• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electron beam modeling and analyses of the electric field distribution and space charge effect

    2022-05-16 07:09:18YuelingJiang蔣越凌andQuanlinDong董全林
    Chinese Physics B 2022年5期

    Yueling Jiang(蔣越凌) and Quanlin Dong(董全林)

    School of Instrumentation and Optoelectronic Engineering,Beihang University,Beijing,China

    Keywords: electron beam,electric field distribution,space charge effect

    1. Introduction

    The electron beam technology plays a vital role in various industrial processes,especially in the highly propulsive fields of aeronautics and astronautics. The electron beam quality parameters, as the core indicators of the electron beam characteristics,decisively influence the outcome of the electron beam application.[1]As the charged electrons form a beam,the beam tends to diffuse as a result of interactions between particles. It is necessary to analyze the electric and magnetic field intensity generated by the electron beam to study the space charge effect(SCE).

    There are mainly two ways to study the diffusion of charged particle beams caused by the SCE. The first one is to predict the trajectory of a ray with a differential equation known as envelope equation or ray equation. In 2000,Raghebet al.,using findings on a beam with a uniform current density distribution obtained by Zhigarev,[2]described the derivation of the formula for the envelope prediction. In 2011,Takahashi applied the same equation in the method of average space charge effect when comparing different methods of predicting electron beam diffusion,[3]whereas in 2009, the book edited by Orloff introduced a complete version of the ray equation.It uses multiple series in the expression of corresponding envelope equations of the electric field intensity under various current density distributions[4]

    whereris the radius of the tracked ray,r0is a characteristic measure of the beam radius,zis the coordinate of the axis parallel to propagation speed, anda,b,care determined by the current distribution. The envelope equation tracks only one ray,and consider its radius as the width of the beam when predicting the beam width. As a result, the envelope can have a overly small minimum width and the tracked ray never crosses the axis. While in reality,the envelope of a beam usually consists of multiple rays and an outer ray usually crosses the axis.Therefore, such an equation may not be effective for width prediction.

    The second way is to directly study the electric and magnetic intensity generated by a beam and conduct numerical simulations. Currently,there are some plain methods for electric field calculation.[5,6]For instance,Chauvin of CERN studied the electric and magnetic fields excited by the charged particle beam,applying Gauss’law,the numerical calculation of the cross-sectional electric field intensity generated by the particle beam was performed, and the analytical expressions under several standard distributions were derived.[6]The same author also studied space charge expansion under specific conditions.

    Chauvin’s derivation is based on a uniform and infinite long beam,and the results from such overly ideal model may have neglected measurable factors.We intend to fully consider the electron beam to deduce the exact results of the electric field distribution and then simulate the beam propagation.

    The remainder of this paper is organized as follows. Section 2 introduces the electron beam model. The simulations and their results are discussed in Section 3. Finally,Section 4 concludes the paper.

    2. Electron beam model

    Based on the current experimental results and theoretical research,the following assumptions can be made for the electron beam. Firstly, the electron beam has a particular initial cross-sectional area and a corresponding convergence or divergence angle. This angle is very small,generally at the milliradian level,and can be neglected when calculating the field intensity. Secondly, as all electrons are accelerated with the same voltage and the lateral velocity is insignificant, we can consider that all electrons have the same axial velocity after acceleration. Considering any particular section in the middle of the electron beam,as the front and rear parts of the electron beam have similar strengths of forces to the section, and the electric field force generated by the moving electrons in the longitudinal direction is small, it can be considered that the axial velocity of the electrons is constant. Thirdly,the current density follows a specific distribution on the cross-section and poses a rotational symmetry. Each concentric circle on the cross-section follows the same current density, and the electrons are continuously distributed in space.[2,7–9]

    2.1. Electric field distribution

    Let us consider two particles with identical charges,q. If the particles are at rest,the Coulomb force exerts a repulsion,and if the particles travel with a velocityvz,they represent two parallel currentsI=qv,which attract each other owing to the effect of their magnetic fields. Further, let us consider a particle in an unbonded beam of particles with a circular crosssection. Coulomb repulsion pushes the particle outward. The induced force is zero at the beam center and varies along the radius of the beam. The magnetic force is radial and attractive for the test particle in a traveling beam, retarding the beam spread.

    According to electrodynamics, the electric and magnetic fields excited by a moving electron with uniform velocityvin space are[10,11]

    whereRis the vector from the source point to the field point,θis the angle betweenRand the electron velocity vector,ε0is the vacuum dielectric constant,eis the charge of the electron,cis the speed of light,EandBare perpendicular to each other,andBisv/c2timesE. When sinθ=1, only the particles on the cross-section are considered,whereRis perpendicular to the electron velocity vector. The following equation is obtained by integrating as in Fig.1,which shows the electric field excited by the cross-section at a distancerfrom the center of the circle:

    vzis the axial velocity,Ris the radius of the beam, and the electric field vector points to the center of the circle from the field point. Note that Eq. (3) is only a preliminary formula,and its dimensions are not strictly specified.

    Fig.1. Schematic of cross-sectional integration.

    Fig.2. Schematic of effective section.

    Next, we expand the scope of the equation to space and replace the field strength generated by a single point in Eq.(3)with the electric field intensity generated by all electrons,calculated for a point on the cross-section at a fixed axial distance, and then perform the integral operation to obtain the expression for the electric field intensity generated by the corresponding electric charge in space. Equation (1) shows that the intensity of the electric field generated by moving electrons decreases asθdecreases,and reaches a maximum at 90°,that is, an electron generates the maximum field intensity on the cross-section where it is located. The field strength decreases with a decrease in the angle,and it should be neglected when the electric field strength reaches a negligible level. The actual angle depends on specific conditions. Suppose the angle isθ,the effective section for a test point shown in Fig. 2 is a fanshaped zone with the axis of symmetry parallel with the axis at the center of the circle,Ris the symmetry axis,andθis the half-angle. The electric field generated by the electrons in the zone above is considered. Because the area where the error may occur is far from the test point,it can be assumed that the axial characteristics of the electron beam do not change in the area. The component of the electric field intensity generated by the corresponding electrons at the cross-sectional point in the longitudinal direction can be calculated as follows:

    Equations(6)and(7)are the complete formulae and also applicable to other charged particle beams.Bisvz/c2times ofEand the direction is perpendicular toE. Equation(6)gives the electric field generated by the averaged space charge effect,and its counterpart is the discrete space charge effect, that is,the mutual influence of two close electrons. For charged particle beams,the space charge effect dominates the diffusion of the beam when the current density is large. According to the Lorentz force formula, the force hindering the spread of the electron beam isv2z/c2times the electric field force.

    2.2. Comprehension and verification

    A Gaussian distribution is a common form of the beam current density distribution. For a circular Gaussian distribution,the current density is given by[12]

    whereIBis the beam current,andσcis the standard deviation of the Gaussian beam. In the Gaussian distribution, the area within the horizontal axis interval (μ-2.58σ,μ+2.58σ) is 99%,and thus,2.58σ=R,whereRis the characteristic beam radius. The form below can be found by calculating

    Equation (10) is the analytical expression under a Gaussian distribution, and the forms based on other distributions can also be obtained. The value of the second part of the expression in Eq.(6)is always zero,hence,it is known that the electrons outside the radius of the test point under the rotationally symmetric current density do not affect the electric field, and thus conform to Gaussian law. Therefore,the final versions of Eqs.(6)and(7)are

    whereρ(r′)is the charge density atr′,ρ0gis the charge density at the center of the beam,ε0is the vacuum dielectric constant,andσis the standard deviation of the Gaussian distribution.The calculation result shows the conformity of Eqs. (10) and(14), except for the definite integral ofθin Eq. (10), which verifies the correctness of Eq.(10). Meanwhile,the deduction method used in this study better reveals the inherent characteristics of the beam. The variableθintroduced makes it feasible to determine the range of the considered beam according to actual conditions such as axial speed,which reduces the errors caused by different beam current conditions far from the test point, especially a different current distribution at a distantzcoordinate.

    3. Simulations and analyses

    3.1. Basis

    According to the equations and experimental results,SCE is significant when the current of the beam is large. Therefore,to study the characteristics of SCE,it is best to take a typical high current beam as an example. This simulation is mainly based on the experimental and calculation results obtained by Kolevaet al.[8]Through experiments,they measured the current density of an electron beam at 320 mm, 245 mm, and 170 mm from the focusing coil, where 320 mm is the focal plane position of the electron beam, and the current density change from 170 mm to 320 mm shows a focusing process.The electron beam current was 40 mA, the acceleration voltage was 60 kV, and the power was 2.4 kW. Then, they used a Monte–Carlo simulation to calculate the current density distribution in the three sections. The distributions at 320 mm,245 mm,and 170 mm are as follows:

    The units are mA/mm2. For the Gaussian distribution of the current density,the beam radius corresponds to the distribution. If we letR=2.58σ,the radii of the beams above are 3.030 mm, 1.548 mm, and 0.407 mm, respectively. The current,voltage and radii mentioned above were used in the simulation. The axial velocity of the electron obtained through the relativistic kinetic energy formula was 1.33×108m/s at a voltage of 60 kV.

    3.2. Simulation of electric field distribution

    Because there is currently no pattern to determineθin Eq.(12), andθmust be less thanπ/2, with the integral ofθbeing less than 1, we let 2/πreplace the definite integral in Eq. (12). Based on the previous formula and data, the current density distributions and corresponding electric field intensity distributions on the cross-section are obtained as shown in Fig.3.

    Figure 3 shows the current density distributions and field intensity distributions under three radii, respectively, where the third radius is slightly less than 0.4 mm. The blue curves represent the current density distributions, corresponding to the leftY-axis, and the red curves are the electric field distributions, corresponding to the rightY-axis. From Fig. 3, it is clear that the maximum current density increases rapidly as the beam radius decreases, and the maximum current density is inversely proportional to the square of the radius from the Gaussian distribution expression. Similarly,the maximum electric field intensity increases rapidly as the beam radius decreases,albeit not as fast.

    Fig.3. Distributions of current density and electric field intensity with different widths.

    The following rules can be summarized from the analytical formula and simulation results. Firstly,the field is nonlinear inside the beam and varies according to 1/rwhen far from the beam (severalσc). Secondly, the field intensity is zero at the center of the beam, increases first, and then decreases as the distance increases. The field intensity is proportional to the current when the beam radius is constant. When the current is constant,the maximum field intensity increases with a decrease in the radius,and the field intensity is inversely proportional to the electron axial speed. Thirdly, the maximum field intensity appears at 1.585σcfrom the center of the circle,that is,0.613R.

    3.3. Simulation of SCE

    The initial conditions of this simulation are as follows:the accelerating voltage is 60 kV,total current is 40 mA,initial width of the beam is 3.030 mm, and theoretical focal length is 150 mm (which means the beam focuses after traveling 150 mm from the initial plane without SCE), and the aberrations can be ignored under such conditions. The current density is considered to follow the Gaussian distribution, and all rays share the same constant axial velocity. In this simulation,100 rays inside the beam are tracked during their travel.

    In Fig. 4, the rays or light paths are marked by different shades of gray according to their initial distance from the center to characterize the current density. The larger the number,the larger the initialxcoordinate, and the smaller the current density. According to the simulation, thezcoordinate of the actual focal plane is approximately 165 mm with a minimal beam width of 0.162 mm. The neglecting of off-axis focusing makes the simulated minimal width smaller than the experimental width. The beam can be viewed as a combination of three parts: The first part exists from 0 mm to 144.6 mm,the second part exists from 144.6 mm to 172.9 mm,and the rest of the beam constitutes the last part.Ray 100,with the largest initialxcoordinate,forms the beam envelope of the first and third parts, whereas multiple rays form the envelope of the second part, which means that the laminar flow condition stops before the second part. The comparison of characteristic widths at differentz-coordinates of the simulation and experiment as the basis whenR=2.58σis given in Table 1.

    Fig.4. Beam propagation and ray tracking.

    Table 1. Comparison of experimental and simulation widths.

    The comparison shows that the simulation data match the experiment well,which proves the ray tracking method effective for beam width prediction. The widths atz=150 mm show a measurable difference,which can be explained by several reasons. Firstly, the phenomenon of off-axis focusing of the beam is not considered in this simulation because it can not be accurately simulated based on the existing results. Off-axis focusing occurs because of electrons with a velocity not parallel to axis,theoretically,off-axis focusing lets a beam focus on a disc instead of a point on the focusing plane and it mainly affects the beam width near the focusing plane, this explains the inconsiderable difference between data atz=75 mm. The estimating of exact effect of off-axis focusing is difficult because it can not be directly measured in an experiment. Under given condition,an estimate equation can be given as

    whereWminis the actual minimal beam width,WSCis the minimal width when off-axis focusing is not considered, andWois the off-axis focusing height. According to Eq.(15),the offaxis focusing height in this case is about 0.2 mm. Secondly,the existence of statistical Coulomb interactions among discrete electrons. Though Takahashi’s research shows that discrete interactions between electrons are not dominant when the current is high,[3]they may still have a certain contribution. Thirdly, the experimental parameters and data, as well as the simulation data,may contain errors. Above all,off-axis focusing is the main contributor in this case.

    To study the flow in detail, thex-coordinates of all rays during the entire propagation are shown in Fig.5,where thexcoordinates are represented by different colors,and the upper half of the beam is tracked. The four parts of the rays can be distinguished as shown in Fig. 5. The first part is marked by the smallest number and sticks to the axis where the electric field intensity is insignificant. Obviously, positivexcoordinates characterize the rays in the second part at the end of the propagation. The rays of the third part end up near the axis.The rays of the fourth part travel from the top of the beam to the bottom.

    Fig.5. The x coordinates of all rays on different z coordinates.

    Fig.6. Contour of radial velocities of all rays.

    Further, the contour of the radial velocities of all rays is shown in Fig.6,where colors of different contour lines show their radial velocities. A positive value denotes upward motion,whereas a negative value denotes downward motion. All rays move downward initially as we track the upper half of the beam. According to Fig.6,more than 50%of the rays fail to cross the axis and all of them are marked with a smaller number than the rays that cross over. The red dotted line shown in Fig. 6 indicates the “ridge” where the rays cross the axis. A similarity is noticed between SCE and spherical aberration as the upper rays crossed the axis earlier than the lower rays.

    The simulation of SCE provides a method for beam width prediction, hence the possible maximum resolution of the beam is given. The obtained data clearly reveal the flow pattern of the beam as the trajectory and radial speed of every ray are displayed,and an in-depth investigation into such data can be applicable for optics design optimization. Further, a comprehensive analysis with SCE, abberations, off-axis focusing etc. involved is feasible based on data obtained in corresponding simulation applying the ray tracking method.

    4. Conclusions

    A model for analyzing the electron beam propagation is proposed, and the corresponding electric and magnetic field integral expressions are obtained. The analytical equation under the Gaussian distribution is obtained and verified with the CERN results. Simulations are conducted, and the results are analyzed. The cross-sectional electric field distribution is mainly affected by the electron beam emission current,current density distribution,and electron beam propagation speed. For the same distribution, a stronger current and more intense electric field of the electron beam cross-section would cause the electron beam to expand more easily. The value ofθin the definite integral is affected by multiple factors simultaneously,the impacts of which require careful consideration.Tracked rays show the flow pattern inside the beam and envelope, which consists of multiple rays. The comparison of simulation and experimental data shows a good match and proves the method used effective for beam width prediction and beam simulation. A similarity is observed between SCE and spherical aberration.

    Acknowledgement

    Project supported by CAST Innovation Fund(Grant No.CAST-BISEE2019-040).

    村上凉子中文字幕在线| av有码第一页| 国产一区二区三区视频了| 国产精品一区二区精品视频观看| 777久久人妻少妇嫩草av网站| 欧美三级亚洲精品| 伊人久久大香线蕉亚洲五| 女人高潮潮喷娇喘18禁视频| 亚洲美女黄片视频| 少妇被粗大的猛进出69影院| 在线观看一区二区三区| 日本精品一区二区三区蜜桃| a级毛片a级免费在线| 久久久久久久精品吃奶| 亚洲七黄色美女视频| 午夜免费激情av| x7x7x7水蜜桃| 国产伦人伦偷精品视频| 亚洲黑人精品在线| 欧美成狂野欧美在线观看| 日本撒尿小便嘘嘘汇集6| 亚洲第一欧美日韩一区二区三区| 在线播放国产精品三级| 免费观看精品视频网站| 成人永久免费在线观看视频| 一级黄色大片毛片| 在线观看www视频免费| 女同久久另类99精品国产91| 少妇熟女aⅴ在线视频| 国产成人精品久久二区二区免费| 久久青草综合色| 国产精品乱码一区二三区的特点| 一区二区三区激情视频| 伊人久久大香线蕉亚洲五| 日韩精品免费视频一区二区三区| 波多野结衣高清作品| 日韩欧美免费精品| 桃红色精品国产亚洲av| 99久久精品国产亚洲精品| 99热这里只有精品一区 | 老汉色∧v一级毛片| 婷婷精品国产亚洲av在线| 欧美黑人精品巨大| 欧美激情极品国产一区二区三区| 精品久久久久久久毛片微露脸| 国产成人影院久久av| xxxwww97欧美| 两个人看的免费小视频| 欧美 亚洲 国产 日韩一| 精品福利观看| 亚洲全国av大片| 中文字幕人成人乱码亚洲影| 国产精品,欧美在线| 成人亚洲精品一区在线观看| 叶爱在线成人免费视频播放| 一级片免费观看大全| 最近在线观看免费完整版| 亚洲欧美激情综合另类| 亚洲精品国产一区二区精华液| 淫妇啪啪啪对白视频| 无限看片的www在线观看| 中文亚洲av片在线观看爽| 国产精品久久久久久亚洲av鲁大| 免费看a级黄色片| 99热只有精品国产| 亚洲九九香蕉| 日本 欧美在线| 国产欧美日韩一区二区精品| www国产在线视频色| 欧美一级a爱片免费观看看 | 99久久99久久久精品蜜桃| 黑人巨大精品欧美一区二区mp4| 欧美一区二区精品小视频在线| 日韩 欧美 亚洲 中文字幕| 日韩欧美一区二区三区在线观看| 欧美日韩中文字幕国产精品一区二区三区| 人成视频在线观看免费观看| 制服诱惑二区| e午夜精品久久久久久久| 久久草成人影院| 国产在线精品亚洲第一网站| 男男h啪啪无遮挡| 欧美 亚洲 国产 日韩一| 亚洲成人久久性| 国产免费av片在线观看野外av| 亚洲av电影在线进入| 久久久久久久精品吃奶| x7x7x7水蜜桃| 久久久久久亚洲精品国产蜜桃av| 黑人欧美特级aaaaaa片| 国产亚洲精品av在线| 夜夜看夜夜爽夜夜摸| 日韩免费av在线播放| 两个人免费观看高清视频| 国产精品自产拍在线观看55亚洲| 99riav亚洲国产免费| 欧美日韩亚洲国产一区二区在线观看| 精品一区二区三区av网在线观看| 欧美绝顶高潮抽搐喷水| 国产成人欧美| 一区福利在线观看| 嫩草影院精品99| 制服诱惑二区| 最新在线观看一区二区三区| 亚洲人成网站高清观看| 不卡av一区二区三区| 国产精品亚洲一级av第二区| 亚洲精品在线观看二区| 亚洲精品久久成人aⅴ小说| 天天添夜夜摸| 久久香蕉激情| 欧洲精品卡2卡3卡4卡5卡区| 色综合婷婷激情| 日本黄色视频三级网站网址| 亚洲自拍偷在线| 国产91精品成人一区二区三区| 国产亚洲精品久久久久5区| 18禁黄网站禁片午夜丰满| 久久人妻av系列| 日韩国内少妇激情av| 久久久久久九九精品二区国产 | 成人18禁在线播放| 亚洲中文日韩欧美视频| 夜夜看夜夜爽夜夜摸| 日本五十路高清| 国产成年人精品一区二区| 欧美在线一区亚洲| 操出白浆在线播放| 国产高清videossex| 99国产精品一区二区三区| 国产高清视频在线播放一区| 巨乳人妻的诱惑在线观看| 欧美激情 高清一区二区三区| 欧美成人性av电影在线观看| 91国产中文字幕| 国产精品久久电影中文字幕| 精品国产乱子伦一区二区三区| 精品国产乱子伦一区二区三区| 国产精品亚洲美女久久久| 一本大道久久a久久精品| 午夜福利高清视频| 深夜精品福利| 成人午夜高清在线视频 | 嫩草影视91久久| 亚洲激情在线av| 搡老妇女老女人老熟妇| 国产极品粉嫩免费观看在线| 91大片在线观看| 日韩国内少妇激情av| 97碰自拍视频| 午夜福利欧美成人| 日韩欧美免费精品| 精品熟女少妇八av免费久了| 黄片播放在线免费| 麻豆成人av在线观看| 美女大奶头视频| 亚洲性夜色夜夜综合| 精品熟女少妇八av免费久了| 日本一本二区三区精品| 亚洲va日本ⅴa欧美va伊人久久| 婷婷精品国产亚洲av在线| 男女床上黄色一级片免费看| 成人午夜高清在线视频 | 亚洲美女黄片视频| 国产一区二区激情短视频| 91国产中文字幕| 国产精品永久免费网站| 国语自产精品视频在线第100页| 国内少妇人妻偷人精品xxx网站 | 国产乱人伦免费视频| 欧美av亚洲av综合av国产av| 免费高清在线观看日韩| 黄片大片在线免费观看| 国产精品永久免费网站| 日本熟妇午夜| 波多野结衣av一区二区av| 一进一出好大好爽视频| 亚洲av熟女| 中出人妻视频一区二区| 久久青草综合色| 欧美日韩黄片免| 久久精品国产清高在天天线| 免费观看人在逋| 久久这里只有精品19| 一级毛片精品| 亚洲熟女毛片儿| 一a级毛片在线观看| 亚洲aⅴ乱码一区二区在线播放 | 成人三级做爰电影| 波多野结衣巨乳人妻| 亚洲国产欧美日韩在线播放| 在线永久观看黄色视频| a级毛片a级免费在线| bbb黄色大片| 一级毛片精品| 精品国产超薄肉色丝袜足j| 深夜精品福利| 久久午夜亚洲精品久久| 国产成人av激情在线播放| 一级黄色大片毛片| 一区福利在线观看| 精品免费久久久久久久清纯| 精品一区二区三区四区五区乱码| 精品久久久久久久久久免费视频| 久久久久国产精品人妻aⅴ院| 美女大奶头视频| 18禁美女被吸乳视频| bbb黄色大片| 看黄色毛片网站| 欧美+亚洲+日韩+国产| 亚洲人成77777在线视频| 99热6这里只有精品| 国产1区2区3区精品| 国产午夜福利久久久久久| 一区福利在线观看| 久久精品国产亚洲av高清一级| 色综合欧美亚洲国产小说| 99久久99久久久精品蜜桃| 村上凉子中文字幕在线| 男女之事视频高清在线观看| 操出白浆在线播放| 日日爽夜夜爽网站| 日韩免费av在线播放| 欧美日韩中文字幕国产精品一区二区三区| 美女 人体艺术 gogo| 精品国内亚洲2022精品成人| 一区二区三区高清视频在线| 女性生殖器流出的白浆| 久9热在线精品视频| 久久 成人 亚洲| 天天躁夜夜躁狠狠躁躁| 久久久久久国产a免费观看| 欧美人与性动交α欧美精品济南到| 午夜老司机福利片| 9191精品国产免费久久| 国产av在哪里看| 19禁男女啪啪无遮挡网站| 99久久国产精品久久久| 在线国产一区二区在线| 97碰自拍视频| 国产精品精品国产色婷婷| 妹子高潮喷水视频| 亚洲久久久国产精品| 国产欧美日韩一区二区精品| 最新美女视频免费是黄的| 老汉色∧v一级毛片| 淫秽高清视频在线观看| 欧美丝袜亚洲另类 | 成人特级黄色片久久久久久久| 12—13女人毛片做爰片一| 亚洲国产精品sss在线观看| 嫩草影院精品99| 午夜免费激情av| 日韩欧美国产在线观看| 999精品在线视频| 亚洲中文av在线| av福利片在线| 波多野结衣巨乳人妻| 2021天堂中文幕一二区在线观 | 一本综合久久免费| 搡老岳熟女国产| 中国美女看黄片| 欧美久久黑人一区二区| 999精品在线视频| 亚洲激情在线av| 麻豆成人午夜福利视频| 法律面前人人平等表现在哪些方面| 中文亚洲av片在线观看爽| 久久久久久久久久黄片| 一级作爱视频免费观看| 啦啦啦韩国在线观看视频| 一区二区三区激情视频| 亚洲精品久久成人aⅴ小说| 高清毛片免费观看视频网站| 啦啦啦韩国在线观看视频| 精品不卡国产一区二区三区| 岛国视频午夜一区免费看| 欧美人与性动交α欧美精品济南到| 午夜日韩欧美国产| 国产爱豆传媒在线观看 | 亚洲五月天丁香| 日本一本二区三区精品| 亚洲专区中文字幕在线| 日韩欧美免费精品| 国产久久久一区二区三区| 亚洲三区欧美一区| 深夜精品福利| x7x7x7水蜜桃| 手机成人av网站| 他把我摸到了高潮在线观看| 最近在线观看免费完整版| 91九色精品人成在线观看| 日韩 欧美 亚洲 中文字幕| 最近最新免费中文字幕在线| 人人澡人人妻人| 久久欧美精品欧美久久欧美| 99在线人妻在线中文字幕| 国产亚洲欧美98| 亚洲精品一卡2卡三卡4卡5卡| 欧美黑人欧美精品刺激| 亚洲欧美激情综合另类| 日日爽夜夜爽网站| 精品久久久久久,| 欧美成人一区二区免费高清观看 | 十八禁人妻一区二区| 亚洲 欧美一区二区三区| 久久国产乱子伦精品免费另类| 欧美黑人巨大hd| 脱女人内裤的视频| 伊人久久大香线蕉亚洲五| 国产成人精品无人区| 中出人妻视频一区二区| 在线观看免费视频日本深夜| 99精品欧美一区二区三区四区| 久99久视频精品免费| 色婷婷久久久亚洲欧美| 18禁黄网站禁片免费观看直播| 夜夜爽天天搞| 日韩欧美国产在线观看| 女人高潮潮喷娇喘18禁视频| 免费看十八禁软件| 91在线观看av| 日韩欧美三级三区| 久久久久久亚洲精品国产蜜桃av| 国产乱人伦免费视频| a级毛片a级免费在线| 国产精品 欧美亚洲| 男人舔女人的私密视频| 欧美性猛交黑人性爽| 欧美黑人巨大hd| 亚洲欧美激情综合另类| 欧美日本视频| 欧美av亚洲av综合av国产av| 18美女黄网站色大片免费观看| 精品久久久久久成人av| 国产亚洲av高清不卡| 欧美黄色片欧美黄色片| 麻豆国产av国片精品| 成人精品一区二区免费| 日韩 欧美 亚洲 中文字幕| tocl精华| 两性午夜刺激爽爽歪歪视频在线观看 | 国产一区二区在线av高清观看| 两人在一起打扑克的视频| 国产亚洲av高清不卡| 免费高清视频大片| 99久久国产精品久久久| 亚洲色图av天堂| 国产成年人精品一区二区| 国产视频内射| 久热爱精品视频在线9| 91成年电影在线观看| 欧洲精品卡2卡3卡4卡5卡区| 一二三四在线观看免费中文在| 女生性感内裤真人,穿戴方法视频| 人妻久久中文字幕网| 国产99白浆流出| 欧美日韩亚洲综合一区二区三区_| 桃色一区二区三区在线观看| av免费在线观看网站| 淫秽高清视频在线观看| 亚洲av成人不卡在线观看播放网| 国产一区二区三区在线臀色熟女| 成人亚洲精品av一区二区| 一区二区三区高清视频在线| 午夜亚洲福利在线播放| 久久热在线av| 精品久久久久久,| 给我免费播放毛片高清在线观看| 亚洲一区二区三区不卡视频| 18禁国产床啪视频网站| 精品熟女少妇八av免费久了| 欧美精品啪啪一区二区三区| 岛国视频午夜一区免费看| 欧美丝袜亚洲另类 | 午夜福利免费观看在线| 亚洲男人的天堂狠狠| 欧美+亚洲+日韩+国产| 精品久久久久久久末码| 在线国产一区二区在线| 亚洲激情在线av| 夜夜夜夜夜久久久久| 一区二区三区激情视频| 国产伦人伦偷精品视频| 夜夜躁狠狠躁天天躁| 女人高潮潮喷娇喘18禁视频| 给我免费播放毛片高清在线观看| 美国免费a级毛片| 国产一卡二卡三卡精品| 国产精品美女特级片免费视频播放器 | 少妇被粗大的猛进出69影院| 午夜老司机福利片| 久久香蕉精品热| 叶爱在线成人免费视频播放| 最近最新中文字幕大全电影3 | 免费观看人在逋| 50天的宝宝边吃奶边哭怎么回事| 2021天堂中文幕一二区在线观 | 身体一侧抽搐| 国产精品久久久久久人妻精品电影| 国产激情欧美一区二区| 日韩成人在线观看一区二区三区| 在线观看免费日韩欧美大片| 天天一区二区日本电影三级| 老汉色av国产亚洲站长工具| 精品久久久久久成人av| 99国产极品粉嫩在线观看| 久久久久久久精品吃奶| 黄色毛片三级朝国网站| 国产成人欧美| 亚洲美女黄片视频| 久久性视频一级片| 亚洲国产精品合色在线| 国产精品,欧美在线| 精品久久蜜臀av无| 黄色 视频免费看| 亚洲一码二码三码区别大吗| 久久 成人 亚洲| 国产精品,欧美在线| 美女 人体艺术 gogo| 久久婷婷成人综合色麻豆| 亚洲国产欧美一区二区综合| 国产成人精品久久二区二区免费| 精品乱码久久久久久99久播| 成人亚洲精品av一区二区| 此物有八面人人有两片| 国产亚洲av嫩草精品影院| 国产黄片美女视频| 听说在线观看完整版免费高清| 国产精品一区二区免费欧美| 男女做爰动态图高潮gif福利片| 操出白浆在线播放| 又紧又爽又黄一区二区| 日日干狠狠操夜夜爽| 精品久久久久久久久久免费视频| 国产高清激情床上av| 可以在线观看的亚洲视频| 日韩中文字幕欧美一区二区| 满18在线观看网站| 色综合婷婷激情| 在线天堂中文资源库| 国产高清videossex| 一级a爱片免费观看的视频| 麻豆成人午夜福利视频| 一边摸一边做爽爽视频免费| 韩国精品一区二区三区| 一本久久中文字幕| 欧美精品啪啪一区二区三区| 日韩视频一区二区在线观看| 夜夜躁狠狠躁天天躁| 免费电影在线观看免费观看| 亚洲av电影不卡..在线观看| 最好的美女福利视频网| 欧美日韩福利视频一区二区| 亚洲人成网站在线播放欧美日韩| 69av精品久久久久久| 99国产精品一区二区三区| 黑丝袜美女国产一区| 国内精品久久久久精免费| 国产成人欧美| 青草久久国产| 国产成+人综合+亚洲专区| av有码第一页| 久久久久久久久免费视频了| 在线永久观看黄色视频| 国产v大片淫在线免费观看| 欧美又色又爽又黄视频| 久9热在线精品视频| 熟女电影av网| 69av精品久久久久久| 亚洲自偷自拍图片 自拍| 黄色视频,在线免费观看| 一级毛片高清免费大全| 国产午夜精品久久久久久| 亚洲avbb在线观看| 亚洲第一av免费看| 老司机午夜十八禁免费视频| 成人av一区二区三区在线看| 禁无遮挡网站| 亚洲中文字幕日韩| 亚洲黑人精品在线| 一本大道久久a久久精品| 亚洲中文av在线| xxx96com| 国产私拍福利视频在线观看| 亚洲国产精品久久男人天堂| 一级a爱片免费观看的视频| 十分钟在线观看高清视频www| 亚洲av成人不卡在线观看播放网| 中文字幕人妻熟女乱码| 午夜两性在线视频| 啪啪无遮挡十八禁网站| 亚洲国产精品合色在线| 亚洲精品中文字幕一二三四区| 国产成+人综合+亚洲专区| 黄色视频,在线免费观看| 伦理电影免费视频| 国产蜜桃级精品一区二区三区| 黄色成人免费大全| 国产亚洲精品久久久久5区| 中文资源天堂在线| av在线天堂中文字幕| 亚洲av片天天在线观看| 国产精品爽爽va在线观看网站 | 日韩精品青青久久久久久| 午夜精品久久久久久毛片777| 妹子高潮喷水视频| 18禁裸乳无遮挡免费网站照片 | 久久天堂一区二区三区四区| 亚洲天堂国产精品一区在线| 国产精品久久久久久精品电影 | 国产高清激情床上av| 午夜福利成人在线免费观看| 日韩精品免费视频一区二区三区| 一卡2卡三卡四卡精品乱码亚洲| 中文字幕人成人乱码亚洲影| 亚洲欧美精品综合久久99| 啦啦啦免费观看视频1| 亚洲av电影不卡..在线观看| 国产真人三级小视频在线观看| 一进一出抽搐动态| 男人舔女人的私密视频| 非洲黑人性xxxx精品又粗又长| 色老头精品视频在线观看| 久久香蕉国产精品| 精品国内亚洲2022精品成人| 中文字幕人成人乱码亚洲影| 国产国语露脸激情在线看| 亚洲精品中文字幕在线视频| 亚洲成av人片免费观看| 国产精品综合久久久久久久免费| 一级作爱视频免费观看| 免费在线观看影片大全网站| 久9热在线精品视频| 亚洲 国产 在线| 免费在线观看亚洲国产| 久久人人精品亚洲av| 人妻久久中文字幕网| av在线播放免费不卡| 欧美国产日韩亚洲一区| 午夜免费观看网址| 久久人妻av系列| 中文字幕人妻丝袜一区二区| 日日夜夜操网爽| a级毛片a级免费在线| 国产亚洲精品综合一区在线观看 | 夜夜爽天天搞| 久久香蕉精品热| 真人一进一出gif抽搐免费| 国产精品综合久久久久久久免费| 无人区码免费观看不卡| 午夜免费成人在线视频| 久久草成人影院| 一a级毛片在线观看| 中文在线观看免费www的网站 | 国产一区二区三区在线臀色熟女| 亚洲一区二区三区不卡视频| а√天堂www在线а√下载| 欧美不卡视频在线免费观看 | 久久九九热精品免费| 亚洲欧美精品综合一区二区三区| 亚洲五月婷婷丁香| 精品电影一区二区在线| 99热6这里只有精品| 亚洲国产精品999在线| 亚洲av电影不卡..在线观看| 宅男免费午夜| 国产久久久一区二区三区| 久久中文看片网| 91麻豆av在线| 久久天堂一区二区三区四区| 久久人妻av系列| 欧美日韩中文字幕国产精品一区二区三区| 亚洲av片天天在线观看| 搡老妇女老女人老熟妇| 国产精品98久久久久久宅男小说| 91国产中文字幕| ponron亚洲| 在线av久久热| 国产主播在线观看一区二区| 国产精品一区二区免费欧美| 国产黄a三级三级三级人| 精品一区二区三区av网在线观看| 中文字幕人妻丝袜一区二区| 亚洲av片天天在线观看| 国产高清有码在线观看视频 | 亚洲av片天天在线观看| 91av网站免费观看| 国产精品国产高清国产av| 俺也久久电影网| 久久久久久九九精品二区国产 | 国产极品粉嫩免费观看在线| 女人高潮潮喷娇喘18禁视频| 精品欧美一区二区三区在线| 日韩精品免费视频一区二区三区| 日本一本二区三区精品| 视频区欧美日本亚洲| 欧美日本视频| 国产伦人伦偷精品视频| 欧美成人午夜精品| 黄色片一级片一级黄色片| 18禁黄网站禁片免费观看直播| 最新美女视频免费是黄的| a级毛片a级免费在线| 婷婷亚洲欧美| 黄片大片在线免费观看| 99国产极品粉嫩在线观看| 色av中文字幕| 波多野结衣高清作品| 亚洲中文日韩欧美视频| 国产精品精品国产色婷婷| 免费在线观看视频国产中文字幕亚洲| 久久天躁狠狠躁夜夜2o2o| 精品少妇一区二区三区视频日本电影| 日韩有码中文字幕|