堂| 免费黄频网站在线观看国产| 美女主播在线视频| 亚洲最大成人手机在线| 听说在线观看完整版免费高清| 色视频在线一区二区三区| 在线观看人妻少妇| 午夜福利高清视频| 久久久久精品性色| 两个人的视频大全免费| 欧美性猛交╳xxx乱大交人| 99久久精品一区二区三区| 欧美精品国产亚洲| av在线app专区| 国内揄拍国产精品人妻在线| 亚洲人与动物交配视频| 欧美三级亚洲精品| 国产精品三级大全| 国产欧美日韩一区二区三区在线 | 高清日韩中文字幕在线| 极品教师在线视频| 亚洲激情五月婷婷啪啪| 老司机影院成人| 亚洲性久久影院| 日韩成人av中文字幕在线观看| 免费看不卡的av| 久久人人爽人人爽人人片va| 欧美成人午夜免费资源| 亚洲av中文av极速乱| 国产成人aa在线观看| av网站免费在线观看视频| 亚洲最大成人手机在线| 日本-黄色视频高清免费观看| 美女内射精品一级片tv| 成人亚洲精品一区在线观看 | 亚洲综合色惰| 亚洲国产成人一精品久久久| 国产精品无大码| 99热6这里只有精品| 黄色日韩在线| 亚洲综合精品二区| 伦精品一区二区三区| 欧美日韩视频高清一区二区三区二| 日本一本二区三区精品| av免费观看日本| 午夜精品国产一区二区电影 | av国产精品久久久久影院| 麻豆成人av视频| 久久ye,这里只有精品| 日韩电影二区| 噜噜噜噜噜久久久久久91| 精品亚洲乱码少妇综合久久| 久久精品久久久久久噜噜老黄| 如何舔出高潮| 我的老师免费观看完整版| 热99国产精品久久久久久7| 中国美白少妇内射xxxbb| 青春草亚洲视频在线观看| 午夜免费男女啪啪视频观看| 亚洲精品久久久久久婷婷小说| 成年人午夜在线观看视频| 亚洲欧美精品自产自拍| 97热精品久久久久久| 国产老妇女一区| 最后的刺客免费高清国语| 熟女电影av网| 亚洲国产最新在线播放| 国产女主播在线喷水免费视频网站| 精品一区二区三卡| 日日啪夜夜撸| 好男人视频免费观看在线| 国产大屁股一区二区在线视频| 欧美日韩在线观看h| 精品久久久久久久末码| 欧美老熟妇乱子伦牲交| 精品午夜福利在线看| 国产精品一二三区在线看| 高清午夜精品一区二区三区| av卡一久久| .国产精品久久| 国产免费视频播放在线视频| 精品酒店卫生间| 在线观看免费高清a一片| 欧美人与善性xxx| 亚洲va在线va天堂va国产| 日韩av不卡免费在线播放| 熟妇人妻不卡中文字幕| 夫妻午夜视频| 亚洲经典国产精华液单| 精品人妻熟女av久视频| 国产 一区精品| 在线观看人妻少妇| 青青草视频在线视频观看| 国产av码专区亚洲av| 日韩一区二区三区影片| av免费在线看不卡| 国产伦在线观看视频一区| 97热精品久久久久久| 亚洲精品久久久久久婷婷小说| 久久精品国产鲁丝片午夜精品| 亚洲精品国产成人久久av| 夫妻性生交免费视频一级片| 久久人人爽人人片av| 99热网站在线观看| 亚洲国产精品999| 18禁在线无遮挡免费观看视频| 亚洲精品乱码久久久久久按摩| 日本三级黄在线观看| 亚洲精品国产成人久久av| 国产男女超爽视频在线观看| 在线免费十八禁| 又大又黄又爽视频免费| 欧美变态另类bdsm刘玥| 欧美成人一区二区免费高清观看| 国产极品天堂在线| 最近最新中文字幕大全电影3| 欧美一区二区亚洲| 国产免费福利视频在线观看| 18禁动态无遮挡网站| 日本猛色少妇xxxxx猛交久久| 99久久九九国产精品国产免费| 国产黄色视频一区二区在线观看| 99久久精品热视频| 中国美白少妇内射xxxbb| 日本一二三区视频观看| 免费观看a级毛片全部| 精品视频人人做人人爽| 午夜福利视频精品| 亚洲精品日韩在线中文字幕| 国产爽快片一区二区三区| av一本久久久久| 精品国产露脸久久av麻豆| 婷婷色av中文字幕| 九色成人免费人妻av| 国产黄片美女视频| 韩国av在线不卡| 免费不卡的大黄色大毛片视频在线观看| 在线精品无人区一区二区三 | 成人无遮挡网站| 国产黄频视频在线观看| 国产免费又黄又爽又色| 少妇猛男粗大的猛烈进出视频 | 国产精品久久久久久久久免| 国产成人福利小说| 99精国产麻豆久久婷婷| 亚洲精品中文字幕在线视频 | 亚洲精品亚洲一区二区| 在线观看人妻少妇| av国产精品久久久久影院| 日韩人妻高清精品专区| 亚洲天堂国产精品一区在线| 嫩草影院新地址| 人妻夜夜爽99麻豆av| 日本三级黄在线观看| 深爱激情五月婷婷| 纵有疾风起免费观看全集完整版| 丝瓜视频免费看黄片| 99九九线精品视频在线观看视频| 亚洲欧美一区二区三区黑人 | 国产精品久久久久久精品古装| 高清av免费在线| av天堂中文字幕网| 婷婷色av中文字幕| 国国产精品蜜臀av免费| 人人妻人人澡人人爽人人夜夜| 美女高潮的动态| 麻豆国产97在线/欧美| 欧美区成人在线视频| 欧美 日韩 精品 国产| 精品一区在线观看国产| 在线天堂最新版资源| 中文字幕制服av| 国产高清国产精品国产三级 | 色哟哟·www| 亚洲最大成人中文| 最近的中文字幕免费完整| 各种免费的搞黄视频| 国产精品一区二区三区四区免费观看| 久久精品国产亚洲网站| 一级片'在线观看视频|