• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Switchable directional scattering based on spoof core–shell plasmonic structures

    2022-05-16 07:09:16YunQiaoYin殷允橋HongWeiWu吳宏偉ShuLingCheng程淑玲andZongQiangSheng圣宗強(qiáng)
    Chinese Physics B 2022年5期

    Yun-Qiao Yin(殷允橋), Hong-Wei Wu(吳宏偉), Shu-Ling Cheng(程淑玲), and Zong-Qiang Sheng(圣宗強(qiáng))

    School of Mechanics and Photoelectric Physics,Anhui University of Science and Technology,Huainan 232001,China

    Keywords: spoof core–shell plasmonic structures,directional scattering,switchable direction

    1. Introduction

    Light scattering from objects is a universal phenomenon regarding light–matter interactions. In order to explore the physics of interaction between light and subwavelength particles, Rayleigh and Mie conducted the pioneering researches many years ago.[1,2]As mentioned in the Mie scattering theory, the scattered fields of subwavelength objects can be attributed to electric and magnetic multipolar resonances. In addition, many fascinating and unique properties, such as transverse scattering,[3,4]nonscattering (scattering cancellation[5,6]and anapole[7]),superscattering,[8–10]and directional scattering,[11–14]have been investigated by tailoring the interference among electric and magnetic resonant modes. Of these,directional scattering has attracted the most considerable attention in recent years because of its unique properties in controlling and transforming the wavefront.

    To achieve the directional electromagnetic scattering,Kerkeret al., in their pioneering work of 1983, theoretically proposed a hypothetical magnetic-dielectric particle, which exhibits electric and magnetic dipole resonance.[15]More importantly, the unidirectional forward or backward scattering was predicted to be due to the constructive interference of resonances enhancing the scattered intensity in one direction and the destructive interference minimizing scattering in the opposite direction. Recent years,optical metamaterials derive their novel capabilities from the interaction between light and various metallic nanostructures.These nanostructures exhibit artificial magnetism and their intrinsic electrical response,which makes it possible to achieve the directional light scattering in the visible and infrared regime.[16–19]However, the intrinsic Ohmic loss in metallic structure inevitably leads to low efficiency and limits the application of directional light scattering in realistic situation. To bypass the Ohmic dissipation, the high-index dielectric resonator, which supports inherently the strong magnetic and electric dipolar resonance at a high frequency with low absorption loss, is a promising candidate for the design of directional light scattering. Many theoretical and experimental researches have been reported that various dielectric structures are explored to achieve directional light scattering,such as nanosphere,[20–22]nanowire,[23]nanodisk,[24]and sphere/disk dimers.[25–27]In fact, all of the functions of directional scattering mentioned above are relatively simple. Inspired by the on-off mechanism of electric switches, optical switches are currently needed to block strong radiation. Thus, the directional scattering with adjustable switch is significant for the applications in sensing,detection, and digitizing electromagnetic wave for communication.

    Moreover, to mimic the localized surface plasmons(LSPs)supported in metallic nanoparticles at optical frequencies, the concept of spoof LSPs has been proposed based on the textured perfect electric conductor at low frequencies.[28]Since then,many theoretical and experimental researches have been performed to investigate the electromagnetic property and applications of the spoof LSPs.[29–37]Comparing with the two-dimensional (2D) spoof plasmonic structure, the threedimensional (3D) textured perfect electric conductor (PEC)cylinder with finite thickness supports not only electric dipolar resonance,but also magnetic dipolar resonance on a deepsubwavelength scale.[38]Recently,we also have demonstrated that a hollow spoof plasmonic structure can support the magnetic and electric dipolar resonances similar to the Mieresonances in high-index dielectric particles.[39]Particularly,the resonant frequencies of the magnetic dipole and electric dipole can be freely tuned by changing the geometrical parameters. Furthermore, we demonstrate that directional electromagnetic scattering can be realized in an artificial Mie resonant structure that supports electric dipole mode and magnetic dipole mode simultaneously.[13]These results maybe provide a versatile platform to design the various advanced optical devices(antenna, metamaterial, metasurface,etc.) with switchable directional scattering direction.

    In this work, we show that the structure is constructed by inserting a PEC cylinder into the hollow of the spoof plasmonic structure. Then, based on the modal expansion technique, we propose an effective medium theoretical model to analyze our structure. The results confirm the electromagnetic responses of the spoof core–shell plasmonic structures. Furthermore, it is verified that the directional scattering can be achieved due to the interference between electric dipole resonance and magnetic dipole resonance. Next, we discuss the influences of structure parameters on the backward and forward scattering. The results show that the directional scattering frequency and intensity can be tuned by tailoring PEC cylinder radius. Finally,the direction of directional scattering is switched by plugging a PEC cylinder core. The results indicate that we can use a simple method to switch the directional scattering direction.The proposed switchable directional scattering could open up an alternative avenue to digitizing electromagnetic wave communication and associated applications.

    2. Spoof core–shell plasmonic structure

    We consider that the spoof core–shell plasmonic structure with switchable directional scattering direction is constructed by inserting the PEC cylinder with the radius ofR1into the hollow of the spoof plasmonic structure as shown in Fig.1(a),and the core–shell structure is excited by a plane wave from the top. The proposed spoof plasmonic structure with a PEC core in the 2D scenario is schematically shown in Fig. 1(b).The proposed core–shell structure was constructed by periodically inserting cut-through slits into the hollow PEC cylinder. The outer radius and inner radius corresponding to the opening and bottom of the cut-through slits are represented asR3andR2, respectively. The (r,θ) are the polar coordinates,aandd=2πR3/mare the width of the slit and the period,respectively, wheremis the number of slits. The slits with depthh=R3-R2are filled with a dielectric with refractive index ofng,and the surround of this structure is air. As is well known,the region(R2<r <R3)can also be regarded as a homogeneous and anisotropic metamaterial of thicknesshwithεr=-∞,εθ=n2gd/a, anduz=a/dfor the transverse magnetic(TM)polarized incident wave. These structural parameters are illustrated in detail in Fig.1(b). In the following, the structure parameters are chosen asR2=15 μm,R3=30 μm,m=12,ng=3.4, anda=0.4d, unless otherwise specified in this work. The reason why we choose the refractive indexng=3.4 of dielectric here is to approach to the refractive index of silicon. The size of the unit cell can be designed on a deep subwavelength scale due to the limit ofa <d ?λ0,whereλ0is the wavelength of the incident wave.

    Fig.1. (a)Schematic diagram of spoof plasmonic structure with PEC cylinder,with TM-polarized incident plane wave propagating from top to bottom along y direction. (b)Two-dimensional structure with structural parameters:inner and outer radii of the spoof plasmonic structure R2 and R3,periodicity d, and slit width a, and PEC cylinder radius R1. Cyan region and yellow region represent Si and PEC materials.

    3. Results and discussion

    Generally, the scattering cross section (SCS) can accurately describe the electromagnetic response of the structure with negligible absorptions. Therefore, we show the normalized SCS(denoted by black dotted line)by the finite element method(FEM)with the commercial software COMSOL Multiphysics in Fig. 2(a). The SCS is normalized to the diameter 2R3of the core–shell structure. It is obvious that we can clearly see three resonant peaks in the SCS spectrum,which respectively correspond to magnetic dipole(MD),electric dipole (ED) and electric quadrupole (EQ). Then, based on the modal expansion technique, we propose an effective medium theoretical model to analyze our structure and can write the magnetic fieldHzin different regions as

    for region II(R2<r <R3),and

    with

    whereM=[Jn(k0R2)-J′n(k0R1)Yn(k0R2)/Y′n(k0R1)] andN=[J′n(k0R2)-J′n(k0R1)Y′n(k0R2)/Y′n(k0R1)]. In this example, the analytical total SCS (marked by red solid line) is determined by Eq. (4). Then, we calculate the individual SCS of multipolar resonances as shown by the green solid line(n=0,MD),blue solid line(n=±1,ED),and cyan solid line(n=±2,EQ).

    Fig. 2. (a) Calculated SCS spectra for the spoof plasmonic structure with PEC cylinder, with black dotted line corresponding to simulation result and red solid line being analytic calculation. Green solid line,blue solid line,and cyan solid line referring to SCS of modes MD,ED,and EQ,respectively. (b)Distribution of magnetic field Hz at the resonant frequency of MD mode in the structure. (c)Distribution of electric field marked by blue arrows. (d)and(e)Distribution of magnetic field Hz at the resonant frequency of ED and EQ modes in the structure.

    To clearly demonstrate the resonant nature, the distributions of magnetic fields corresponding to three resonant peaks in the SCS spectrum,which is in thezdirection,are illustrated in Figs.2(b),2(d),and 2(e). Particularly,the electric field distribution denoted as blue arrows is also given in Fig.2(c)corresponding to the MD mode. These results clearly confirm the electromagnetic responses of the spoof core–shell plasmonic structures.

    The proposed spoof plasmonic structure with PEC core in the 2D scenario is schematically shown in Fig. 3(a). The TM-polarized incident wave from the top is excited and the scattered into the lower (forward) or upper (backward) part.Next, we will discuss the scattering properties from the designed structure as shown in Fig.3(b).In Fig.3(b),the red and black solid lines indicate the backward and forward scattering cross sections respectively. The blue solid line represents the forward-to-backward(F/B)ratio. We notice that the backward scattering is almost zero and the F/B ratio has a maximum value atf=0.63 THz in Fig. 3(b), denoted as “1”. Moreover,atf=0.75 THz denoted by vertical dotted line“2”,the backward scattering is dominant and the F/B ratio is minimum.To demonstrate this,we plot the angular scattering diagram in Figs. 3(c) and 3(d) denoted as “1” and “2” corresponding to those in Fig.3(b). For the scattered coefficients from Eq.(4),we obtain the angular scattering amplitude of far-field

    whereθis the polar angle.In our case,the multipole number isn=0,1,2 corresponding to MD,ED,QD.In Fig.3(c),we can see that the scattering farfield(red solid line)calculated from Eq.(6)shows the distribution of directional forward scattering,and simultaneously the far-field scattering is demonstrated by numerical simulation(marked by the black cross symbols). It is obvious that the scattering light from the spoof plasmonic structure is almost transformed into forward scattering and barely no backward scattering. Similarly,the farfield distribution of directional backward scattering is plotted in Fig.3(d).The result indicates that the scattering light is almost transformed into backward scattering and low forward scattering.The physical mechanism behind directional forward scattering is that the constructive interference between the scattering fields of MD mode and ED mode occurs in the forward direction forf=0.63 THz, while destructive interference occurs in the backward direction. In other words,the backward scattering amplitude is required to be zero,i.e.,S(180°)=0,then we can obtain the first Kerker condition: Re(A0)=Re(2A1)and Im(A0)=Im(2A1). While the constructive interference between the scattering fields of MD mode and ED mode occur in the backward direction for directional backward scattering atf=0.75 THz,the destructive interference occurs in the forward direction. Then, we can also obtain the second Kerker condition from Eq.(6)forS(0°)=0,i.e.,Re(A0)=Re(2A1)and Im(A0)=-Im(2A1).

    Fig.3. (a)TM-polarized incident plane wave propagating from top to bottom along y direction. (b) Forward (black curve) and the backward (red curve) scattering cross-sections, and the forward-to-backward ratio (blue curve) of the structure. (c) and (d) Far-field scattering patterns at the two spectral points corresponding to the vertical dashed lines in panel (b) denoted by“1”and“2”.

    In the above discussion, we have proved that the directional electromagnetic scattering can be induced due to the mutual interference and simultaneous excitation of magnetic dipole,electric dipole,and electric quadrupole. Next,we will discuss the influences of structure parameters of the core–shell structure on the backward and forward scattering. In order to achieve the switch design,we must discuss the scattering characteristics of the PEC bolt radius change. Figure 4(a) shows the individual SCSs of multipolar resonances represented by red(MD),blue(ED),and black(EQ)solid lines,respectively.When the other parametric conditions remain unchanged, we consider six structural models by varyingR1from 12 mm to 15 mm. Then the corresponding scattering cross section are plotted in Figs.4(a1)–4(a6).We can observe that the magnetic and electric resonance frequencies are gradually approaching to each other with the radius increasing. The magnetic dipolar mode is blue-shifted and both electric dipolar mode and quadrupole mode are red-shifted. Clearly, both the directional forward scattering and the backward scattering will be enhanced because the interference between magnetic dipole and electrical dipole is enhanced as indicated in Figs. 4(a1)–4(a4). Although the increasing of the PEC bolt radius can enhance the directional forward scattering, it will not produce the directional backward scattering because the mutual interference among the magnetic dipole, electric dipole and electric quadrupole. In addition,the angular scattering diagram of the directional forward scattering is shown in Fig.4(b). Then the corresponding backward scattering is plotted in Fig.4(c).These results show that we can tune freely the directional scattering frequency and radiation intensity by tailoring the geometrical parameters.

    Fig.4.(a)Individual SCS of multipolar resonance represented by red(MD),blue(ED),and black(EQ)solid lines for designer structures with different values of PEC cylinder radius R1 in panels(a1)–(a6). (b)Far-feild forward scattering patterns from F1 to F6 in panel(a). (c)Far-feild backward scattering patterns from B1 to B4 in panel(a).

    That the interference between electric dipole resonance and magnetic dipolar resonance causes the directional electromagnetic scattering is clearly shown in the above analysis.Next,the unique feature with switchable directional scattering direction will be shown. Firstly, we consider a hollow PEC cylinder with periodic cut-through slits as shown in Fig.5(a).Then,we also calculate the individual SCS of multipolar resonances represented by red(MD)and blue(ED)solid lines in Fig.5(c). We can see that the directional scattering occurs at the overlap of the two curves.The intersection on the left is the directional forward scattering and the right is the directional backward scattering. Meanwhile, the angular scattering diagram of directional backward scattering is plotted in Fig.5(e).For convenience,we refer to this state as“Turn on”. Next,in order to achieve the state switching,we insert a PEC cylinder with the radius ofR1into the cavity of the structure as indicated in Fig.5(b). From the above discussion,we can change the directional scattering frequency by changing the radiusR1.Therefore,we have moved the forward scattering frequency to an operating frequency the same as the operating frequency of the backward scattering in Fig. 5(c). Furthermore, the angular scattering diagram of directional forward scattering is also shown in Fig. 5(f) and this state is referred to as “Turn off”.In order to determine whether the directional scattering have occurred,we plot the field distribution of“Turn on”and“Turn off”in Figs.5(g)and 5(h). The white arrow indicates the direction of the incident wave, and the small black spot in the plot corresponds to the structure. According to the field distribution,we can find that the structure achieves the switching of directional scattering direction due to the insertion of PEC cylinder.

    Fig.5. (a)Schematic diagram of spoof plasmonic structure with PEC cylinder,with this state referred to as“Turn on”. (b)Schematic diagram of inserting PEC cylinder into the center of the structure in panel(a), with this state referred to as“Turn off”. (c)and(d)Individual SCS of multipolar resonances represented by red(MD)and blue(ED)solid lines for the designer structures in panels(a)and(b). (e)and(f)Far-field scattering patterns in two states. (g)and(h)Near-field distributions in two states.

    4. Conclusions

    In this work, we have demonstrated that the spoof Mie resonant structure can present the directional scattering by the interference between the electric dipole resonanceand magnetic dipole resonance on a deep-subwavelength scale. By modal analysis and numerical simulation,we confirm the electromagnetic responses of the spoof Mie resonant structures,which states that the structure can achieve the directional forward scattering and backward scattering. In addition,we also discuss the influence of PEC cylinder radius on the performance of the directional scattering. Finally, we achieve the switching of directional scattering direction by inserting a PEC cylinder into the hollow of the spoof plasmonic structure. In addition, the proposed structure can be achieved by dry or wet etching process,such as e-beam lithography,Focused ion beam lithography,and reactive ion etching,The proposed active tunable concept could open up an alternative avenue to manipulating and controlling electromagnetic scattering in microwave and terahertz region.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No. 11904008), the Natural Science Foundation of Anhui Province, China (Grant No. 1908085QA21), and the China Postdoctoral Science Foundation(Grant No.2019M662132).

    欧美中文综合在线视频| 国产高清视频在线播放一区| 精品乱码久久久久久99久播| 18美女黄网站色大片免费观看| aaaaa片日本免费| 淫妇啪啪啪对白视频| 成年版毛片免费区| www日本黄色视频网| 亚洲狠狠婷婷综合久久图片| 别揉我奶头~嗯~啊~动态视频| 在线播放国产精品三级| av免费在线观看网站| 精品电影一区二区在线| 日韩欧美免费精品| 亚洲av第一区精品v没综合| 中国美女看黄片| videosex国产| 亚洲av片天天在线观看| 一级毛片高清免费大全| 中文字幕最新亚洲高清| 观看免费一级毛片| 最新美女视频免费是黄的| 丰满人妻熟妇乱又伦精品不卡| www.熟女人妻精品国产| 午夜久久久久精精品| 中出人妻视频一区二区| 国产亚洲欧美98| 夜夜夜夜夜久久久久| 老司机午夜十八禁免费视频| 亚洲第一欧美日韩一区二区三区| 午夜日韩欧美国产| 99国产极品粉嫩在线观看| 黄色视频不卡| 黄色片一级片一级黄色片| 欧美最黄视频在线播放免费| 侵犯人妻中文字幕一二三四区| 美女免费视频网站| 18禁国产床啪视频网站| 美女高潮到喷水免费观看| 日日干狠狠操夜夜爽| 亚洲色图 男人天堂 中文字幕| 中亚洲国语对白在线视频| 少妇熟女aⅴ在线视频| 搞女人的毛片| 午夜激情av网站| 欧美绝顶高潮抽搐喷水| 一级黄色大片毛片| 精品国产亚洲在线| 国产视频一区二区在线看| 欧美日韩黄片免| 一区二区三区高清视频在线| 日韩精品青青久久久久久| 91成人精品电影| 国产精品久久久久久亚洲av鲁大| 韩国精品一区二区三区| 美女大奶头视频| 日本 av在线| 88av欧美| 女警被强在线播放| 女人爽到高潮嗷嗷叫在线视频| 男人舔奶头视频| 国产三级黄色录像| 夜夜夜夜夜久久久久| 美国免费a级毛片| 波多野结衣av一区二区av| 亚洲九九香蕉| 欧美丝袜亚洲另类 | 国产一区二区在线av高清观看| 在线观看免费日韩欧美大片| 一级毛片精品| 久久久久亚洲av毛片大全| 91成年电影在线观看| 人人妻人人澡人人看| 一级毛片精品| 丁香欧美五月| 日韩高清综合在线| 人人澡人人妻人| 国产一级毛片七仙女欲春2 | 国产精品国产高清国产av| 精华霜和精华液先用哪个| 男女之事视频高清在线观看| 国内久久婷婷六月综合欲色啪| 婷婷精品国产亚洲av| 一区二区日韩欧美中文字幕| 久久性视频一级片| 色综合婷婷激情| 久久久久亚洲av毛片大全| 丝袜美腿诱惑在线| 欧洲精品卡2卡3卡4卡5卡区| 国产午夜福利久久久久久| 日本精品一区二区三区蜜桃| 热99re8久久精品国产| 热re99久久国产66热| 免费看a级黄色片| 免费看美女性在线毛片视频| svipshipincom国产片| 亚洲欧美精品综合一区二区三区| АⅤ资源中文在线天堂| 亚洲免费av在线视频| 熟妇人妻久久中文字幕3abv| 午夜福利欧美成人| tocl精华| 一本综合久久免费| 他把我摸到了高潮在线观看| 久久性视频一级片| 女人爽到高潮嗷嗷叫在线视频| 美女免费视频网站| 18美女黄网站色大片免费观看| 精品第一国产精品| 日韩欧美国产一区二区入口| 性色av乱码一区二区三区2| 精品午夜福利视频在线观看一区| 侵犯人妻中文字幕一二三四区| 国产精品二区激情视频| 中文字幕精品亚洲无线码一区 | 美女高潮喷水抽搐中文字幕| 99精品久久久久人妻精品| 男男h啪啪无遮挡| 人人妻人人澡欧美一区二区| 午夜福利在线观看吧| 亚洲天堂国产精品一区在线| 男人舔奶头视频| 国产黄色小视频在线观看| 欧美另类亚洲清纯唯美| 国产爱豆传媒在线观看 | 午夜激情福利司机影院| 欧美不卡视频在线免费观看 | 18美女黄网站色大片免费观看| 国产精品一区二区免费欧美| 人人妻人人澡欧美一区二区| 丝袜人妻中文字幕| 怎么达到女性高潮| 男男h啪啪无遮挡| 午夜日韩欧美国产| 国产aⅴ精品一区二区三区波| 国产三级在线视频| 男人舔女人下体高潮全视频| 欧美黑人欧美精品刺激| 丝袜美腿诱惑在线| 99riav亚洲国产免费| 国产国语露脸激情在线看| 亚洲第一欧美日韩一区二区三区| 我的亚洲天堂| 日韩精品中文字幕看吧| 大型黄色视频在线免费观看| 久久久国产欧美日韩av| 国产蜜桃级精品一区二区三区| 国产午夜精品久久久久久| av视频在线观看入口| 热99re8久久精品国产| 欧美 亚洲 国产 日韩一| 美女大奶头视频| 久久久久久久午夜电影| 又黄又爽又免费观看的视频| 亚洲国产欧美网| 欧美日韩瑟瑟在线播放| 美女午夜性视频免费| 亚洲成av片中文字幕在线观看| 1024视频免费在线观看| 亚洲第一欧美日韩一区二区三区| 成人精品一区二区免费| 久久久久亚洲av毛片大全| 免费av毛片视频| 男女视频在线观看网站免费 | 一级作爱视频免费观看| 午夜免费鲁丝| 国产精品亚洲一级av第二区| 午夜免费观看网址| www.www免费av| 99久久国产精品久久久| 成人欧美大片| 欧美一区二区精品小视频在线| 一区福利在线观看| 成人亚洲精品一区在线观看| 在线观看午夜福利视频| 久久久国产成人精品二区| 国产亚洲av高清不卡| 亚洲精品粉嫩美女一区| 精品久久久久久成人av| 亚洲精品国产区一区二| 两个人视频免费观看高清| 国产又黄又爽又无遮挡在线| 成人国产一区最新在线观看| 黄片大片在线免费观看| 熟妇人妻久久中文字幕3abv| 国产黄a三级三级三级人| 欧美色欧美亚洲另类二区| 国产精品98久久久久久宅男小说| 黄色视频,在线免费观看| 亚洲国产中文字幕在线视频| 人人妻人人澡欧美一区二区| 视频在线观看一区二区三区| 香蕉久久夜色| 欧美黄色片欧美黄色片| 人妻久久中文字幕网| 国产一级毛片七仙女欲春2 | 黄网站色视频无遮挡免费观看| 色综合站精品国产| 午夜久久久久精精品| 神马国产精品三级电影在线观看 | 美女扒开内裤让男人捅视频| www.自偷自拍.com| 高清毛片免费观看视频网站| 久久久久国产精品人妻aⅴ院| 亚洲国产欧洲综合997久久, | 在线永久观看黄色视频| 免费看日本二区| 亚洲熟女毛片儿| 免费高清在线观看日韩| 人人澡人人妻人| 成人三级黄色视频| 国产精品美女特级片免费视频播放器 | 一区二区日韩欧美中文字幕| 久久这里只有精品19| 777久久人妻少妇嫩草av网站| 国产av不卡久久| 精品欧美一区二区三区在线| 999久久久国产精品视频| 最近最新中文字幕大全免费视频| 日日摸夜夜添夜夜添小说| 无遮挡黄片免费观看| 国产精华一区二区三区| 老熟妇乱子伦视频在线观看| 久久人妻福利社区极品人妻图片| 久久青草综合色| 美女免费视频网站| 中文字幕人妻熟女乱码| 女同久久另类99精品国产91| 亚洲欧美一区二区三区黑人| 成人精品一区二区免费| 国产精品,欧美在线| 在线看三级毛片| 亚洲五月色婷婷综合| 黄色视频,在线免费观看| 九色国产91popny在线| 村上凉子中文字幕在线| bbb黄色大片| 亚洲精品一卡2卡三卡4卡5卡| 亚洲狠狠婷婷综合久久图片| 99精品在免费线老司机午夜| 他把我摸到了高潮在线观看| 性欧美人与动物交配| 久久婷婷成人综合色麻豆| cao死你这个sao货| 香蕉久久夜色| 成人亚洲精品一区在线观看| 国产99久久九九免费精品| 国产又色又爽无遮挡免费看| 热99re8久久精品国产| 一边摸一边做爽爽视频免费| 国产高清有码在线观看视频 | 欧美绝顶高潮抽搐喷水| 嫩草影院精品99| 久久人妻av系列| 亚洲自拍偷在线| 欧美成狂野欧美在线观看| 少妇熟女aⅴ在线视频| av有码第一页| 伦理电影免费视频| 国产三级在线视频| 久久久精品国产亚洲av高清涩受| 国产午夜福利久久久久久| 69av精品久久久久久| 国产1区2区3区精品| 日韩欧美一区二区三区在线观看| 老司机午夜福利在线观看视频| ponron亚洲| 午夜福利在线观看吧| 中文字幕精品免费在线观看视频| 亚洲无线在线观看| 国产又爽黄色视频| 欧美日韩一级在线毛片| 欧美激情久久久久久爽电影| 国产精品久久久av美女十八| 国产精品久久久人人做人人爽| 午夜视频精品福利| 在线免费观看的www视频| 国产色视频综合| 看免费av毛片| 老熟妇仑乱视频hdxx| 亚洲第一青青草原| 国产精品 国内视频| 亚洲天堂国产精品一区在线| 一级黄色大片毛片| 国产高清激情床上av| 老鸭窝网址在线观看| 国产精品 欧美亚洲| 不卡一级毛片| 亚洲av美国av| 最近最新免费中文字幕在线| www.熟女人妻精品国产| 亚洲国产精品合色在线| 日韩欧美三级三区| 午夜精品久久久久久毛片777| 成人国产综合亚洲| 国产高清有码在线观看视频 | 亚洲人成网站高清观看| 精品乱码久久久久久99久播| 国产精品永久免费网站| 无遮挡黄片免费观看| 午夜老司机福利片| 国产精品综合久久久久久久免费| 一边摸一边抽搐一进一小说| 成人国产综合亚洲| 99国产精品一区二区蜜桃av| 日韩国内少妇激情av| 亚洲av日韩精品久久久久久密| 国产在线精品亚洲第一网站| 少妇被粗大的猛进出69影院| 色尼玛亚洲综合影院| www日本黄色视频网| 国产亚洲欧美98| 自线自在国产av| 男女视频在线观看网站免费 | 18禁黄网站禁片免费观看直播| 国内精品久久久久久久电影| 久久久久亚洲av毛片大全| 别揉我奶头~嗯~啊~动态视频| 麻豆成人av在线观看| 亚洲aⅴ乱码一区二区在线播放 | 美女国产高潮福利片在线看| 十八禁网站免费在线| www.熟女人妻精品国产| 精品国产美女av久久久久小说| 婷婷丁香在线五月| 丁香欧美五月| 日本撒尿小便嘘嘘汇集6| 国产亚洲精品久久久久久毛片| 国产成人精品久久二区二区91| 9191精品国产免费久久| 淫秽高清视频在线观看| 成人精品一区二区免费| 露出奶头的视频| 国产99久久九九免费精品| 深夜精品福利| 中文在线观看免费www的网站 | 69av精品久久久久久| 欧美 亚洲 国产 日韩一| 久久中文字幕人妻熟女| 搡老熟女国产l中国老女人| 久久香蕉国产精品| 国产成人精品久久二区二区免费| 亚洲狠狠婷婷综合久久图片| 好看av亚洲va欧美ⅴa在| 一个人免费在线观看的高清视频| netflix在线观看网站| 91成年电影在线观看| 免费一级毛片在线播放高清视频| 黄色视频不卡| 成人欧美大片| 一个人免费在线观看的高清视频| 在线观看舔阴道视频| 久久久久久久午夜电影| 亚洲午夜理论影院| 免费观看人在逋| 黑人操中国人逼视频| 淫秽高清视频在线观看| 女人爽到高潮嗷嗷叫在线视频| 黑丝袜美女国产一区| 一级毛片高清免费大全| 90打野战视频偷拍视频| 人人妻人人看人人澡| 久久久久久大精品| 精品卡一卡二卡四卡免费| 90打野战视频偷拍视频| 国产亚洲精品一区二区www| 淫秽高清视频在线观看| 国产精品亚洲美女久久久| 中文字幕另类日韩欧美亚洲嫩草| 熟妇人妻久久中文字幕3abv| 大型av网站在线播放| 日韩精品中文字幕看吧| 精品久久久久久久末码| 日本成人三级电影网站| 亚洲成av人片免费观看| 999精品在线视频| 男人操女人黄网站| 国产精品综合久久久久久久免费| 三级毛片av免费| 神马国产精品三级电影在线观看 | 91在线观看av| 日韩欧美免费精品| 欧美国产精品va在线观看不卡| 精品国产乱码久久久久久男人| 亚洲一区二区三区不卡视频| 午夜亚洲福利在线播放| 欧美激情久久久久久爽电影| 欧美成人一区二区免费高清观看 | 老司机深夜福利视频在线观看| 性色av乱码一区二区三区2| 搡老熟女国产l中国老女人| 欧美激情高清一区二区三区| 美女国产高潮福利片在线看| 久久久久国内视频| 亚洲 欧美 日韩 在线 免费| 国产熟女午夜一区二区三区| 日本免费一区二区三区高清不卡| 亚洲成a人片在线一区二区| 亚洲成人精品中文字幕电影| 校园春色视频在线观看| 黄色女人牲交| 九色国产91popny在线| 日本精品一区二区三区蜜桃| 欧美最黄视频在线播放免费| 免费高清在线观看日韩| 少妇熟女aⅴ在线视频| 亚洲黑人精品在线| 久久国产精品影院| 国产亚洲av嫩草精品影院| 999精品在线视频| 日韩有码中文字幕| 91成人精品电影| 精品日产1卡2卡| 久久婷婷人人爽人人干人人爱| 欧美国产日韩亚洲一区| 亚洲成av片中文字幕在线观看| 精品一区二区三区av网在线观看| 日韩三级视频一区二区三区| 亚洲国产欧美网| 少妇裸体淫交视频免费看高清 | 国产亚洲av高清不卡| 给我免费播放毛片高清在线观看| 大型黄色视频在线免费观看| 精品无人区乱码1区二区| 午夜福利18| 欧美日韩亚洲国产一区二区在线观看| 国产私拍福利视频在线观看| 免费观看精品视频网站| 国产精品自产拍在线观看55亚洲| 欧美激情久久久久久爽电影| 嫁个100分男人电影在线观看| 亚洲电影在线观看av| 禁无遮挡网站| 精品电影一区二区在线| 亚洲成国产人片在线观看| 亚洲全国av大片| 亚洲av电影在线进入| 草草在线视频免费看| 欧美成人一区二区免费高清观看 | 国产精品九九99| 一卡2卡三卡四卡精品乱码亚洲| 午夜影院日韩av| 欧美一级毛片孕妇| 免费无遮挡裸体视频| 18禁美女被吸乳视频| 亚洲av片天天在线观看| 亚洲国产欧洲综合997久久, | 岛国视频午夜一区免费看| 美女扒开内裤让男人捅视频| 成人三级黄色视频| 1024手机看黄色片| 亚洲专区国产一区二区| 狠狠狠狠99中文字幕| 香蕉久久夜色| 国产精品自产拍在线观看55亚洲| 国产1区2区3区精品| av有码第一页| 黄色毛片三级朝国网站| 天堂√8在线中文| 国产亚洲精品久久久久久毛片| 99在线人妻在线中文字幕| 天堂影院成人在线观看| 久久国产乱子伦精品免费另类| 一进一出抽搐动态| 动漫黄色视频在线观看| 老鸭窝网址在线观看| av免费在线观看网站| 精品免费久久久久久久清纯| 中文资源天堂在线| 亚洲人成77777在线视频| 黄片播放在线免费| 国产主播在线观看一区二区| 欧美成人免费av一区二区三区| 欧美在线黄色| 国产单亲对白刺激| 无遮挡黄片免费观看| 在线观看免费午夜福利视频| ponron亚洲| 亚洲无线在线观看| 午夜成年电影在线免费观看| 欧美日本亚洲视频在线播放| 中文字幕人妻熟女乱码| 久久欧美精品欧美久久欧美| 精品午夜福利视频在线观看一区| 午夜免费观看网址| 国产99久久九九免费精品| 亚洲性夜色夜夜综合| 午夜激情av网站| 最近在线观看免费完整版| 人人妻人人澡欧美一区二区| 精品久久久久久久久久久久久 | 日本撒尿小便嘘嘘汇集6| 久久狼人影院| 黄色a级毛片大全视频| videosex国产| 色老头精品视频在线观看| 一本久久中文字幕| 韩国精品一区二区三区| 人妻久久中文字幕网| 国产成年人精品一区二区| 中文字幕高清在线视频| 母亲3免费完整高清在线观看| 妹子高潮喷水视频| 国产97色在线日韩免费| 久久99热这里只有精品18| 中文字幕久久专区| 亚洲av第一区精品v没综合| 亚洲 欧美 日韩 在线 免费| 精品一区二区三区四区五区乱码| 婷婷六月久久综合丁香| 国产精品电影一区二区三区| 亚洲av熟女| 亚洲 欧美 日韩 在线 免费| 国产97色在线日韩免费| 欧美激情 高清一区二区三区| 亚洲午夜理论影院| 亚洲精品久久国产高清桃花| 神马国产精品三级电影在线观看 | 手机成人av网站| 午夜精品在线福利| 午夜影院日韩av| 最新美女视频免费是黄的| 嫩草影院精品99| 少妇 在线观看| 无人区码免费观看不卡| 久久精品国产亚洲av香蕉五月| 中文字幕av电影在线播放| 精品免费久久久久久久清纯| 亚洲精品国产区一区二| 欧美一级毛片孕妇| 亚洲精品美女久久av网站| 在线十欧美十亚洲十日本专区| 桃红色精品国产亚洲av| 亚洲 国产 在线| 色av中文字幕| 久久中文看片网| 精品国产国语对白av| 免费看十八禁软件| 神马国产精品三级电影在线观看 | 一级黄色大片毛片| 日本撒尿小便嘘嘘汇集6| 午夜免费观看网址| 精品国产国语对白av| 最近最新免费中文字幕在线| 18禁观看日本| svipshipincom国产片| 亚洲无线在线观看| 国产精品亚洲一级av第二区| 精品无人区乱码1区二区| 色综合亚洲欧美另类图片| 亚洲精品av麻豆狂野| 亚洲欧美一区二区三区黑人| 悠悠久久av| 99久久精品国产亚洲精品| 国产精品香港三级国产av潘金莲| 国产激情偷乱视频一区二区| cao死你这个sao货| 伊人久久大香线蕉亚洲五| 亚洲国产中文字幕在线视频| 午夜福利免费观看在线| 国产精品免费视频内射| 免费在线观看黄色视频的| 午夜福利一区二区在线看| netflix在线观看网站| 一本久久中文字幕| 亚洲国产精品999在线| 91大片在线观看| 免费女性裸体啪啪无遮挡网站| 动漫黄色视频在线观看| 欧美成人免费av一区二区三区| 久久香蕉国产精品| 久久国产精品影院| 欧美黄色淫秽网站| 老汉色av国产亚洲站长工具| 欧美 亚洲 国产 日韩一| 午夜精品久久久久久毛片777| 久久精品夜夜夜夜夜久久蜜豆 | 亚洲最大成人中文| 操出白浆在线播放| 亚洲片人在线观看| 亚洲av中文字字幕乱码综合 | 亚洲中文字幕日韩| 在线av久久热| 国产黄a三级三级三级人| 亚洲午夜理论影院| 两性夫妻黄色片| 男人舔女人下体高潮全视频| 久久久久久久久中文| 午夜福利在线观看吧| av天堂在线播放| 久久久久精品国产欧美久久久| 嫩草影院精品99| 999久久久精品免费观看国产| 久久久久国产一级毛片高清牌| 久久精品影院6| 白带黄色成豆腐渣| 亚洲成a人片在线一区二区| www.999成人在线观看| 国产乱人伦免费视频| 免费在线观看黄色视频的| 一进一出好大好爽视频| 欧美绝顶高潮抽搐喷水| 可以在线观看的亚洲视频| 一进一出好大好爽视频| 日韩国内少妇激情av| 日本一区二区免费在线视频| 国产蜜桃级精品一区二区三区| 亚洲专区字幕在线| 最近在线观看免费完整版| 国产免费av片在线观看野外av| 亚洲国产日韩欧美精品在线观看 | 神马国产精品三级电影在线观看 | 亚洲精品中文字幕在线视频| 色综合欧美亚洲国产小说| 琪琪午夜伦伦电影理论片6080|