• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Temperature-responded tunable metalenses based on phase transition materials

    2022-05-16 07:10:18JingJunWu伍景軍FengTang唐烽JunMa馬駿BingHan韓冰CongWei魏聰QingZhiLi李青芝JunChen陳駿NingZhang張寧XinYe葉鑫WanGuoZheng鄭萬國andRiHongZhu朱日宏
    Chinese Physics B 2022年5期
    關(guān)鍵詞:韓冰馬駿萬國

    Jing-Jun Wu(伍景軍) Feng Tang(唐烽) Jun Ma(馬駿) Bing Han(韓冰) Cong Wei(魏聰)Qing-Zhi Li(李青芝) Jun Chen(陳駿) Ning Zhang(張寧) Xin Ye(葉鑫)Wan-Guo Zheng(鄭萬國) and Ri-Hong Zhu(朱日宏)

    1School of Electronic and Optical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China

    2MIIT Key Laboratory of Advanced Solid Laser,Nanjing University of Science and Technology,Nanjing 210094,China

    3Research Center of Laser Fusion,China Academy of Engineering Physics,Mianyang 621900,China

    4IFSA Collaborative Innovation Center,Shanghai Jiao Tong University,Shanghai 200240,China

    Keywords: temperature-responded,tunable metalenses,phase change material VO2

    1. Introduction

    Lenses are one of the most important components in optical systems,such as cameras,microscopes,projective lithographic machines, spectrometers, triggering off a wide investigation of optics and photonics.[1]Traditional lenses based on refractive or reflective principles have some limitations in integration,weight,chromatic aberration,etc.,which restricts the development of multifunctional optical devices.[2]Recently,metalens technology based on metasurfaces,which control the wavefront of light by using subwavelength nanostructures,has shown peculiar optical performance with micrometer thickness. Therefore, metalenses have been investigated widely to replace the bulk devices with thin,flat,lightweight devices.[3]However, the functions of most of metalenses are invariable once they are fabricated. For being harnessed in more applications with lower cost, the tunability of their performance becomes important.

    To date, two common approaches have been exploited to tune metalenses. One is based on the reconfigurability of unit cells,[4,5]such as physical dimensions,interspace between unit-cells[6–8]and shapes,[9–11]to actively manipulate the output wavefront.[12]This tuning is typically accompanied by some forms of overall spatial variation of the devices,which,however,is not always desirable for some highly compact photonic devices.[3]The other is to integrate active materials into metalenses.[13]The active materials’optical properties can be tuned by external excitation,such as thermal,[14]electrical,[15]or optical stimuli.[12]Owing to the resonances of unit cells being highly sensitive to the dielectric background, the placed active material can control the metalenses’ optical response.This allows the controlling of metalens without reconfiguring their structures.

    Among these active materials, phase change and phase transition materials(PCMs and PTMs)are good candidates to provide widely tunable capabilities.[16]The PCM materials,such as germanium–antimony–tellurium(GST)and antimony sulfide (Sb2S3), are irreversible, that is, nonvolatile, and will remain in a fixed state of the matter unless an input excitation “resets” it back to its original state. Yinet al.proposed a bifocal zoom metalens, focusing position can be controlled actively according to the requirement.[17]Baiet al.designed an actively tunable metalens array by patterning the GST resonators. The metalenses array shows excellent broadband performance,and the“on”or“off”state of each metalens can be actively controlled manually.[18]Besides,Baiet al.designed a tunable duplex metalenses,which can focus the incident light at any position by actively controlling the state of GST.[19]Chenet al.designed multifunctional metalens with dual working modes based on bilayer geometric phase elements consisting of low-loss phase change materials (Sb2Se3) and amorphous silicon(a-Si).[20]The above-mentioned metalenses’focus position or intensities can be actively tuned to a great extent, but they are difficult to dynamically control in real-time due to PCMs requiring new excitation to “reset” it back to its original state.[16]The PTM material,e.g., vanadium dioxide (VO2), is naturally reversible and will return to its initial state if the external stimulus is discontinued. Therefore,VO2is more suitable for the equipment whose performance needs controlling in real-time,e.g., intelligent temperature control systems. Recently,Chenet al.realized a reflected metalens in the far-infrared band by combining a geometrical metasurface and a VO2film.[21]The metasurfaces work as a reflective lens with a protective function from strong light. However,the tunable focusing and photothermal interaction of metalens have not been investigated previously.

    In this paper, we propose a tunable metalens based on a hybrid structure combined with a VO2film and Si nanocylinders. The hybrid metalens works at 1550 nm and provide realtime tunability by using thin PTM layers. The temperaturedependent transmitted amplitude can be controlled within a certain range in which the system can work normally. Finally, the optothermal simulations are conducted to estimate the optothermal conversion progress of dynamic focusing,and the maximum laser density that the hybrid metalens can handle.The light-dose sensitive tunable smart metalens presents a new approach to the application of anti-satellite blinding,bioimaging,etc.

    2. Materials and methods

    Figure 1(a) shows the schematic diagram of our design.It comprises two films and an array of nanocylinder unit cells within a square lattice array. The materials of these layers from the bottom to the top are silicon oxide (SiO2), vanadium oxide (VO2), and silicon (Si), respectively. The period of unit cells isP=600 nm. The nanocylinder’s height is optimized to beH=750 nm. The diameter of the nanocylinder isD. The phase difference of the transmitted light can be tuned by changing the diameter of nanocylinder. The optical components’ phase profiles can be achieved by the unit cells of nanocylinders if the phase difference can cover the entire range of 0–2π. Nanocylinder is polarization independent due to its structural symmetry.[22]

    In this study,the three-dimensional(3D)finite-difference time-domain method is used for optical simulations, and the discontinuous Galerkin time-domain method is used for thermal simulations. In optical simulations, the incident optical source is set to be a plane wave. The direction of propagation is along thezaxis, and the polarization direction is along thexaxis. The boundaries around the unit cell are periodic boundary conditions, and the top and bottom perfectly matches with the layer boundary conditions. The mesh accuracy is set to be 3. In thermal simulations, thex/yaxis boundaries are set to be “closed”, and thezaxis boundaries are set to be “shell”. The source and all objects are modeled as shown in Fig. 1(a) and limited in the optical/optothermal simulation region. The condition mode of boundaries is set to be the steady-state with a temperature of 330 K, and the temperature boundary is set to be at the bottom of the simulation region. The VO2permittivity’s real and imaginary part are illustrated in Figs. A1(a) and A1(b) in Appendix A, respectively, and the data are cited from Ref. [23]. The constants of heat transport properties and electronic properties are cited from Refs. [24,25]. For the VO2material in an insulating state, the electrical conductivity, density, heat capacity, and thermal conductivity are set to be 221.8045 S/m,4570 kg/m3, 6560 J·kg-1·K-1, and 3.5 W·m-1·K-1, respectively. For the VO2material in a metallic state, the electrical conductivity, density, heat capacity, and thermal conductivity are set to be 94586.4662 S/m,4650 kg/m3,7800 J·kg-1·K-1,and 6 W·m-1·K-1, respectively. The ambient temperature is set to be 330 K.The real parts and imaginary parts of SiO2and Si are cited from Ref.[26].

    Fig.1. Design of unit cells,showing(a)3D view of unit cells,(b)transmission,and(c)phase for nanocylinders varying with nanocylinders’diameters.

    3. Results and discussion

    3.1. Optical properties of nanocylinders

    The diameter-dependent transmission and phase difference of nanocylinders are illustrated in Figs. 1(b) and 1(c).The results (λ=1550 nm) of unit cells can cover the entire range of 0–2π,which is the fundament of constructing metalens. In this research,the high transmission is obtained,when the heightH=750 nm, the lattice constantP=600 nm. To realize the phase control of the metasurface(x,y)position,the appropriate diameters of the nanocylinders with high transmission in the range of 0–2πare selected. The phase modulation and the transmission corresponding to different nanocylinder sizes are shown in Table 1. These 8 high-transmission unit cells that entirely cover the range of 0–2πcan be used to construct the metasurface.

    Table 1. Dimensions of nanocylinders covering phase range of 0–2π.

    3.2. Metalens design and property

    Fig.2. Metalens construction and performance simulations,indicating(a)function of metalens phase distribution in a radial direction,(b)top and side view of metalens, (c) partially enlarged details of the metalens, marked by the red box in panel (b), (d) power distributions of the focusing spot in the x–z(y=0 μm),(e)x–y(z=68.6756 μm)plane,and(f)full width at half maximum(FWHM)of the focusing spot.

    The dynamic focusing performance of the hybrid metalens is explored in detail as shown in Fig. 3. Figures 3(a)–3(f) show the power distributions of the focusing spot on thex–zplane at different temperatures (330 K, 339 K, 341 K,343 K, 345 K, 350 K respectively). The power of the hybrid metalens focused spot gradually decreases as the temperature increases. It is seen that the focus wavelength of the hybrid metalens at different temperatures are almost the same, focal distancef=68.6756 μm. Figure 3(g)illustrates the power distributions of the focal point on the optical axis(white dashed line in Figs.3(a)–3(f)). The FWHMs of the focal spots are almost the same when the temperature changes.It proves that the hybrid metalens proposed here can realize the dynamic focusing of the incident light. Because of our limited computer source, the diameter of metalens is set to be 87 μm. By increasing the diameter of the metalens, the FWHM can be miniaturized.[28]The transmission(T),reflection(R),absorption(A),and focusing efficiency(E)of the hybrid metalens at different temperatures are shown in Fig.3(h).TheT,R, andEof the hybrid metalens gradually decrease,and theAincreases as the temperature increases. TheT,R,andEare suppressed due to the strong absorption. As the temperature increases, the imaginary part of the VO2permittivity gradually increases, leading the absorption to increase sharply. The VO2appears in a full metallic state while the temperature is well above the transition temperature. Inhere,theT,R,andEof the hybrid metalens reach the highest values(T=59.09%,R=13.44%,E=42.28%) and the absorption reaches the lowest values (A=27.47%) at 330 K. While the hybrid metalens at 350 K, theT,R, andEreach the lowest values (T=17.25%,R=0.86%,E=12.68%) and the absorption reaches the highest values(A=81.89%). The modulation efficiency ofT(T350K/T330K-1|) is~70.81%,R(|R350K/R330K-1|) is~93.60%,E(|E350K/E330K-1|) is~70.01%, andA(|A350K/A330K-1|) is 66.46%. As it can be seen that the hybrid metalens not only dynamically control the optical intensity, but also protect the speciesin measurement from being overe-exposed when the incident light is too strong.

    Fig.3. Metalens properties at different temperatures: 330 K(a),339 K(b),341 K(c),343 K(d),345 K(e),350 K(f),respectively,showing[(a)–(f)]power distributions of focusing spot in x–z(y=0 μm)plane,with white dashed lines representing focal position,(g)FWHMs of focusing spots,(h)transmission(T),reflection(R),absorption(A),and focusing efficiency(E)of hybrid metalens.

    Although the optical simulations can calculate the dynamic focusing efficiency of incident light with the increase of temperature,they cannot reflect the optothermal conversion process of dynamic focusing. For the quantitative analysis,some optothermal simulations are conducted to estimate the optothermal conversion process of the dynamic focusing,and the maximum light intensity that the hybrid metalens can handle. Figure 4(a)shows the temperature distribution in the hybrid metalens, composed of 19 selected unit cells in Table 1,illustrated by a plane-wave laser with power 3.64×10-10W(the area is 0.6 μm×11.4 μm = 6.84 μm). We simplify the original two-dimensional (2D) metalens (D= 11.4 μm,f=9.12 μm) into a one-dimensional (1D) one, due to our limited computing source. The 1D hybrid metalens has a similar temperature value of 330 K while the laser power is lower than 3.64×10-10W. Under the illumination of different incident power, the maximum temperature values in the three-dimensional (3D) volume made of the metalens are reported in Fig. 4(c). It is shown that the temperature of hybrid metalens increases gradually as the laser power is higher than 3.64×10-10W, the laser density is 5.32×10-3W/cm2.Therefore,we believe that the hybrid metalens works normally while the ambient temperature is lower than 330 K and the incident light power is lower than 5.32×10-3W/cm2. As the laser energy increases,the temperature of the metalens gradually increases,and the VO2transits from the insulating state to the metallic state. It is usually considered that VO2is a fully metallic state while the temperature reaches 350 K, or even higher than 350 K. We suppose that the optical and thermal constants of VO2, SiO2, Si remain unchanged while the temperature is higher than 350 K.Figure 4(b)shows the temperature distribution in the hybrid metalens illustrated by a planewave laser with power 1.78×10-6W. The temperature difference between the silicon nanocylinders and the VO2film is less than 1 K,just as the temperature is 330 K.The temperature of the hybrid metalens increases as the laser power increases as illustrated in Fig. 4(d). It is shown that the hybrid metalens can handle the maximum laser power(1.21×10-4W per 6.84×10-8cm2),i.e., the laser density is 1.76×103W/cm2.The melting point of Si, SiO2, VO2are 1683 K, 1683 K,1996 K,1818 K respectively.

    Fig. 4. Photothermal analysis of the hybrid metalens, indicating [(a), (b)]temperature distribution in 1D metalens(area: 6.84×10-8 cm2)illustrated by plane-wave lasers with power 3.64×10-10 W and 1.78×10-6 W respectively,[(c),(d)]the highest temperature in 3D volume of panels(a)and(c)under the illumination of different incident powers respectively.

    4. Conclusions and perspectives

    In this work, we introduce a temperature-dependent tunable hybrid metalens operating at 1550 nm. Firstly, the geometrical dependence of the phase and transmittance of an Si nanocylinder is investigated. And then, a hybrid metalens is constructed and the temperature-dependent characteristics are simulated in detail. As the temperature increases, the focused power,transmission,reflection,and focusing efficiency of the hybrid metalens gradually decrease,and the absorption increases. The focusing efficiency of incident light and modulation efficiency of the focused efficiency are 42.28% and 70.01% respectively. Finally, the optothermal simulations illustrate the optothermal conversion progress of the dynamic focusing,and the hybrid metalens can handle a maximum laser density of 1.76×103W/cm2at an ambient temperature lower than 330 K. We believe that the light-dose sensitive tunable smart metalens proposed in this work can provide a new practicable platform for realizing the instruments/systems or material damage protection,and potential applications in numerous technologically important fields such as anti-satellite blinding,bio-imaging,etc.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China(Grant No.61875087)and the Innovation and Development Foundation of China Academy of Engineering Physics(Grant No.CX20200020).

    Appendix A:The figure cited from Ref.[23]

    Fig. A1. Curves of (a) real part and (b) imaginary part versus wavelength of VO2 permitivity data are cited from Ref.[23].

    猜你喜歡
    韓冰馬駿萬國
    Thermal stress damage mechanism in single-crystal germanium caused by 1080 nm laser irradiation
    Linear analysis of plasma pressure-driven mode in reversed shear cylindrical tokamak plasmas
    房地產(chǎn)估價風(fēng)險評估與防范
    何處埋忠骨:六棵樹的“密碼”
    春節(jié)700萬國人出境游
    馬萬國作品
    白蘿卜· 綠玉米
    喜劇世界(2017年11期)2017-06-24 12:38:26
    Preliminary Study about Narrative Art of the Micro Film
    “萬國茶幫”拜媽祖
    海峽姐妹(2016年7期)2016-02-27 15:21:38
    藏獒
    故事會(2013年12期)2013-05-14 15:24:09
    蜜桃亚洲精品一区二区三区| 国产亚洲精品综合一区在线观看| 精品国产超薄肉色丝袜足j| 国产三级在线视频| 天天添夜夜摸| 在线免费观看不下载黄p国产 | 51国产日韩欧美| 精品久久久久久久久久免费视频| 日韩中文字幕欧美一区二区| 色吧在线观看| 免费看十八禁软件| 国产综合懂色| 成年女人看的毛片在线观看| 日韩欧美三级三区| 啪啪无遮挡十八禁网站| 欧洲精品卡2卡3卡4卡5卡区| 国产精品98久久久久久宅男小说| 一区福利在线观看| 色播亚洲综合网| 又爽又黄无遮挡网站| 18+在线观看网站| 日本免费一区二区三区高清不卡| 国产国拍精品亚洲av在线观看 | 免费看光身美女| 男女午夜视频在线观看| 日本免费a在线| 一级黄片播放器| 99精品在免费线老司机午夜| 每晚都被弄得嗷嗷叫到高潮| 99在线人妻在线中文字幕| 一本久久中文字幕| 国产成人av激情在线播放| 99视频精品全部免费 在线| 亚洲美女视频黄频| 日韩高清综合在线| 日韩欧美国产在线观看| 精品一区二区三区视频在线观看免费| 美女高潮喷水抽搐中文字幕| 别揉我奶头~嗯~啊~动态视频| 国产 一区 欧美 日韩| 波野结衣二区三区在线 | 一级黄片播放器| 成人精品一区二区免费| 最好的美女福利视频网| 在线观看美女被高潮喷水网站 | 国产久久久一区二区三区| 国产精品乱码一区二三区的特点| av欧美777| 久久精品影院6| 日本免费a在线| 免费在线观看亚洲国产| 无限看片的www在线观看| 在线a可以看的网站| 人妻夜夜爽99麻豆av| 色噜噜av男人的天堂激情| 18禁裸乳无遮挡免费网站照片| 欧美成狂野欧美在线观看| 最近最新中文字幕大全电影3| 黄色日韩在线| 亚洲精品色激情综合| 十八禁人妻一区二区| 国产av一区在线观看免费| 黄色成人免费大全| 国产精品久久久久久亚洲av鲁大| avwww免费| 男女床上黄色一级片免费看| 床上黄色一级片| 国产精品日韩av在线免费观看| 亚洲国产精品成人综合色| 免费看十八禁软件| 别揉我奶头~嗯~啊~动态视频| 午夜激情欧美在线| 成熟少妇高潮喷水视频| 天堂网av新在线| 天堂av国产一区二区熟女人妻| 中文资源天堂在线| 国产精品98久久久久久宅男小说| 麻豆久久精品国产亚洲av| av国产免费在线观看| 岛国视频午夜一区免费看| 18禁在线播放成人免费| 麻豆成人午夜福利视频| 蜜桃亚洲精品一区二区三区| 国产精品电影一区二区三区| 在线播放无遮挡| 久久久久国产精品人妻aⅴ院| 欧美三级亚洲精品| 亚洲专区中文字幕在线| 精华霜和精华液先用哪个| 亚洲av美国av| 淫秽高清视频在线观看| 天天躁日日操中文字幕| 成人av在线播放网站| 老司机福利观看| 国产高清三级在线| 18+在线观看网站| 又黄又爽又免费观看的视频| 男人舔奶头视频| 久久99热这里只有精品18| 身体一侧抽搐| 观看免费一级毛片| 亚洲中文日韩欧美视频| 男女床上黄色一级片免费看| 18禁在线播放成人免费| www.www免费av| 一本久久中文字幕| 国产69精品久久久久777片| 久久伊人香网站| 一级毛片高清免费大全| 国产精品亚洲一级av第二区| 噜噜噜噜噜久久久久久91| 欧美色欧美亚洲另类二区| 国产午夜精品论理片| 日韩精品青青久久久久久| 97人妻精品一区二区三区麻豆| 亚洲国产欧美人成| 美女免费视频网站| 免费av毛片视频| 综合色av麻豆| 午夜精品久久久久久毛片777| 熟女少妇亚洲综合色aaa.| 精品久久久久久久久久免费视频| 午夜久久久久精精品| 国产精品亚洲美女久久久| 亚洲 欧美 日韩 在线 免费| av中文乱码字幕在线| 欧美午夜高清在线| 国产精品爽爽va在线观看网站| 男人的好看免费观看在线视频| 亚洲欧美精品综合久久99| 成人18禁在线播放| 免费人成在线观看视频色| 欧美+日韩+精品| 全区人妻精品视频| 亚洲av成人不卡在线观看播放网| 天堂动漫精品| 久久久国产成人精品二区| 欧美日韩瑟瑟在线播放| 国产精品久久久久久精品电影| 国产成人影院久久av| 一级毛片女人18水好多| 亚洲精品日韩av片在线观看 | 老司机午夜十八禁免费视频| 免费看光身美女| 久久这里只有精品中国| 一级作爱视频免费观看| 国产亚洲精品综合一区在线观看| 国产伦精品一区二区三区视频9 | 天天一区二区日本电影三级| 九九久久精品国产亚洲av麻豆| 久久九九热精品免费| 亚洲av成人精品一区久久| 亚洲 国产 在线| 69人妻影院| 日韩欧美在线二视频| 熟女电影av网| 黄色视频,在线免费观看| 成人亚洲精品av一区二区| av福利片在线观看| 久久久国产精品麻豆| 国产69精品久久久久777片| 欧美不卡视频在线免费观看| 国产亚洲欧美在线一区二区| 欧美丝袜亚洲另类 | 亚洲在线自拍视频| 一级a爱片免费观看的视频| 午夜福利在线观看吧| 国产探花在线观看一区二区| 国产精品香港三级国产av潘金莲| 99在线视频只有这里精品首页| 香蕉久久夜色| 美女高潮喷水抽搐中文字幕| 精品午夜福利视频在线观看一区| 国产免费一级a男人的天堂| 舔av片在线| 精品久久久久久成人av| 此物有八面人人有两片| 欧美成人性av电影在线观看| 成人欧美大片| 久久久久久人人人人人| 国产高清视频在线观看网站| 日韩av在线大香蕉| 免费在线观看亚洲国产| 怎么达到女性高潮| 小说图片视频综合网站| 日本与韩国留学比较| 色综合站精品国产| 国产亚洲av嫩草精品影院| 久久人妻av系列| 精品电影一区二区在线| 母亲3免费完整高清在线观看| 淫妇啪啪啪对白视频| 中文字幕av成人在线电影| 18禁在线播放成人免费| 精品久久久久久久久久免费视频| 一级a爱片免费观看的视频| 黄片大片在线免费观看| 国产伦在线观看视频一区| 他把我摸到了高潮在线观看| 夜夜夜夜夜久久久久| 色老头精品视频在线观看| 亚洲精品色激情综合| xxxwww97欧美| 国产午夜福利久久久久久| 成年女人永久免费观看视频| 久久伊人香网站| 久久久久久九九精品二区国产| www.色视频.com| 好男人电影高清在线观看| 色哟哟哟哟哟哟| 国语自产精品视频在线第100页| 久久精品国产亚洲av香蕉五月| 99国产综合亚洲精品| 久久久国产成人免费| 一级毛片高清免费大全| 国产精品影院久久| 亚洲精品国产精品久久久不卡| 操出白浆在线播放| 久久国产精品人妻蜜桃| 黄色日韩在线| 黄色女人牲交| 亚洲av熟女| 中出人妻视频一区二区| 亚洲成av人片在线播放无| 欧美在线黄色| 国产中年淑女户外野战色| 波野结衣二区三区在线 | 国产真实乱freesex| 亚洲最大成人中文| 哪里可以看免费的av片| www.熟女人妻精品国产| 午夜影院日韩av| 美女cb高潮喷水在线观看| 久久久久免费精品人妻一区二区| 床上黄色一级片| 亚洲人成网站在线播| 久久久久久人人人人人| 中国美女看黄片| 国产亚洲精品av在线| 亚洲,欧美精品.| 女人被狂操c到高潮| 特级一级黄色大片| 午夜a级毛片| 女警被强在线播放| 99久久九九国产精品国产免费| 深夜精品福利| 日本在线视频免费播放| 最好的美女福利视频网| 青草久久国产| 国语自产精品视频在线第100页| 亚洲无线在线观看| 熟女少妇亚洲综合色aaa.| 手机成人av网站| 国产精品综合久久久久久久免费| 亚洲电影在线观看av| 免费电影在线观看免费观看| 国产精品嫩草影院av在线观看 | 9191精品国产免费久久| 三级国产精品欧美在线观看| 波多野结衣高清作品| 久久久国产成人免费| 欧美日韩亚洲国产一区二区在线观看| 久久精品国产亚洲av涩爱 | 国产伦一二天堂av在线观看| 欧美又色又爽又黄视频| 亚洲av第一区精品v没综合| 日韩欧美在线二视频| 黄色成人免费大全| 国产私拍福利视频在线观看| 男人的好看免费观看在线视频| 最近最新中文字幕大全电影3| 亚洲电影在线观看av| 久久久久久久久大av| 高清毛片免费观看视频网站| 国产 一区 欧美 日韩| 久久精品91蜜桃| 19禁男女啪啪无遮挡网站| 女人被狂操c到高潮| 12—13女人毛片做爰片一| 亚洲精品影视一区二区三区av| 久久久久免费精品人妻一区二区| 成人特级av手机在线观看| 国产 一区 欧美 日韩| www日本黄色视频网| 久99久视频精品免费| 白带黄色成豆腐渣| 99热只有精品国产| 19禁男女啪啪无遮挡网站| 长腿黑丝高跟| 精品欧美国产一区二区三| 亚洲国产中文字幕在线视频| 国产精品1区2区在线观看.| 一区福利在线观看| 亚洲五月天丁香| 亚洲人成网站在线播| 国产精品久久久久久久电影 | 最近最新中文字幕大全电影3| 五月伊人婷婷丁香| 成人鲁丝片一二三区免费| 久久久久久人人人人人| 久9热在线精品视频| 午夜两性在线视频| 天天躁日日操中文字幕| 国产精品国产高清国产av| 19禁男女啪啪无遮挡网站| 狂野欧美激情性xxxx| 色老头精品视频在线观看| 亚洲,欧美精品.| 日本 欧美在线| 最近在线观看免费完整版| 看片在线看免费视频| 麻豆久久精品国产亚洲av| 久久久久久久午夜电影| 黄色日韩在线| 草草在线视频免费看| 亚洲av美国av| 最近在线观看免费完整版| www日本在线高清视频| 国产高清视频在线观看网站| 亚洲第一欧美日韩一区二区三区| 成人特级黄色片久久久久久久| 成年女人永久免费观看视频| 人妻久久中文字幕网| 一区二区三区高清视频在线| 国产精品女同一区二区软件 | 91av网一区二区| 精品免费久久久久久久清纯| 久久伊人香网站| 每晚都被弄得嗷嗷叫到高潮| 男女之事视频高清在线观看| 法律面前人人平等表现在哪些方面| 精品国产超薄肉色丝袜足j| 听说在线观看完整版免费高清| 九色国产91popny在线| 日韩成人在线观看一区二区三区| 一边摸一边抽搐一进一小说| 中文字幕av在线有码专区| 丁香欧美五月| 日韩欧美精品免费久久 | 色综合欧美亚洲国产小说| 亚洲成人免费电影在线观看| 久久精品综合一区二区三区| e午夜精品久久久久久久| 国产探花极品一区二区| 宅男免费午夜| 国产中年淑女户外野战色| 少妇高潮的动态图| 国产国拍精品亚洲av在线观看 | 欧洲精品卡2卡3卡4卡5卡区| 成熟少妇高潮喷水视频| 窝窝影院91人妻| 日韩欧美国产一区二区入口| 男女视频在线观看网站免费| 天堂网av新在线| 色在线成人网| 亚洲国产色片| 国产精品国产高清国产av| 亚洲无线在线观看| 欧美极品一区二区三区四区| 老汉色∧v一级毛片| 亚洲av日韩精品久久久久久密| 97超级碰碰碰精品色视频在线观看| 国产精品乱码一区二三区的特点| 久久中文看片网| 免费在线观看成人毛片| 国产黄片美女视频| 19禁男女啪啪无遮挡网站| 亚洲第一欧美日韩一区二区三区| 成人国产一区最新在线观看| 国产成人av教育| 中文字幕av成人在线电影| 久久久国产成人免费| 国产一级毛片七仙女欲春2| 十八禁人妻一区二区| 亚洲激情在线av| 欧美国产日韩亚洲一区| 国产私拍福利视频在线观看| 精品午夜福利视频在线观看一区| 久久久久久人人人人人| 国产精品爽爽va在线观看网站| 国产乱人视频| 亚洲精品久久国产高清桃花| 美女被艹到高潮喷水动态| 日韩 欧美 亚洲 中文字幕| 真人一进一出gif抽搐免费| 欧美精品啪啪一区二区三区| 长腿黑丝高跟| 中出人妻视频一区二区| 精品国产亚洲在线| 99国产综合亚洲精品| 欧美大码av| 亚洲精品在线观看二区| 久久久久国内视频| netflix在线观看网站| 久久久成人免费电影| 午夜激情欧美在线| 国产老妇女一区| 少妇裸体淫交视频免费看高清| 欧美乱码精品一区二区三区| 香蕉丝袜av| 欧美乱色亚洲激情| 久久久久久久精品吃奶| 老熟妇乱子伦视频在线观看| 两个人视频免费观看高清| 色老头精品视频在线观看| 欧美在线一区亚洲| 黄色成人免费大全| 久久九九热精品免费| 色哟哟哟哟哟哟| 国产淫片久久久久久久久 | 一本综合久久免费| 性色av乱码一区二区三区2| 老司机深夜福利视频在线观看| 91在线精品国自产拍蜜月 | 男人的好看免费观看在线视频| 亚洲国产精品合色在线| 乱人视频在线观看| 国产色婷婷99| 日韩欧美精品v在线| 国内揄拍国产精品人妻在线| 国产精品久久久久久精品电影| 亚洲av不卡在线观看| 999久久久精品免费观看国产| 99国产精品一区二区蜜桃av| 国产精品野战在线观看| 亚洲18禁久久av| 国产久久久一区二区三区| 午夜免费成人在线视频| 桃红色精品国产亚洲av| 欧美+日韩+精品| 国产欧美日韩精品亚洲av| 中文字幕人妻熟人妻熟丝袜美 | 亚洲国产精品成人综合色| 脱女人内裤的视频| 日韩欧美国产一区二区入口| 亚洲五月婷婷丁香| 手机成人av网站| 在线观看美女被高潮喷水网站 | 一区二区三区免费毛片| 国产伦在线观看视频一区| 亚洲精品粉嫩美女一区| 国产精品亚洲av一区麻豆| 久久香蕉精品热| 亚洲av免费高清在线观看| 久久久久久人人人人人| av片东京热男人的天堂| 啦啦啦免费观看视频1| 欧美另类亚洲清纯唯美| 色吧在线观看| 麻豆一二三区av精品| 欧美一区二区亚洲| 又黄又爽又免费观看的视频| 一本久久中文字幕| 成人国产一区最新在线观看| 99久久综合精品五月天人人| 久久久久久久久大av| 一级毛片女人18水好多| 国产一区二区在线av高清观看| 18+在线观看网站| 一个人免费在线观看电影| 亚洲av二区三区四区| 美女cb高潮喷水在线观看| 国产免费一级a男人的天堂| 国产中年淑女户外野战色| 成人三级黄色视频| 中文在线观看免费www的网站| 国产欧美日韩精品亚洲av| 国产亚洲精品综合一区在线观看| 成人午夜高清在线视频| 九九在线视频观看精品| 亚洲人成电影免费在线| 国产午夜精品久久久久久一区二区三区 | 国产日本99.免费观看| 美女免费视频网站| 日本在线视频免费播放| 久久婷婷人人爽人人干人人爱| 国产成人av激情在线播放| 欧美性猛交黑人性爽| 亚洲欧美日韩东京热| 日韩欧美精品免费久久 | 深夜精品福利| 99久久99久久久精品蜜桃| 国产黄色小视频在线观看| 国产精品99久久99久久久不卡| 久久性视频一级片| 午夜免费成人在线视频| 亚洲男人的天堂狠狠| 久久中文看片网| 99久久精品一区二区三区| 国产黄色小视频在线观看| 女同久久另类99精品国产91| 三级毛片av免费| 啦啦啦免费观看视频1| 最新美女视频免费是黄的| 久久久国产精品麻豆| 岛国在线观看网站| tocl精华| 亚洲欧美日韩无卡精品| 国内精品久久久久久久电影| 波多野结衣高清无吗| 午夜激情福利司机影院| 此物有八面人人有两片| 一级黄片播放器| 精品国产超薄肉色丝袜足j| 毛片女人毛片| 亚洲国产高清在线一区二区三| 桃红色精品国产亚洲av| 国产老妇女一区| 最近视频中文字幕2019在线8| 中文字幕高清在线视频| 亚洲熟妇熟女久久| 欧美一级a爱片免费观看看| 88av欧美| 精品一区二区三区av网在线观看| 国产精品免费一区二区三区在线| 级片在线观看| 国产精品久久久久久精品电影| 欧美日韩亚洲国产一区二区在线观看| 国产一区二区在线观看日韩 | 十八禁人妻一区二区| 一本综合久久免费| 欧美日韩黄片免| 真人一进一出gif抽搐免费| 日本三级黄在线观看| 国产av在哪里看| 黄色片一级片一级黄色片| 国产精品综合久久久久久久免费| 午夜激情福利司机影院| 男人舔奶头视频| 老司机午夜十八禁免费视频| av中文乱码字幕在线| 少妇人妻精品综合一区二区 | 日韩欧美精品v在线| 又爽又黄无遮挡网站| 亚洲精品在线观看二区| e午夜精品久久久久久久| 美女大奶头视频| 亚洲第一欧美日韩一区二区三区| 久久精品人妻少妇| 少妇人妻精品综合一区二区 | 人人妻人人看人人澡| 母亲3免费完整高清在线观看| 一进一出抽搐gif免费好疼| 欧美成人免费av一区二区三区| 国产精品一区二区三区四区久久| 熟妇人妻久久中文字幕3abv| 欧美乱妇无乱码| 搡老岳熟女国产| 国内精品久久久久精免费| 舔av片在线| 国产精品亚洲一级av第二区| 桃色一区二区三区在线观看| 美女黄网站色视频| 内射极品少妇av片p| 欧美乱妇无乱码| 精华霜和精华液先用哪个| 日韩大尺度精品在线看网址| 久久6这里有精品| 99久久久亚洲精品蜜臀av| 校园春色视频在线观看| 亚洲精品粉嫩美女一区| 一个人看的www免费观看视频| 在线观看免费午夜福利视频| 草草在线视频免费看| 波多野结衣巨乳人妻| 中国美女看黄片| 男女午夜视频在线观看| 亚洲人成网站高清观看| 最近最新中文字幕大全免费视频| 一区二区三区高清视频在线| 国产成人啪精品午夜网站| 欧美性猛交黑人性爽| 欧美日韩综合久久久久久 | 97超视频在线观看视频| 国产亚洲精品一区二区www| 给我免费播放毛片高清在线观看| 美女大奶头视频| 亚洲在线观看片| 天堂√8在线中文| 99久久精品一区二区三区| 99国产综合亚洲精品| 伊人久久精品亚洲午夜| 女人十人毛片免费观看3o分钟| 激情在线观看视频在线高清| 夜夜爽天天搞| 亚洲专区国产一区二区| 成人无遮挡网站| 亚洲一区二区三区色噜噜| 日韩有码中文字幕| 人人妻人人澡欧美一区二区| 精品日产1卡2卡| 国产欧美日韩一区二区三| 国产探花在线观看一区二区| 最近视频中文字幕2019在线8| 欧美区成人在线视频| 久久精品国产99精品国产亚洲性色| 美女黄网站色视频| 一个人看视频在线观看www免费 | 大型黄色视频在线免费观看| av黄色大香蕉| 免费大片18禁| 成人av一区二区三区在线看| 国产视频内射| 搡女人真爽免费视频火全软件 | 黄色片一级片一级黄色片| 人人妻人人澡欧美一区二区| 欧美日韩亚洲国产一区二区在线观看| 国产主播在线观看一区二区| 最近最新中文字幕大全电影3| 哪里可以看免费的av片| 中文字幕av在线有码专区| 欧美成人性av电影在线观看| 在线观看免费视频日本深夜| 在线观看免费午夜福利视频| 色在线成人网|