• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface

    2022-05-16 07:10:00MinZhong仲敏andJiuShengLi李九生
    Chinese Physics B 2022年5期

    Min Zhong(仲敏) and Jiu-Sheng Li(李九生)

    Center for THz Research,China Jiliang University,Hangzhou 310018,China

    Keywords: Fourier convolution operation metasurface,terahertz wave,flexible manipulation

    1. Introduction

    In recent years, metasurfaces have been gradually developed from passive response to active control of electromagnetic wave. Different manipulation methods have been explored including external applied electronic field, optical pumping, temperature control, and so on. Various controllable devices based metasurface have been developed.[1–5]Although these reported studies have increased the freedom of metasurface regulation, they have many additional requirements on the composition of materials, structural design or working environment, which hinder the metasurface application in active control electromagnetic wave. In order to reduce the demand for external condition of controllable metasurface,Cuiet al.[6]proposed the concept of digital encoded metasurface to realize electromagnetic wave regulation by means of digital coding in microwave region.[7–13]Furthermore, in 2016,Cuiet al.[14]introduced the Fourier convolution theorem in digital signal processing into the coding metasurface. By convolution two different coding sequences, electromagnetic wave regulation with any scattering angle was obtained and further improved the regulation flexibility of the coding metasurface. More recently,the vortex beam carrying orbital angular momentum(OAM)has become a important mean of electromagnetic wave regulation. It can be widely used in modern communication systems.[15–19]At present,most of the orbital angular momentum research is focused on the generation of vortex beams from microwave to optical wave regimes.[20–25]But, there are few literature on terahertz vortex beam generator. Furthermore, metasurface combined with Fourier convolution becomes more meaningful for terahertz vortex beam regulation.

    In this paper, we propose a new metasurface based on a combined pattern of outer C-shaped ring and inner rectangular ring. By usign Fourier convolution operation, the proposed metasurface can control vortex terahertz wave splitting,anomalous vortex terahertz wave deflection, and manipulate vortex terahertz wave splitting and deflection simultaneously.The simulation results are consistent with the theoretical predictions. The study shows that the flexible manipulation of terahertz vortex beam has a very high application prospect for improving the capacity of terahertz communication system and the sensitivity of terahertz sensing.

    2. Convolution operation metasurface

    The matesurface sequence is equivalent to the time signal in digital signal processing, while far-field scattering of the metasurface is similar to the frequency domain in digital signal processing. The product of two signals in the time domain can can be converted to the convolution of two signals in the frequency domain,and the digital convolution theorem can be calculated by

    where ejω0tis the time-shift item in time domain, and its frequency spectrum expression isδ(ω). Equation (3) reveals the convolution of a spectrum functionf(ω)with an impulse functionδ(ω-ω), which will cause the spectrum functionf(ω) to shift byωin the frequency domain. Similarly, the far-field scattering pattern of the metasurface can be obtained as

    where the item ejsinθ0xλdescribes the metasurface with unity scattering amplitude and gradient phase distribution. Equation (4) demonstrates the product of an initial coded metasurface sequence and an encoded metasurface sequence with gradual phase distribution causes the metasurface far field scattering pattern to deviate from its initial scattering direction.The sum of two encoding metasurface sequences off(xλ)and ejsinθ0xλgenerates a new encoding sequencef(xλ)·ejsinθ0xλ.The scattering angle of this new coded sequence can be given byθ′=sin-1(sinθ1+sinθ2),whereθ1andθ2are the scattering angles of two initial coding sequences. Likely,two coded metasurface sequences off(xλ)and ejsinθ0xλcan also be subtracted. In addition,the new scattering angleθ′andφ′can be obtained for Fourier convolution of two orthogonal gradientencoded sequences as

    As mentioned above, the beam scattering can be adjusted in arbitrary direction on Fourier convolution operation metasurfacce. In this article,the coding sequence of generation vortex beam can be added to the gradient coding sequence construct a new coding sequence by Fourier convolution operation,which can flexibly manipulate the vortex terahertz beam in transmission mode.and 2(b) show the reflection amplitude and phase of coding particles of “0”, “1”, “2”, and “3” under circularly polarization incidence. One can clearly see from Fig. 2(a) that the reflection amplitudes of the four coding unit cells labeled with numbers“0”to“3”exceed 0.8 at frequency range of 0.6 THz–0.9 THz. Figure 2(b)illustrates the four coding unit cells fully cover the 180°phase range with a 90°interval by changing rotation angle(α)at 0.5 THz–1.2 THz.

    Fig. 1. Coding element structure: (a) 3D plot of coding element; (b) top view of the coding element with rotation angle α; (c)schematic diagram of multi-function terahertz metasurface.

    Fig. 2. Reflection amplitude and phase under circularly polarization incidence. (a)reflection amplitude;(b)reflection phase.

    3. Fourier convolution operation metasurface

    Figure 1(a)shows three-dimensional(3D)schematic diagram of the designed Fourier convolution operation metasurface element, which consists of metallic bottom layer, polyimide dielectric middle layer, and metallic pattern layer, respectively. The optimized dimensions of the coding element are as follows:a=60 μm,b=56 μm,c=30 μm,d=26 μm,p= 100 μm. Here, the polyimide has relative permittivityε=11.9 with thickness ofh=49 μm.Both the top and bottom gold patterns have a thickness of 200 nm. Figure 1(b)displays the top view of coding element by rotating orientation angle(α)of the metallic pattern. For 2-bit coding metasurface, the rotation angle(α)of the coding element varies from 0°to 180°with step width of 22.5°. Figure 1(c)illustrates schematic diagram of multi-function terahertz metasurface. Figures 2(a)

    3.1. Terahertz vortex beam splitting manipulation

    To generate a vortex beam,the metasurface needs to meet the spiral phase distribution of 2nΔφ=2πl(wèi). Where l is the topological charge that can be taken as any integer, and 2nmeans the 2πarea divided into 2π/2n. The phase difference between adjacent areas is fixed at Δφ. According to the generalized Snell’s law and the far-field function of metasurface scattering, the relation among the azimuth angle (φ) of reflected terahertz beam, the length and width (DxandDy) of the unit cell can be calculated byφ=±arctan(Dx/Dy) andφ=π±arctan(Dx/Dy). The pitch angle (θ), which is related to the corresponding terahertz wavelength (λ) in free space and the length of a gradient periodicity, can be given byθ=arcsin(λ/Γ).

    Fig.3. Vortex terahertz beam spitting control. (a)–(c)Coding patterns operation on 2-bit metasurface.(d)–(f)Related 3D scattering fields of two terahertz vortex beams. (g)–(i)Coding patterns operation on 2-bit metasurface. (j)–(l)Corresponding 3D scattering pattern of four terahertz vortex beams.

    Figure 3 shows the reflection vortex terahertz beam splitting by Fourier convolution operation on 2-bit metasurface under the normal incidence terahertz wave. As presented in Figs. 3(a)–3(c), one can noted that the Fourier convolution operation between the vortex terahertz beam coding sequence and the“0000222220000222222···”coding sequence arranged along thexaxis obtains two vortex terahertz wave coding sequences. The 3D scattering fields of two terahertz vortex beams under right-handed circularly polarized(RCP) (left-handed circularly polarized (LCP)) at frequency of 0.68 THz are vertically incident on the designed metasurface, as clearly exhibited in Figs. 3(d)–3(f). As displayed in Figs. 3(g)–3(i), it can be observed that the Fourier convolution operation between the generated vortex terahertz beam coding sequence and the coding sequence arranged in“00001111···/22223333···” generates four terahertz vortex wave coding sequences. The corresponding 3D far-field scattering patterns of four terahertz vortex beams at frequency of 0.68 THz are depicted in Figs. 3(j)–3(l). Figures 4(a) and 4(b) describe the two-dimensional (2D) electric field intensity distributions of two and four vortex terahertz beams, respectively. It can be seen from the figure that the incident terahertz wave produces two reflected terahertz vortex beams(θ=33°,φ=0°, 180°) and four reflected terahertz vortex beams (θ=33°,φ=0°, 90°, 180°, 270°). The corresponding 2D scattering patterns of vortex terahertz beams as shown in Fig. 5. Figure 5(a) gives the 2D scattering pattern of two beams at the azimuth angle of 0°. Figure 5(b) shows the 2D scattering pattern of four beams at the azimuth angle of 0°.According to Figs. 3 and 4, one can see that the number and reflection direction of terahertz vortex beams are controlled by the convolution operation coding metasurface.

    Fig. 4. Electric field intensity distributions of vortex beams: (a) two vortex beams,(b)four vortex beams.

    Fig.5.2D scattering patterns of vortex terahertz beams:(a)two vortex beams at the azimuth angle of 0°;(b)four vortex beams at the azimuth angle of 0°.

    3.2. Terahertz vortex beam anomalous deflection manipulation

    Fig. 6. Vortex terahertz beam anomalous deflection control: (a)–(c) coding patterns operation on a 2-bit metasurface; (d)–(f)3D scattering fields of deflected vortex terahertz beam.

    Fig. 7. Near-field and phase distributions of the proposed coding pattern in Fig.6(b),(a)normalized intensity distribution;(b)phase distribution.

    Fig.8. Electric field intensity distributions and 2D scattering pattern of terahertz vortex beams. (a)Electric field intensity distributions,(b)2D scattering pattern of the deflected vortex beam at the azimuth angle of 0°.

    Figure 6 shows the deflection control of reflected terahertz wave vortex beam on a Fourier convolution operation 2-bit metasurface. As depicted in Figs. 6(a)–6(c), one can find that the coding patterns of generating deflected terahertz vortex beam is obtained by Fourier convolution of“000111222333···” coding sequence arranged along theyaxis and the generation of terahertz vortex beam coding sequence. Figures 6(d)–6(f) illustrates the 3D far-field scattering pattern of deflected terahertz vortex beam at frequency of 0.68 THz under the incident RCP (LCP) terahertz wave on the proposed metasurface. Figures 7(a) and 7(b) display the normalized intensity distribution and the phase distribution of coding pattern in Fig. 6(b) respectively. Electric field intensity distributions and 2D scattering pattern of vortex terahertz beams are shown in Fig.8. Figure 8(a)illustrates the electric field intensity distributions of deflected terahertz vortex beam and figure 8(b)describes the 2D scattering pattern of deflected terahertz vortex beam at the azimuth angle of 0°. From Figs.7 and 8,one can noted that the terahertz vortex beam deflection can be controlled by the convolution operation of the vortex terahertz beam coding sequence and the gradient coding sequence.

    3.3. Terahertz vortexbeam splitting and deflection manipulation simultaneously

    In addition, we can observe clearly from Fig. 9 that the incident terahertz wave generates the reflected terahertz vortex beam splitting and deflection control simultaneously.As shown in Figs. 9(a)–9(d), it can be noted that the coding patterns of generating two deflected vortex beams is obtained by Fourier convolution operation of the coding sequence “00112233···” arranged along thexdirection, the coding sequence “000022222000022222···” arranged along theydirection and the coding sequence generated terahertz vortex beam. Under the RCP (LCP) terahertz wave normal incidence, the related 3D far-field scattering patterns of two deflected terahertz vortex beams at frequency of 0.68 THz are exhibited in Figs. 9(i)–9(l). As presented in Figs. 9(e)–9(h), we observe that the coding patterns of generating four deflected vortex beams is obtained by performing Fourier convolution operation of the coding sequence“000011122223333···” along thexdirection, the coding sequence“000000222222···/222222000000···”and the coding sequence generated terahertz vortex beam. The corresponding 3D scattering far-fields of four deflected terahertz vortex beams at frequency of 0.8 THz, as displayed in Figs. 9(m)–9(p). When the terahertz wave is perpendicularly incident on the metasurface composed of the coding sequence in Fig.9(d),the incident terahertz wave generates two reflected terahertz vortex beams with a deflection angle of 33°(see Fig. 9(l)).At this time, the deflection angle of 33°is controlled by the“0000222220000222222···”coding sequence arranged along theyaxis. Similarly, when the terahertz wave is perpendicularly incident on the metasurface composed of the coding sequence in Fig. 9(h), four reflected terahertz vortex beams are generated with a deflection angle of 18°(see Fig. 9(p)),which is controlled by the“000011122223333···”coding sequence arranged along theyaxis. Figures 10(a) and 10(b)show the two-dimensional electric field distribution of two and four vortex terahertz wave deflections, respectively. It can be seen clearly from the figure that both two and four terahertz vortex beams deviate from the center point. It can be found from Figs.9 and 10 that the convolution operation between the vortex terahertz beam coding sequence and different coding sequences can generate multiple terahertz wave vortex beams with different deflective scattering angles.

    Fig. 9. Vortex terahertz beam splitting and deflection control. (a)–(h) Coding patterns operation on a 2-bit metasurface. (i)–(l) Related 3D scattering fields of two deflected vortex terahertz beams. (m)–(p) Corresponding 3D scattering fields of four deflected vortex terahertz beams.

    Fig.10. Electric field intensity distributions of vortex terahertz beams. Two beams(a),four beams(b)deflected vortex terahertz wave beams.

    4. Conclusion

    In summary,we proposed a novel Fourier convolution operation metasurface,which is made of bottom metal layer,intermediate dielectric layer,and top metal pattern with a combined pattern of outer C-shaped ring and inner rectangular ring. A coding sequence generated by Fourier convolution,the presented metasurface can realize multi-function manipulation for the incident terahertz wave, such as multi terahertz beams, terahertz vortex beam with arbitrary scattering angle,and multi terahertz vortex beam with a certain deflection angle.The study provides a new idea for flexible control of terahertz vortex beam,and also offers an effective method for terahertz wave manipulation.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grant Nos. 61871355 and 61831012), the Talent Project of Zhejiang Provincial Department of Science and Technology (Grant No. 2018R52043), and the Research Funds for Universities of Zhejiang Province, China (Grant Nos.2020YW20 and 2021YW86).

    极品教师在线视频| 日本免费a在线| 黄色一级大片看看| 日韩在线高清观看一区二区三区| 蜜桃久久精品国产亚洲av| 日日干狠狠操夜夜爽| 午夜a级毛片| 三级男女做爰猛烈吃奶摸视频| 十八禁国产超污无遮挡网站| av视频在线观看入口| 国产一区二区在线观看日韩| 特级一级黄色大片| 日本一本二区三区精品| 最近2019中文字幕mv第一页| 国产一区二区三区在线臀色熟女| 亚洲精品成人久久久久久| 22中文网久久字幕| 成年女人看的毛片在线观看| 国产伦精品一区二区三区四那| 久久人妻av系列| 99热这里只有精品一区| 国产精华一区二区三区| 色综合站精品国产| 色噜噜av男人的天堂激情| 女同久久另类99精品国产91| 两性午夜刺激爽爽歪歪视频在线观看| 午夜久久久久精精品| 国产精华一区二区三区| 精品久久久久久久末码| 99久久无色码亚洲精品果冻| 国产精品日韩av在线免费观看| 国内揄拍国产精品人妻在线| 天天躁夜夜躁狠狠久久av| 亚洲欧美日韩东京热| 国产大屁股一区二区在线视频| 国产久久久一区二区三区| 久久精品夜色国产| 熟女人妻精品中文字幕| 久久国内精品自在自线图片| 日日摸夜夜添夜夜爱| 久久久国产成人精品二区| 美女 人体艺术 gogo| 午夜精品在线福利| 日韩成人av中文字幕在线观看 | 免费搜索国产男女视频| 麻豆国产97在线/欧美| 日本 av在线| 午夜福利高清视频| h日本视频在线播放| 在线国产一区二区在线| 色尼玛亚洲综合影院| 国产视频内射| 久久天躁狠狠躁夜夜2o2o| a级毛片免费高清观看在线播放| av国产免费在线观看| 1000部很黄的大片| 99久久九九国产精品国产免费| 看黄色毛片网站| 99热这里只有精品一区| 国产成人aa在线观看| 69av精品久久久久久| 亚洲18禁久久av| 少妇丰满av| 国产三级中文精品| 国产精品久久久久久久电影| 午夜免费男女啪啪视频观看 | 午夜福利高清视频| 伦理电影大哥的女人| 成人一区二区视频在线观看| 亚洲久久久久久中文字幕| 一进一出抽搐动态| 免费搜索国产男女视频| 色综合站精品国产| 十八禁网站免费在线| 日本色播在线视频| 国产高清不卡午夜福利| 在线播放无遮挡| 观看免费一级毛片| 精品日产1卡2卡| 51国产日韩欧美| 日本欧美国产在线视频| 69人妻影院| 欧美一区二区国产精品久久精品| 丰满人妻一区二区三区视频av| 国产精品无大码| 日日啪夜夜撸| 高清午夜精品一区二区三区 | 九九爱精品视频在线观看| 国内精品宾馆在线| 亚洲五月天丁香| 少妇裸体淫交视频免费看高清| 在线免费观看的www视频| 91av网一区二区| 两个人的视频大全免费| 欧美不卡视频在线免费观看| 欧美高清成人免费视频www| 亚洲三级黄色毛片| av黄色大香蕉| 亚洲一区高清亚洲精品| 亚洲国产精品成人久久小说 | a级毛片免费高清观看在线播放| 亚洲av.av天堂| 少妇人妻一区二区三区视频| 嫩草影视91久久| 亚洲精品一区av在线观看| 老司机午夜福利在线观看视频| 日本一二三区视频观看| 成人午夜高清在线视频| 天堂√8在线中文| 亚洲美女视频黄频| 欧美日本亚洲视频在线播放| 免费在线观看影片大全网站| 亚洲第一区二区三区不卡| 国产精品乱码一区二三区的特点| 尾随美女入室| 亚洲丝袜综合中文字幕| 黄色欧美视频在线观看| 丝袜喷水一区| 成年av动漫网址| 欧美中文日本在线观看视频| av女优亚洲男人天堂| 一级毛片我不卡| 免费搜索国产男女视频| 搡老妇女老女人老熟妇| 俄罗斯特黄特色一大片| 精品午夜福利在线看| 亚洲美女视频黄频| 精品久久久久久久久亚洲| av黄色大香蕉| 久久精品国产亚洲网站| 国产淫片久久久久久久久| 97热精品久久久久久| 久久韩国三级中文字幕| 欧美在线一区亚洲| 日韩av在线大香蕉| 亚洲av熟女| 日本a在线网址| 国产黄色小视频在线观看| 舔av片在线| 露出奶头的视频| 免费高清视频大片| 国产精品免费一区二区三区在线| 国产精品一区二区三区四区久久| 亚洲精品色激情综合| 国产欧美日韩精品一区二区| 大又大粗又爽又黄少妇毛片口| 国产伦精品一区二区三区四那| 欧美+日韩+精品| 黄色配什么色好看| 伦理电影大哥的女人| 欧美三级亚洲精品| 在线观看av片永久免费下载| 日日啪夜夜撸| 日本色播在线视频| 午夜a级毛片| 一a级毛片在线观看| 国产精品av视频在线免费观看| 国产av在哪里看| 日本与韩国留学比较| 最好的美女福利视频网| 亚洲欧美日韩无卡精品| 精华霜和精华液先用哪个| 久久亚洲精品不卡| 精品人妻偷拍中文字幕| 精品久久久久久久久亚洲| 丰满的人妻完整版| 日日撸夜夜添| 床上黄色一级片| 床上黄色一级片| 18禁在线播放成人免费| 一级毛片我不卡| 国产亚洲精品久久久com| 色播亚洲综合网| 国产欧美日韩一区二区精品| 国产v大片淫在线免费观看| 国产精品99久久久久久久久| 亚洲色图av天堂| 国产精品国产高清国产av| 国产亚洲精品综合一区在线观看| 欧美极品一区二区三区四区| 日韩欧美国产在线观看| 真实男女啪啪啪动态图| 精品久久久久久久人妻蜜臀av| 赤兔流量卡办理| 国内精品久久久久精免费| 欧美潮喷喷水| 看黄色毛片网站| 日日摸夜夜添夜夜添av毛片| 日韩国内少妇激情av| 国产亚洲精品久久久久久毛片| 日本-黄色视频高清免费观看| 麻豆久久精品国产亚洲av| 一级黄色大片毛片| 欧美区成人在线视频| 在线观看免费视频日本深夜| 老熟妇乱子伦视频在线观看| 国产精品久久久久久久电影| 老熟妇仑乱视频hdxx| 欧美日韩精品成人综合77777| 亚洲av免费在线观看| 欧美一区二区国产精品久久精品| 免费观看人在逋| 精品欧美国产一区二区三| 欧美成人a在线观看| 亚洲欧美日韩高清专用| 老司机午夜福利在线观看视频| 国产又黄又爽又无遮挡在线| 亚洲成av人片在线播放无| 国产伦一二天堂av在线观看| 色综合色国产| 国产精品久久久久久久电影| 男女啪啪激烈高潮av片| 热99在线观看视频| 99热网站在线观看| 亚洲熟妇熟女久久| 18禁在线无遮挡免费观看视频 | 青春草视频在线免费观看| 婷婷精品国产亚洲av| 亚洲一区二区三区色噜噜| 国产男靠女视频免费网站| 日日撸夜夜添| 国产精品女同一区二区软件| 亚洲五月天丁香| 中文字幕精品亚洲无线码一区| 成年av动漫网址| 中文在线观看免费www的网站| 真人做人爱边吃奶动态| 亚洲欧美日韩东京热| 久久精品91蜜桃| 亚洲国产高清在线一区二区三| 亚洲欧美精品自产自拍| 91久久精品电影网| 国产不卡一卡二| 麻豆国产97在线/欧美| 亚洲婷婷狠狠爱综合网| 午夜精品在线福利| 欧美另类亚洲清纯唯美| 看片在线看免费视频| 网址你懂的国产日韩在线| 最好的美女福利视频网| 国产成人91sexporn| 97超视频在线观看视频| 久久久精品欧美日韩精品| 成人无遮挡网站| 午夜激情福利司机影院| 精品久久久久久久久久久久久| 看片在线看免费视频| 亚洲精品一卡2卡三卡4卡5卡| 亚洲av中文av极速乱| 听说在线观看完整版免费高清| 禁无遮挡网站| 国产在视频线在精品| 亚洲欧美日韩东京热| 看非洲黑人一级黄片| a级毛片a级免费在线| 51国产日韩欧美| av在线老鸭窝| 国产精品亚洲美女久久久| 成年女人看的毛片在线观看| 少妇被粗大猛烈的视频| 97在线视频观看| 春色校园在线视频观看| 晚上一个人看的免费电影| 午夜视频国产福利| 在线a可以看的网站| av天堂在线播放| 久久久久久伊人网av| 美女xxoo啪啪120秒动态图| 在线观看午夜福利视频| aaaaa片日本免费| 丝袜喷水一区| 少妇熟女aⅴ在线视频| ponron亚洲| 国产蜜桃级精品一区二区三区| 嫩草影院精品99| 国产欧美日韩一区二区精品| 晚上一个人看的免费电影| 免费一级毛片在线播放高清视频| h日本视频在线播放| av在线观看视频网站免费| 美女黄网站色视频| 一区二区三区四区激情视频 | 噜噜噜噜噜久久久久久91| 春色校园在线视频观看| aaaaa片日本免费| 啦啦啦观看免费观看视频高清| 婷婷精品国产亚洲av| 少妇人妻一区二区三区视频| 亚洲av成人av| 国产成人影院久久av| 一卡2卡三卡四卡精品乱码亚洲| 观看免费一级毛片| 不卡视频在线观看欧美| 日本免费一区二区三区高清不卡| 久久这里只有精品中国| 免费大片18禁| 可以在线观看的亚洲视频| 最近最新中文字幕大全电影3| 久久鲁丝午夜福利片| 神马国产精品三级电影在线观看| 免费电影在线观看免费观看| 欧美zozozo另类| 麻豆av噜噜一区二区三区| 免费观看精品视频网站| 在线天堂最新版资源| 男女下面进入的视频免费午夜| 18禁在线播放成人免费| 久99久视频精品免费| 精品人妻一区二区三区麻豆 | 免费观看在线日韩| 国产蜜桃级精品一区二区三区| 最近中文字幕高清免费大全6| 亚洲欧美精品综合久久99| 亚洲人成网站在线观看播放| 午夜福利在线观看免费完整高清在 | 日日干狠狠操夜夜爽| 亚洲成人久久爱视频| 国内久久婷婷六月综合欲色啪| 免费无遮挡裸体视频| av国产免费在线观看| 最近视频中文字幕2019在线8| 日本一二三区视频观看| 精品久久久久久久久久久久久| 国语自产精品视频在线第100页| 最好的美女福利视频网| 国产精品女同一区二区软件| 51国产日韩欧美| 美女被艹到高潮喷水动态| 日韩欧美 国产精品| 天堂动漫精品| 久久久久九九精品影院| 成熟少妇高潮喷水视频| 国产成人freesex在线 | 国产精华一区二区三区| 亚洲av成人精品一区久久| 成年版毛片免费区| 一区福利在线观看| 卡戴珊不雅视频在线播放| 中出人妻视频一区二区| 不卡视频在线观看欧美| 国产一区二区在线观看日韩| 日日摸夜夜添夜夜爱| 内地一区二区视频在线| 少妇熟女aⅴ在线视频| 日韩欧美精品v在线| 午夜久久久久精精品| 国产精品乱码一区二三区的特点| 婷婷精品国产亚洲av在线| 色综合站精品国产| 51国产日韩欧美| 看黄色毛片网站| 亚洲精品一区av在线观看| 免费观看人在逋| 国产单亲对白刺激| 亚洲色图av天堂| 日韩制服骚丝袜av| 最后的刺客免费高清国语| 又爽又黄a免费视频| 国产视频一区二区在线看| 少妇人妻一区二区三区视频| av在线天堂中文字幕| 欧美中文日本在线观看视频| 少妇高潮的动态图| 日本色播在线视频| 91久久精品国产一区二区成人| 高清毛片免费看| 又黄又爽又免费观看的视频| 一级a爱片免费观看的视频| 俄罗斯特黄特色一大片| aaaaa片日本免费| 久久鲁丝午夜福利片| 深夜a级毛片| 国产一区二区亚洲精品在线观看| 久久久国产成人免费| 久久久久国产精品人妻aⅴ院| 亚洲18禁久久av| 人妻久久中文字幕网| 夜夜看夜夜爽夜夜摸| АⅤ资源中文在线天堂| 久久精品国产亚洲网站| 亚洲无线观看免费| 男人舔奶头视频| 欧美性猛交╳xxx乱大交人| 又爽又黄无遮挡网站| 精品少妇黑人巨大在线播放 | 一区二区三区免费毛片| 老女人水多毛片| 亚洲第一区二区三区不卡| АⅤ资源中文在线天堂| 麻豆av噜噜一区二区三区| 亚洲国产精品合色在线| 久久亚洲精品不卡| 一本久久中文字幕| 联通29元200g的流量卡| 午夜福利高清视频| 俄罗斯特黄特色一大片| 人妻久久中文字幕网| 欧美最新免费一区二区三区| 日韩制服骚丝袜av| 国产成人影院久久av| 啦啦啦观看免费观看视频高清| 国产乱人视频| 我要看日韩黄色一级片| 国产亚洲欧美98| 欧美激情久久久久久爽电影| 亚洲av.av天堂| 老司机影院成人| 波多野结衣巨乳人妻| 精品人妻视频免费看| 亚洲五月天丁香| 精品久久久久久久久久免费视频| 91久久精品电影网| 色哟哟·www| 亚洲一区高清亚洲精品| 一个人看视频在线观看www免费| 精品国产三级普通话版| 99久国产av精品国产电影| 中文字幕av在线有码专区| 国产 一区精品| 免费搜索国产男女视频| 精品久久久噜噜| 午夜福利在线在线| 69av精品久久久久久| 又黄又爽又刺激的免费视频.| 一进一出抽搐gif免费好疼| av在线天堂中文字幕| 成年av动漫网址| 免费观看在线日韩| 国产精品爽爽va在线观看网站| 如何舔出高潮| 不卡一级毛片| 免费大片18禁| 午夜久久久久精精品| 亚洲精品日韩在线中文字幕 | 97在线视频观看| 精品日产1卡2卡| 一区二区三区高清视频在线| 岛国在线免费视频观看| 国产探花在线观看一区二区| 精华霜和精华液先用哪个| 久久久国产成人免费| 亚洲最大成人中文| 91麻豆精品激情在线观看国产| 欧美xxxx性猛交bbbb| 亚洲欧美日韩东京热| 免费不卡的大黄色大毛片视频在线观看 | 97人妻精品一区二区三区麻豆| 日本a在线网址| 老师上课跳d突然被开到最大视频| 久久热精品热| 性色avwww在线观看| 国产精品亚洲美女久久久| 国产精品国产三级国产av玫瑰| 美女高潮的动态| av福利片在线观看| 日韩欧美免费精品| 久久人妻av系列| 国产午夜精品久久久久久一区二区三区 | 免费观看人在逋| 尤物成人国产欧美一区二区三区| 久久欧美精品欧美久久欧美| 18禁在线无遮挡免费观看视频 | 国产精品久久久久久精品电影| 18禁裸乳无遮挡免费网站照片| 精品久久久久久久久久免费视频| 亚洲国产精品sss在线观看| 日韩av在线大香蕉| 99热只有精品国产| 在线免费观看不下载黄p国产| 精品少妇黑人巨大在线播放 | 成年免费大片在线观看| 日本成人三级电影网站| a级毛片a级免费在线| 国产色爽女视频免费观看| 久久这里只有精品中国| 人妻久久中文字幕网| 成人三级黄色视频| 一本一本综合久久| 不卡视频在线观看欧美| 亚洲av成人av| 午夜福利成人在线免费观看| 悠悠久久av| 卡戴珊不雅视频在线播放| 中国美白少妇内射xxxbb| 香蕉av资源在线| 美女 人体艺术 gogo| 亚洲成人av在线免费| a级毛片a级免费在线| av黄色大香蕉| 亚洲乱码一区二区免费版| 97热精品久久久久久| 中国美白少妇内射xxxbb| 国产一区亚洲一区在线观看| 欧美成人精品欧美一级黄| 久久热精品热| 亚洲精品久久国产高清桃花| 小蜜桃在线观看免费完整版高清| 草草在线视频免费看| 一级黄片播放器| 免费观看在线日韩| 成人午夜高清在线视频| 小蜜桃在线观看免费完整版高清| 免费电影在线观看免费观看| 欧美中文日本在线观看视频| av在线蜜桃| 高清毛片免费观看视频网站| 国产精品99久久久久久久久| 哪里可以看免费的av片| 久久久久精品国产欧美久久久| 少妇人妻一区二区三区视频| 51国产日韩欧美| 日本黄大片高清| 久久久久国内视频| 人妻制服诱惑在线中文字幕| 欧美性猛交╳xxx乱大交人| 日韩成人伦理影院| 国产黄色小视频在线观看| 中文资源天堂在线| 我要搜黄色片| 大香蕉久久网| 91久久精品国产一区二区成人| 亚洲色图av天堂| 男女视频在线观看网站免费| 色综合色国产| 超碰av人人做人人爽久久| 看黄色毛片网站| 亚洲av成人av| 十八禁国产超污无遮挡网站| 搡女人真爽免费视频火全软件 | 亚洲av中文字字幕乱码综合| 日本精品一区二区三区蜜桃| 国产91av在线免费观看| 国产不卡一卡二| 精品午夜福利视频在线观看一区| 日韩精品青青久久久久久| 国内精品宾馆在线| 九九在线视频观看精品| 久久韩国三级中文字幕| 久久久久国产网址| 天堂√8在线中文| 久久人妻av系列| 久久久成人免费电影| 国产精品久久久久久久久免| ponron亚洲| 好男人在线观看高清免费视频| 成人特级黄色片久久久久久久| 毛片一级片免费看久久久久| 天天一区二区日本电影三级| 美女xxoo啪啪120秒动态图| 欧美高清成人免费视频www| 激情 狠狠 欧美| 亚洲欧美成人精品一区二区| 床上黄色一级片| 国产欧美日韩精品一区二区| 日本精品一区二区三区蜜桃| 中文字幕人妻熟人妻熟丝袜美| 一进一出好大好爽视频| 丝袜喷水一区| 亚洲熟妇中文字幕五十中出| a级一级毛片免费在线观看| 亚洲无线在线观看| 久久久久久久久久成人| 日韩av在线大香蕉| 你懂的网址亚洲精品在线观看 | 女同久久另类99精品国产91| 男女之事视频高清在线观看| 欧美日韩国产亚洲二区| 有码 亚洲区| 日韩大尺度精品在线看网址| 久久久成人免费电影| 国产精品久久电影中文字幕| 五月伊人婷婷丁香| 欧美3d第一页| 午夜影院日韩av| 99热这里只有是精品在线观看| 亚洲精品亚洲一区二区| 老司机影院成人| 亚洲第一区二区三区不卡| 午夜免费激情av| 国产视频一区二区在线看| 97热精品久久久久久| 亚洲专区国产一区二区| 欧美成人a在线观看| 欧美日韩综合久久久久久| 99久国产av精品国产电影| 精品熟女少妇av免费看| 免费观看的影片在线观看| 麻豆久久精品国产亚洲av| 最近在线观看免费完整版| 亚洲中文字幕一区二区三区有码在线看| 插阴视频在线观看视频| 黄色日韩在线| 欧美xxxx黑人xx丫x性爽| 免费av不卡在线播放| 亚洲五月天丁香| 亚洲成人av在线免费| 午夜老司机福利剧场| 国产精品1区2区在线观看.| 天天躁日日操中文字幕| 亚洲经典国产精华液单| 69av精品久久久久久| 免费无遮挡裸体视频| 欧美成人a在线观看| 亚洲专区国产一区二区| videossex国产| 女同久久另类99精品国产91| 亚洲精品国产av成人精品 | 国产精品精品国产色婷婷| 久久久久免费精品人妻一区二区| 日韩强制内射视频| 日日摸夜夜添夜夜添av毛片| 听说在线观看完整版免费高清| 特级一级黄色大片| 亚洲欧美日韩卡通动漫| 黄色日韩在线|