• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nano-friction phenomenon of Frenkel–Kontorova model under Gaussian colored noise

    2022-05-16 07:08:56YiWeiLi李毅偉PengFeiXu許鵬飛andYongGeYang楊勇歌
    Chinese Physics B 2022年5期
    關(guān)鍵詞:鵬飛

    Yi-Wei Li(李毅偉) Peng-Fei Xu(許鵬飛) and Yong-Ge Yang(楊勇歌)

    1Department of Mathematics,Shanxi Agricultural University,Jinzhong 030801,China

    2School of Applied Mathematics,Guangdong University of Technology,Guangzhou 510520,China

    Keywords: Frenkel–Kontorova model,Gaussian colored noise,hysteresis,super-lubricity

    1. Introduction

    Nano-friction is becoming more and more often a central issue in the emerging field of nanoscale science and technology, which is related to the atom processes occurring at the interface of two interacting systems in relative motion.[1–3]Recently, remarkable achievements have been made in nanofriction testing technology (atomic and friction force microscope,surface-force,and quartz-crystal microbalance)and the computing power(realistic molecular dynamics simulations).And these advances have largely encouraged to search for simple mathematical models capable of describing the essential physics in friction processes.[3]In particular, the driven Frenkel–Kontorova (FK)[4]models have recently received an increasing amount of attention and have been extensively investigated both theoretically and experimentally in the nanofriction areas.[5,6]The standard FK[3,4]model describes the dissipative motion of a chain of harmonically interacting particles that slides over a rigid substrate potential due to the application of an external driving force. Moreover, the classic FK model has been used to study the dynamic phenomena in nano-tribology, and an increasing interest as a possible interpretative key has been found to understand the atomic processes occurring at the interface of two materials in relative motion.[1–21]So far,the FK models have become an extremely important theoretical tool in the field of nano-tribology. Relevant generalizations of the FK models have also been proposed in the literature to cover a large class of physically interesting nano-friction phenomena,[7–13]such as hysteresis, superlubricity, and stick-slip,etc. Furthermore, both the dynamics process of friction and the mechanism of energy dissipation on the nanoscale are explained, according to the FK models and nano-friction.

    However, most studies on FK models focus on deterministic systems,[7–13]and only a few involves the stochastic systems.[15–20]In fact,noise is usually inevitable as modeling a real system at the nanoscale level. Teki′cet al.[15–18]studied the noise effects on the dynamical mode-locking phenomena in the overdamped FK model. The effects of the temperature and substrate disorder on the FK model are investigated by Guerraet al.[19]The noise,[20,22]as a stochastic excitation,can not only make deterministic systems random but also change their dynamical behaviors. The interference of random factors is an important factor that cannot be ignored in the study of nonlinear dynamics. The random factor refers to Gaussian white noise or some associated colored noise. As the spectrum of Gaussian white noise[20]is unbounded and there is no Gaussian white noise in nature, the introduction of Gaussian white noise may go against the essential characteristics of some systems in nature.So the introduction of colored noise is very necessary. Therefore,the study of stochastic FK models under colored noise excitation has important practical significance for the understanding of nano-friction mechanism. This paper mainly studies the FK model under the Gaussian colored noise excitation and studies the variation of some nano-friction phenomena,such as hysteresis,maximum static friction force,and super-lubricity. The Langevin molecular dynamics approach allows us to introduce Gaussian colored noise via the inclusion of a stochastic force.[19,20]Working in the dissipative regime, we analyze the display of hysteretic behavior in theB(F) characteristics[19]for the variation of the external driving force and the relationship between the maximum static friction force and the noise parameters.

    The rest of the paper is organized as follows.Section 2 introduces the driven FK model with the Gaussian colored noise excitation. In Section 3, the simulation results are presented.The effects of different parameters (such as the noise intensity and the correlation time) on the chain mobility and the maximum static friction force have been investigated in detail for incommensurate case and commensurate case,respectively. Finally,the main conclusions are drawn in Section 4.

    2. Model

    The system here describes the dynamics of a driven FK model, whoseNparticle positionsxisatisfy the following equation of motion:[3,19,20]

    whereDis the noise intensity and the correlation timeτ=λ-1.

    The ratioB=VCM/Fof the time-averaged CM velocity to the external applied force(the chain mobility).[19]Observation of finite static friction implies that the contacting solids have locked into a local energy minimum,andFsis maximum static friction force which represents the force needed to lift them out of it.

    The researches of Vanossi[3]and Braun[9]on the FK models show that when strengthKis small[3,10]and the system is in an underdamped state,the hysteresis of the system is obvious which is also convenient for the explanation of some problems in this article. In this paper, we focus on the effects of Gaussian colored noise in the underdamped[2,20]dynamics of a onedimensional chain of interacting atoms sliding over a substrate potential. If not stated differently,the valuem=1,K=1,andγ=0.7 define our system units.Bf=(mγ)-1represents the maximum asymptotic value of the chain mobility.[19,20]

    3. Results and disussion

    The length scale competition between the substrate and interatomic potentials controls the static and dynamic behavior of the system,[3,4,17]resulting in a rich complexity of spatially modulated structures for the chain particles. Following the previous studies in the FK models,[1–3]we have studied the incommensurate case(b/a=144/233)and the commensurate case (b/a=1). For different values of the model parameters noise intensityDand the correlation timeτ, we explore the behavior of the chain mobility as a function of variations ofF.And the combined effects of noise intensityDand correlation timeτon the maximum static friction forceFshave also been investigated in detail.

    3.1. Noise intensity effects

    3.1.1. Incommensurate case (b/a = 144/233)

    The behavior of the chain mobilityBas a function of variations of the driving forceF,for three different values of noise intensityDand fixed correlation times (τ=1,τ=10, andτ=100), is shown in Fig. 1, to investigate the effect of the noise intensityD. In this section, we consider the case of the incommensurate, and we choosea=1,b/a=144/233,c=a/β=144/89,so that the system size isL=144 and the chain is made up ofN=233 particles.[7,15]

    Fig.1. Noise effects on static friction and hysteresis of the B(F)characteristics for the incommensurate case when D=0,0.005,0.05 for three cases:(a)τ =1,(b)τ =10,and(c)τ =100. Triangles and circles denote,respectively,the increasing and decreasing processes of F.

    In Fig.1(a),when noise intensityD=0,a large hysteresis is clear. The larger value of noise intensity contributes to the disappearance of hysteretic and the decrease of the maximum static friction forceFs(whenD=0,Fs≈0.18;D=0.005,Fs≈0.15;D= 0.05,Fs<0.017), which indicates that the noise makes the atoms move along the chain much easier than themselves. Moreover,as the value of theFrises,the increase ofDcomes with a greater chain mobilityB(whenF=0.6,D=0,B ≈0.58;D=0.005,B ≈0.62;D=0.05,B ≈0.65).Recent studies[19,20]of the one-dimensional FK models have demonstrated that noise excitation makes it easier for atoms to escape from the substrate potential. The results concluded from Fig.1 also verify this view.

    Figures 1(a) and 1(b) have a similar conclusion that is the hysteresis and maximum static frictionFsof the system decline as the noise intensity grows. The difference between Figs. 1(a) and 1(b) can be concluded that the increase of the correlation timeτrenders a slower decline of the hysteresis andFs. As shown in Fig. 1(c) (τ=100), the comparatively large value of the correlation timeτmakes the hysteresis andFsalmost insusceptible to noise intensity. We can obtain from Fig. 1 that the greater the correlation timeτ, the slower the decrease of the hysteresis andFs. The result means that noise intensity has a positive effect on reducing hysteresis andFs,whereas a change in correlation time will hinder this process.

    Fig.2. Noise effects on maximum static friction force for the incommensurate case.

    Figure 2 displays the detailed behavior of the maximum static friction forceFswith growing noise intensityD. The maximum static frictionFsdrops asDincreases. However,this trend varies depending on the correlation time. The variation is dramatic whenτ=1 and invisible whenτ=10.In particular, with appropriate parameters (whenD ≈0.15,τ=1),the system will give rise to super-lubricity. And the region,in which super-lubricity can happen, is marked in Fig. 3. However, there is no super-lubricity while the correlation time is too large(τ=100)which indicates that super-lubricity is possible for us if we choose appropriate noise parameters.

    Fig.3. Super-lubricity region for the incommensurate case.

    Figures 1 and 2 show that for the incommensurate case,noise excitation makes it easier for atoms to escape from the substrate potential and accelerate the motion of the system. With suitable noise intensity and correlation time,superlubricity happens. To verify the relevant conclusions indepth,we have also carried out simulations for other irrational choices of the three characteristic lengthsa,b, andcof the model.

    3.1.2. Commensurate case (b/a = 1)

    In this section, we shall focus on the hysteretic behavior ofBas a function ofFand the effect of noise intensity imposed onFsfor the case of a commensurate choice among the three model length scales already considered in a previous study.[19,20]Therefore, the numerical results refer to a substrate potential characterized by the parametersa=1 andc=a/β=30/24. The simulations are performed for a sizeL=140 and a chain made up ofN=140 particles.[2,10]

    Fig.4. Noise effects on static friction and hysteresis of the B(F)characteristics for the commensurate case when D=0, 0.005, 0.05 for three cases:τ =1,τ =10,and τ =100. Triangles and circles denote the increasing and decreasing process of F respectively.

    Figure 4 shows the noise intensityDeffects on the mobility-driving characteristics for a commensurate interface.In Fig. 4, when the correlation time is fixed, the width of the hysteretic region and the maximum static friction forceFsdecrease to varying degrees due to the increase ofD.This trend is less pronounced when the value of correlation time is large. Moreover, as shown in Fig.4(a), the introduction of the noise accelerates the chain motion of the system as the forceFrises (whenF= 0.6,D= 0,B ≈0.6;D= 0.005,B ≈0.63;D=0.05,B ≈0.8), the greater the noise intensity,the greater the chain mobility. The relevant change diminishes with the increase of correlation time which can be observed from Figs.4(b)and 4(c). As a result,the noise intensity tends to reduce the hysteretic region at finite correlation time, destroy the occurrence of parametric resonances inside the chain,and favor sliding with higher mobility values.

    Conclude from Figs. 1(a) and 4(a): for a commensurate interface,the chain length isL=144,and the number of atoms isN=233,whilst an incommensurate case has the followingL=140 andN=140.Albeit similar in chain length, despite having fewer atoms, when the commensurate interface has a noise intensity ofD=0,its hysteresis region andFsare significantly larger in comparison.Figure 1(a)shows that the hysteresis andFsvary by noise. The distinction between the two circumstances is that for the commensurate interface (Figs. 4 and 5), the atoms are more strongly coupled and entrapped by the substrate potential[5,10,19]so that the introduction of the noise make this coupling unstable and makes the atoms move along the chain much easier than before. Therefore,the influence is more vigorous for the commensurate case.

    Fig.5.Noise effects on maximum static friction force for the commensurate case.

    The variation of the maximum static friction forceFswith respect to noise intensityDfor the commensurate interface is plotted in Fig.5. It is found that the increase ofDcontributes to the decrease ofFs. The shorter the correlation timeτ, the more obviouslyFsvaries.Figure 6 depicts the region,in which the super-lubricity can appear. It is noteworthy that the system is much easier to give rise to super-lubricity for the incommensurate interface (τ ≈0.01,D ≈0.1) than the commensurate interface(τ ≈0.01,D ≈0.1).

    Fig.6. Super-lubricity region for the commensurate case.

    3.2. Correlation time effects

    The above simulation results indicate that the hysteretic and maximum static friction forceFsdepends notably on the correlation timeτ.In order to study the effect of the correlation time on the nano-friction phenomena in more detail, we plot the variation of theB(F)for different values of correlation timeτwith different noise intensitiesD.Meanwhile,the maximum static friction forceFswith respect to correlation timeτis given. This section is divided into the incommensurate case and the commensurate case.

    3.2.1. Incommensurate case (b/a = 144/233)

    In this section,we have considered the case of the incommensurate, so we choosea=1,b/a=144/233,c=a/β=144/89,so that the system size isL=144 and the chain is made up ofN=233 particles.[2,7]

    As depicted in Fig. 7, for the incommensurate case, the correlation time has a clear effect on the hysteresis and maximum static friction forceFs.And the hysteretic region tends to increase with increasing values of correlation timeτ, and the correlation time also affects the maximum static friction forceFs(in Fig. 7(a),τ=0.1,Fs≈0.11;τ=1,Fs≈0.15;τ=10,F ≈0.17). Figures 7(a) and 7(b) demonstrate similar conclusion,however,under the fixed noise intensityD,the trend of increasing the hysteretic region andFsare different due to different correlation time.

    Fig. 7. Correlation time on static friction forces as well as the hysteresis for the incommensurate case, in which triangle and circle denote the processes of increasing and decreasing external forces depicting the hysteresis behavior for two cases: (a)D=0.005,(b)D=0.05.

    Figure 8 displays the detailed behavior of the maximum static friction forceFswith the change of correlation timeτat different noise intensityD.Fsis increased asτgrows,and eventually reaches a relatively stable value (D=0.005,Fs≈0.18;D= 0.05,Fs≈0.17). The difference between the two situations (D=0.005,D=0.05) is that the greater the noise intensity,the more sharply the increase. The results mean that the correlation time encourages the increase of the hysteresis and the maximum static friction forceFs,however,the noise intensity plays the opposite role. The findings summarized in Figs. 7 and 8 verify some of the conclusions in Subsection 3.1.

    Fig.8.Correlation time on maximum static friction force for the incommensurate case.

    3.2.2. Commensurate case (b/a = 1)

    In order to further study the effect of the correlation time on the nano-friction phenomena, this section investigates the commensurate case. Therefore, the numerical results refer to the substrate potential characterized by the parametersa=1 andc=a/β=30/24.In this case, the chain lengthL=140 and the number of atomsN=140.

    Fig.9. Correlation time effects on static friction and hysteresis of the B(F)characteristics for the incommensurate case, when τ =0.1, 1, 10 for two cases: (a)D=0.005,(b)D=0.05.

    Figure 9 gives the process of the hysteretic behavior in the characteristicsB versus Ffor the commensurate interface.It is shown that for given values of noise intensityD(whereD=0.005, 0.05 respectively), with the increase of the correlation timeτ,the region of the hysteretic is increased. Meanwhile, the maximum static friction forceFsgoes up with increasing the correlation times(in Fig.9(a),τ=0.1,Fs≈0.25;τ= 10,Fs≈0.3). To sum up, the difference between the Figs.9(a)and 9(b)is the increased tendencies of the hysteresis region which is related to noise intensityD.

    For the commensurate case,the variation of the maximum static friction forceFswith respect to correlation timeτfor different noise intensitiesDis plotted in Fig. 10. The maximum static friction forceFsincreases to a relatively stable value(D=0.005,τ ≈0.33;D=0.05,τ ≈0.31)whileτincreases. The greater the noise intensity, the more evident the increase.

    Fig.10. Correlation time on maximum static friction force for the commensurate case.

    It is summarized from Figs.7–10 that for commensurate interface,the influence of colored noise on hysteresis andFsis more evident. From what we have mentioned above,noise intensityD=0.05,correlation time rises fromτ=0 toτ=10,hystersis region (Figs. 7(b) and 9(b)) and the maximum friction (Figs. 6 and 8) both experienced the processes from appearing to growing. However, difference also exists. Given the larger increase ofFsfrom 0 to 0.31 for commensurate interface(Fig.7(b),τ=10)and from 0 to 0.17 for incommensurate case(Fig.5(b),τ=10)and wider hysteresis area for the former interface,it is easy to conclude that noise poses a more significant effect on hysteresis andFsfor commensurate case.

    4. Conclusions

    In this paper,we have investigated the effects of Gaussian colored noise on a one-dimensional chain of interacting atoms driven by an external force. Starting from the two geometrically opposite ideal cases of commensurate and incommensurate interface. In particular,we have focused our study on the variation regularity of the hysteretic behavior and the maximum static friction force which are affected by the Gaussian colored noise.

    The results indicate that the noise intensity has a positive effect on reducing hysteresis andFs,whereas the change in correlation time hinders this process. In particular,suitable correlation time and noise intensity give rise to super-lubricity.The difference between the two circumstances is that for the commensurate mating contacts, the influence of the noise is much stronger in terms of triggering the motion of the FK model than for the incommensurate interface since the atoms in the former case are coupled and entrapped more strongly by the substrate potential. We hope that the results presented in this work may be relevant to future theoretical and experimental studies concerning microscopic tribology of the real physical systems,where the geometrical features of the interfaces in relative motion could play a major role.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China(Grant No.11902081),the Science and Technology Innovation Foundation of Higher Education Institutions of Shanxi Province, China (Grant No. 2020L0172), the Natural Science Foundation for Young Scientists of Shanxi Agricultural University,China(Grant No.2020QC04),and the Research Fund of Shanxi Agriculture University,China(Grant No.2021BQ12).

    猜你喜歡
    鵬飛
    樊應(yīng)舉
    書香兩岸(2020年3期)2020-06-29 12:33:45
    漫畫
    Quality Control for Traditional Medicines - Chinese Crude Drugs
    為了避嫌
    雜文月刊(2019年18期)2019-12-04 08:30:40
    懲“前”毖“后”
    21世紀(jì)(2019年10期)2019-11-02 03:17:02
    執(zhí)“迷”不悟
    21世紀(jì)(2019年10期)2019-11-02 03:17:02
    舉賢
    21世紀(jì)(2019年9期)2019-10-12 06:33:44
    漫畫
    粗看“段”,細(xì)看“端”
    漫畫
    国产成人精品福利久久| 久久久久久久久久久久大奶| 国产一区亚洲一区在线观看| 午夜福利视频精品| av线在线观看网站| 国产伦理片在线播放av一区| 欧美人与善性xxx| 亚洲,欧美精品.| 黄片播放在线免费| 婷婷色综合大香蕉| 精品人妻在线不人妻| 国产精品麻豆人妻色哟哟久久| 久久国产精品男人的天堂亚洲| 亚洲人成网站在线观看播放| 国产不卡av网站在线观看| 亚洲成色77777| 成人亚洲欧美一区二区av| 黑丝袜美女国产一区| 街头女战士在线观看网站| www.熟女人妻精品国产| 国产精品国产三级国产专区5o| 久久久久久久亚洲中文字幕| 亚洲一码二码三码区别大吗| 2018国产大陆天天弄谢| 久久人人爽人人片av| 国产av一区二区精品久久| 国产免费福利视频在线观看| 桃花免费在线播放| 我要看黄色一级片免费的| 久久人人97超碰香蕉20202| 国产精品二区激情视频| 波多野结衣一区麻豆| 成人漫画全彩无遮挡| 在线免费观看不下载黄p国产| 日韩一区二区视频免费看| 国产女主播在线喷水免费视频网站| 日韩三级伦理在线观看| 久久久久精品性色| 国产淫语在线视频| 电影成人av| 十分钟在线观看高清视频www| 男男h啪啪无遮挡| 久久久久久久国产电影| 黑丝袜美女国产一区| 日韩一卡2卡3卡4卡2021年| 亚洲精品av麻豆狂野| 超碰97精品在线观看| 尾随美女入室| 一区在线观看完整版| 观看美女的网站| 久久久精品区二区三区| 伦理电影大哥的女人| 国产极品粉嫩免费观看在线| 王馨瑶露胸无遮挡在线观看| videos熟女内射| 精品国产露脸久久av麻豆| av片东京热男人的天堂| 成年人午夜在线观看视频| 欧美在线黄色| 汤姆久久久久久久影院中文字幕| 搡老乐熟女国产| 人妻系列 视频| 亚洲精品久久成人aⅴ小说| 精品福利永久在线观看| 多毛熟女@视频| 97精品久久久久久久久久精品| 人妻 亚洲 视频| 久久免费观看电影| 综合色丁香网| 成年av动漫网址| 免费大片黄手机在线观看| 五月伊人婷婷丁香| 一区二区三区乱码不卡18| 久久精品国产鲁丝片午夜精品| 最近中文字幕2019免费版| 亚洲av男天堂| 欧美 亚洲 国产 日韩一| 国产xxxxx性猛交| 满18在线观看网站| av网站在线播放免费| 欧美日韩精品网址| 国产精品二区激情视频| 青草久久国产| 亚洲国产欧美在线一区| 国产精品成人在线| 久久久久久久久久人人人人人人| 一级片免费观看大全| 精品一区二区三区四区五区乱码 | 下体分泌物呈黄色| 啦啦啦啦在线视频资源| 久久久久久久亚洲中文字幕| 亚洲国产日韩一区二区| 亚洲av欧美aⅴ国产| 日韩不卡一区二区三区视频在线| 激情五月婷婷亚洲| 王馨瑶露胸无遮挡在线观看| 欧美成人午夜精品| 波多野结衣av一区二区av| 亚洲久久久国产精品| 边亲边吃奶的免费视频| 日韩一卡2卡3卡4卡2021年| 在线观看美女被高潮喷水网站| 我要看黄色一级片免费的| 亚洲国产看品久久| 国产精品无大码| 久久97久久精品| 99久久人妻综合| 国产有黄有色有爽视频| 制服人妻中文乱码| 国产精品蜜桃在线观看| 欧美xxⅹ黑人| 国产亚洲最大av| 丰满饥渴人妻一区二区三| 捣出白浆h1v1| 可以免费在线观看a视频的电影网站 | 日本猛色少妇xxxxx猛交久久| 欧美精品亚洲一区二区| 欧美日本中文国产一区发布| 日日撸夜夜添| 少妇人妻精品综合一区二区| 捣出白浆h1v1| 午夜激情久久久久久久| 亚洲精品中文字幕在线视频| 叶爱在线成人免费视频播放| 国产男人的电影天堂91| 如何舔出高潮| 国产成人精品无人区| 国产片内射在线| 妹子高潮喷水视频| 一级毛片黄色毛片免费观看视频| 欧美精品av麻豆av| 热re99久久精品国产66热6| 免费大片黄手机在线观看| 亚洲av.av天堂| 国产老妇伦熟女老妇高清| 另类亚洲欧美激情| 日本wwww免费看| 一区二区av电影网| 我要看黄色一级片免费的| 午夜免费观看性视频| 久久精品亚洲av国产电影网| 亚洲成人手机| 久久精品aⅴ一区二区三区四区 | 成年人午夜在线观看视频| 1024香蕉在线观看| 日日撸夜夜添| 精品国产超薄肉色丝袜足j| 亚洲精品美女久久久久99蜜臀 | 成人黄色视频免费在线看| 91精品国产国语对白视频| av在线老鸭窝| 亚洲色图 男人天堂 中文字幕| 丝袜美足系列| 少妇被粗大的猛进出69影院| 菩萨蛮人人尽说江南好唐韦庄| 国产精品熟女久久久久浪| 宅男免费午夜| 色吧在线观看| 国产精品一二三区在线看| 久久久国产精品麻豆| 中文字幕色久视频| 久久精品久久久久久久性| 成人亚洲精品一区在线观看| 欧美少妇被猛烈插入视频| 久热久热在线精品观看| av网站免费在线观看视频| 黄色怎么调成土黄色| 亚洲少妇的诱惑av| 青草久久国产| 成年人午夜在线观看视频| 国产伦理片在线播放av一区| 久久久久国产一级毛片高清牌| 久久人人爽人人片av| 女人久久www免费人成看片| 可以免费在线观看a视频的电影网站 | 伊人久久国产一区二区| 国产极品天堂在线| 国产在视频线精品| 国产一区二区三区综合在线观看| 免费久久久久久久精品成人欧美视频| 精品99又大又爽又粗少妇毛片| av.在线天堂| 亚洲av电影在线观看一区二区三区| 久久久久久人妻| 寂寞人妻少妇视频99o| 在线观看国产h片| 亚洲图色成人| 亚洲美女黄色视频免费看| 欧美日韩国产mv在线观看视频| 80岁老熟妇乱子伦牲交| 亚洲av男天堂| 飞空精品影院首页| 亚洲第一区二区三区不卡| 亚洲国产精品一区三区| 欧美在线黄色| 亚洲伊人久久精品综合| 国产无遮挡羞羞视频在线观看| 黑丝袜美女国产一区| 国产视频首页在线观看| 日韩制服丝袜自拍偷拍| 交换朋友夫妻互换小说| 天天躁日日躁夜夜躁夜夜| 少妇的逼水好多| 久久久精品国产亚洲av高清涩受| 免费看av在线观看网站| 人成视频在线观看免费观看| 日韩欧美精品免费久久| 久久精品国产亚洲av涩爱| 成年女人毛片免费观看观看9 | 中文字幕av电影在线播放| 日韩电影二区| 国产97色在线日韩免费| 蜜桃国产av成人99| 一级片免费观看大全| 热re99久久国产66热| 国产午夜精品一二区理论片| 中国三级夫妇交换| 国产爽快片一区二区三区| 成人毛片60女人毛片免费| av在线播放精品| 男人添女人高潮全过程视频| 精品久久久久久电影网| 黄色 视频免费看| 久久精品国产亚洲av高清一级| 看免费av毛片| 欧美老熟妇乱子伦牲交| 亚洲欧洲日产国产| 亚洲美女搞黄在线观看| 91aial.com中文字幕在线观看| 99久国产av精品国产电影| 日本黄色日本黄色录像| 国产高清国产精品国产三级| 免费少妇av软件| 中文字幕人妻熟女乱码| 国产精品一二三区在线看| 狠狠婷婷综合久久久久久88av| 色视频在线一区二区三区| 精品国产一区二区三区四区第35| av福利片在线| 啦啦啦啦在线视频资源| 亚洲av国产av综合av卡| 亚洲国产色片| av.在线天堂| 国产av国产精品国产| 国产成人精品一,二区| 男人操女人黄网站| 秋霞在线观看毛片| 伊人亚洲综合成人网| 99久久综合免费| 日韩在线高清观看一区二区三区| 18禁裸乳无遮挡动漫免费视频| 丰满饥渴人妻一区二区三| 寂寞人妻少妇视频99o| 中文字幕最新亚洲高清| 在线亚洲精品国产二区图片欧美| 亚洲激情五月婷婷啪啪| 午夜日韩欧美国产| 国产精品香港三级国产av潘金莲 | 亚洲人成电影观看| 中文乱码字字幕精品一区二区三区| 女人久久www免费人成看片| 国产亚洲最大av| 天天影视国产精品| 桃花免费在线播放| 老熟女久久久| 日韩不卡一区二区三区视频在线| 欧美日韩亚洲高清精品| 91aial.com中文字幕在线观看| 久久久久精品性色| 香蕉丝袜av| 免费观看性生交大片5| 成人午夜精彩视频在线观看| 啦啦啦在线观看免费高清www| 伊人久久大香线蕉亚洲五| 电影成人av| 夜夜骑夜夜射夜夜干| 九草在线视频观看| 精品少妇久久久久久888优播| 秋霞伦理黄片| 国产精品久久电影中文字幕| 国产一区在线观看成人免费| 老司机午夜福利在线观看视频| 欧美+亚洲+日韩+国产| 中文欧美无线码| 国产乱人伦免费视频| 大陆偷拍与自拍| 精品国内亚洲2022精品成人| 黄色女人牲交| 免费av中文字幕在线| 在线视频色国产色| 女人精品久久久久毛片| 女人被躁到高潮嗷嗷叫费观| 国产精品偷伦视频观看了| 老司机在亚洲福利影院| 精品免费久久久久久久清纯| 午夜福利影视在线免费观看| 天天影视国产精品| 亚洲第一欧美日韩一区二区三区| 亚洲国产毛片av蜜桃av| 少妇的丰满在线观看| 亚洲av成人不卡在线观看播放网| 免费在线观看黄色视频的| 久久精品91蜜桃| 母亲3免费完整高清在线观看| 精品国产国语对白av| 99在线人妻在线中文字幕| 欧美大码av| 一区福利在线观看| 大码成人一级视频| 亚洲成人精品中文字幕电影 | 欧美日韩av久久| 精品国产乱码久久久久久男人| 窝窝影院91人妻| 日韩欧美三级三区| 国产高清videossex| 日韩精品免费视频一区二区三区| 操美女的视频在线观看| 人人妻,人人澡人人爽秒播| 日韩有码中文字幕| 亚洲一区二区三区色噜噜 | 国产成+人综合+亚洲专区| www.999成人在线观看| 91大片在线观看| 国产蜜桃级精品一区二区三区| 国产97色在线日韩免费| 亚洲自拍偷在线| 无人区码免费观看不卡| 99久久人妻综合| 国产熟女午夜一区二区三区| 老司机靠b影院| 久久久久九九精品影院| 久久国产精品影院| 久久99一区二区三区| 丁香六月欧美| 天天影视国产精品| 曰老女人黄片| 亚洲激情在线av| 大码成人一级视频| 不卡一级毛片| 另类亚洲欧美激情| 欧美一级毛片孕妇| 亚洲成人久久性| 免费人成视频x8x8入口观看| 黄片播放在线免费| 最好的美女福利视频网| 中文欧美无线码| 欧美不卡视频在线免费观看 | 男女下面插进去视频免费观看| 50天的宝宝边吃奶边哭怎么回事| av欧美777| 日韩有码中文字幕| 一级黄色大片毛片| 性色av乱码一区二区三区2| 国产成人免费无遮挡视频| 欧美午夜高清在线| 男人的好看免费观看在线视频 | 欧美激情久久久久久爽电影 | 91成年电影在线观看| 中文字幕最新亚洲高清| 涩涩av久久男人的天堂| 国产av又大| 欧美 亚洲 国产 日韩一| 一二三四社区在线视频社区8| 欧美黄色淫秽网站| 一区二区三区激情视频| 国产有黄有色有爽视频| 国产在线精品亚洲第一网站| 国产野战对白在线观看| 日韩人妻精品一区2区三区| 国产高清国产精品国产三级| 色哟哟哟哟哟哟| 少妇裸体淫交视频免费看高清 | 久久 成人 亚洲| 一区福利在线观看| 亚洲成a人片在线一区二区| 亚洲一区二区三区色噜噜 | 欧洲精品卡2卡3卡4卡5卡区| 亚洲美女黄片视频| 99久久综合精品五月天人人| 99re在线观看精品视频| 婷婷丁香在线五月| 欧美黑人精品巨大| 欧美大码av| 午夜福利,免费看| 50天的宝宝边吃奶边哭怎么回事| 国产三级黄色录像| 91在线观看av| 99精国产麻豆久久婷婷| 国产精品乱码一区二三区的特点 | 亚洲国产中文字幕在线视频| 一进一出好大好爽视频| 两个人看的免费小视频| 天堂√8在线中文| 啦啦啦在线免费观看视频4| 国产一区二区激情短视频| 免费一级毛片在线播放高清视频 | 性少妇av在线| 欧美在线黄色| 亚洲欧洲精品一区二区精品久久久| 亚洲,欧美精品.| 我的亚洲天堂| 91成年电影在线观看| 欧美乱码精品一区二区三区| 欧美成人性av电影在线观看| 亚洲五月色婷婷综合| 男人的好看免费观看在线视频 | 久久草成人影院| 亚洲国产看品久久| 久久午夜综合久久蜜桃| 欧美日本中文国产一区发布| 在线观看舔阴道视频| 免费观看人在逋| 又黄又爽又免费观看的视频| 这个男人来自地球电影免费观看| 色哟哟哟哟哟哟| 女警被强在线播放| 欧美日本亚洲视频在线播放| 高清av免费在线| 国产蜜桃级精品一区二区三区| 最新美女视频免费是黄的| 亚洲av成人av| 午夜91福利影院| 男女之事视频高清在线观看| 一级黄色大片毛片| 别揉我奶头~嗯~啊~动态视频| 日韩精品青青久久久久久| e午夜精品久久久久久久| 天天影视国产精品| 免费av中文字幕在线| 亚洲av美国av| 看片在线看免费视频| 叶爱在线成人免费视频播放| 老司机在亚洲福利影院| 男人的好看免费观看在线视频 | 校园春色视频在线观看| 在线免费观看的www视频| 最新美女视频免费是黄的| av视频免费观看在线观看| 欧美一级毛片孕妇| 水蜜桃什么品种好| 亚洲国产精品sss在线观看 | 久久久久久大精品| 精品国内亚洲2022精品成人| 丰满的人妻完整版| 女警被强在线播放| 国产精品一区二区精品视频观看| 久久精品国产亚洲av高清一级| 亚洲国产欧美网| 亚洲精品美女久久久久99蜜臀| 久久人妻av系列| 他把我摸到了高潮在线观看| 大码成人一级视频| 一a级毛片在线观看| 亚洲 欧美一区二区三区| 亚洲伊人色综图| 免费在线观看亚洲国产| 人人妻,人人澡人人爽秒播| 真人一进一出gif抽搐免费| 老熟妇乱子伦视频在线观看| 黑丝袜美女国产一区| 国产熟女xx| 国产一区二区激情短视频| 麻豆一二三区av精品| videosex国产| 真人做人爱边吃奶动态| 亚洲人成电影免费在线| netflix在线观看网站| 亚洲av日韩精品久久久久久密| 啦啦啦在线免费观看视频4| 亚洲熟女毛片儿| 久久久久久久久久久久大奶| 亚洲精品久久午夜乱码| 亚洲av成人av| 麻豆一二三区av精品| 国产精品自产拍在线观看55亚洲| 人妻丰满熟妇av一区二区三区| 免费在线观看完整版高清| 夫妻午夜视频| 他把我摸到了高潮在线观看| 精品无人区乱码1区二区| 男女午夜视频在线观看| 国产精品亚洲av一区麻豆| 国产在线观看jvid| 国产单亲对白刺激| 精品久久久久久,| 夜夜夜夜夜久久久久| 搡老岳熟女国产| 夫妻午夜视频| 免费在线观看完整版高清| 欧美最黄视频在线播放免费 | 色精品久久人妻99蜜桃| 在线观看日韩欧美| 国产成人精品久久二区二区免费| 日韩欧美一区二区三区在线观看| 99久久综合精品五月天人人| 美女午夜性视频免费| 亚洲免费av在线视频| 午夜影院日韩av| 女人被狂操c到高潮| 涩涩av久久男人的天堂| 欧美丝袜亚洲另类 | 欧美日韩一级在线毛片| 一边摸一边做爽爽视频免费| 中亚洲国语对白在线视频| 色婷婷久久久亚洲欧美| 啪啪无遮挡十八禁网站| 久久香蕉精品热| 亚洲色图 男人天堂 中文字幕| 少妇粗大呻吟视频| 97超级碰碰碰精品色视频在线观看| 国产野战对白在线观看| av片东京热男人的天堂| 韩国精品一区二区三区| 很黄的视频免费| 午夜免费成人在线视频| 久久九九热精品免费| 欧美日韩黄片免| 欧美乱妇无乱码| 天堂影院成人在线观看| 妹子高潮喷水视频| 99riav亚洲国产免费| 久久香蕉精品热| 久久久久九九精品影院| 黄色成人免费大全| 电影成人av| av免费在线观看网站| 夜夜爽天天搞| 少妇 在线观看| 国产黄色免费在线视频| 亚洲人成网站在线播放欧美日韩| 18禁裸乳无遮挡免费网站照片 | 啦啦啦 在线观看视频| 亚洲精品av麻豆狂野| 女生性感内裤真人,穿戴方法视频| 中文字幕av电影在线播放| 淫秽高清视频在线观看| 丝袜美足系列| 国产有黄有色有爽视频| 欧美国产精品va在线观看不卡| 高清黄色对白视频在线免费看| 国产精品1区2区在线观看.| 视频在线观看一区二区三区| 午夜两性在线视频| 成年人黄色毛片网站| 丝袜在线中文字幕| 97超级碰碰碰精品色视频在线观看| 一进一出好大好爽视频| 国产亚洲精品一区二区www| 又大又爽又粗| 久久国产乱子伦精品免费另类| 精品久久久久久久久久免费视频 | 亚洲国产欧美网| www.www免费av| 亚洲成人免费av在线播放| 久久久久久久久免费视频了| 久久精品国产亚洲av高清一级| 女人被躁到高潮嗷嗷叫费观| 欧洲精品卡2卡3卡4卡5卡区| 一个人免费在线观看的高清视频| 亚洲人成网站在线播放欧美日韩| 欧美中文日本在线观看视频| 天堂动漫精品| 亚洲av五月六月丁香网| 久久久精品国产亚洲av高清涩受| 久久精品国产清高在天天线| 成人永久免费在线观看视频| 如日韩欧美国产精品一区二区三区| 国产真人三级小视频在线观看| 可以在线观看毛片的网站| cao死你这个sao货| 99久久人妻综合| 精品第一国产精品| 欧美成人性av电影在线观看| 好男人电影高清在线观看| 国产高清videossex| 俄罗斯特黄特色一大片| 亚洲精品在线美女| 欧美日韩亚洲国产一区二区在线观看| 国产精品日韩av在线免费观看 | 国产成年人精品一区二区 | 久久久国产成人免费| 国产主播在线观看一区二区| 午夜91福利影院| 制服诱惑二区| 国产精品香港三级国产av潘金莲| 91精品国产国语对白视频| 18美女黄网站色大片免费观看| 国产三级在线视频| 精品国产乱子伦一区二区三区| 久久亚洲真实| 亚洲少妇的诱惑av| xxxhd国产人妻xxx| 亚洲五月天丁香| 午夜免费成人在线视频| 高潮久久久久久久久久久不卡| 国产成人精品无人区| 久久欧美精品欧美久久欧美| 精品久久久久久久久久免费视频 | 亚洲自偷自拍图片 自拍| 99香蕉大伊视频| 91麻豆精品激情在线观看国产 | tocl精华| 两个人免费观看高清视频| 日韩免费高清中文字幕av| 欧美日韩一级在线毛片| 亚洲激情在线av| 757午夜福利合集在线观看| 久久这里只有精品19| 亚洲久久久国产精品| 老司机在亚洲福利影院| 最新在线观看一区二区三区| 久久香蕉国产精品| 黄网站色视频无遮挡免费观看| 校园春色视频在线观看| 99国产综合亚洲精品|