• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Small-angle neutron scattering study on the stability of oxide nanoparticles in long-term thermally aged 9Cr-oxide dispersion strengthened steel

    2022-05-16 07:10:44PengLinGao高朋林JianGong龔建QiangTian田強(qiáng)GungAiSun孫光愛HaiYangYan閆海洋LiangChen陳良LiangFeiBai白亮飛ZhiMengGuo郭志猛andXinJu巨新
    Chinese Physics B 2022年5期
    關(guān)鍵詞:海洋

    Peng-Lin Gao(高朋林) Jian Gong(龔建) Qiang Tian(田強(qiáng)) Gung-Ai Sun(孫光愛) Hai-Yang Yan(閆海洋)Liang Chen(陳良) Liang-Fei Bai(白亮飛) Zhi-Meng Guo(郭志猛) and Xin Ju(巨新)

    1Department of Physics,University of Science and Technology Beijing,Beijing 100083,China

    2Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry,China Academy of Engineering Physics,Mianyang 621900,China

    3Institute of Power Metallurgy,University of Science and Technology Beijing,Beijing 100083,China

    Keywords: oxide dispersion strengthened(ODS)steel,small angle neutron scattering(SANS),thermal aging,nanoparticle

    1. Introduction

    Oxide dispersion strengthened (ODS) steels are considered to be one of the most promising candidate structural materials for generation IV fission and fusion reactors.[1–7]Their attractiveness as nuclear structural materials lies in their excellent irradiation tolerance and creep strength at high temperature.[3–6]In comparison with conventional steels,ODS steels contain a high density of oxide nanoparticles.[7,8]These oxide nanoparticles block dislocation motion and grain boundary migration,and thus effectively increase the ultimate tensile strength and almost double the yield strength compared with conventional steels above 773 K.Therefore,the thermal stability of oxide nanoparticles in ODS steels is an important factor that directs their application.

    Oksiutaet al.[9]and Zhonget al.[10]observed that the Y–Ti–O-enriched nanoparticles in 14Cr-ODS steel exhibited high stability at several annealing temperatures below 1573 K for 1 h and decreased micro-hardness above 1573 K for 1 h due to significant coarsening of the nanoparticles. Ribiset al.[11]suggested that the high stability of nanoparticles might be the result of a low interfacial energy. It was reported[12–14]that the Cr-richα′phase forms in 20Cr-ODS steel and the micro-hardness is significantly increased during thermal aging at 758 K for 1000 h. Although many studies have reported on the effects of thermal aging on dispersed nanoparticles in high-Cr ODS steels,the stability of nanoparticles in 9Cr-ODS steel during long-term thermal aging has not been extensively studied.

    The small-angle neutron scattering (SANS) technique is a powerful tool for probing nano-sized precipitation in ferromagnetic steels.[15–18]Because neutrons carry no charge they can penetrate deeply into bulk materials and detect buried structures. Further, neutrons have a small magnetic moment and are sensitive to magnetic structures. ODS steels can be considered as non-magnetic nanoparticles dispersed in a ferromagnetic matrix. SANS is the most convenient tool for studying this dispersion. When a saturating magnetic field is applied to the sample, statistically quantitative information about the size, shape, volume fraction and number density of the precipitate can be obtained.[19]Furthermore,additional information on the composition of the precipitates can be obtained from the ratio of magnetic scattering to nuclear scattering intensities.[14]

    As reported in several papers,[20–22]the typical operating temperatures for ODS steels range from 823 K to 973 K.Throughout this work, the thermal aging temperature was set at 873 K.The stability of oxide nanoparticles in 9Cr-ODS steel during long-term thermal aging treatments up to 5000 h was studied by SANS, transmission electron microscopy (TEM)and Vickers micro-hardness measurements.

    2. Experimental procedure

    The 9Cr-ODS steel was prepared by mechanical alloying of a mixture of the corresponding metallic powders with Y2O3.Then the resulting mixture was consolidated by hot isostatic pressing(HIP)at 130 MPa for 4 h at 1443 K.The steel was normalized at 1323 K for 1 h followed by air-cooling,and was subsequently tempered at 1053 K for 1 h followed by aircooling. The chemical composition of the steel used in this study is given in Table 1. Isothermal aging at 873 K was performed on the 9Cr-ODS steel for durations of 100 h, 500 h,1000 h,3000 h,and 5000 h under ambient pressure.

    Table 1. Chemical composition of 9Cr-ODS steel(wt.%).

    SANS measurements of the samples were carried out at the China Mianyang Research Reactor on the Suanni smallangle neutron spectrometer. The measurements were performed using neutron wavelength(λ)of 0.53 nm and the distances between the sample and the detector were 1.9 m and 5.9 m,respectively.A scattering vector(q)range of 0.08 nm-1to 2 nm-1was covered.During measurements,saturated magnetic fields (H=1.5 T) perpendicular to the direction of the incident neutron beam were applied to the samples. The azimuthal dependence of scattering intensities is expressed as[23]

    whereInucandImagare the nuclear and magnetic scattering intensity, respectively, andαis the angle between the magnetic field direction and scattering vectorq. TheI–qcurves were radially averaged by taking 20°sectors in the horizontal(α=0)and vertical(α=90)directions of the detector plane.According to Eq.(1),the magnetic scattering intensities were calculated byImag=I(α=π/2)-I(α=0). The measured data were corrected for sample transmission,background and detector efficiency. The absolute intensity was calibrated using a 1 mm thick water sample. Data reduction was processed using the program BerSANS.[24]

    The TEM experiments were performed with a FEI Tecnai G20 FEG microscope at an accelerating voltage of 200 kV.Thin foils for TEM observation were mechanically polished to a thickness of about 100 μm and then electropolished by the twin-jet technique using an electrolyte consisting of 95 vol.%ethanol and 5 vol.%perchloric acid at 233 K.Electron backscattered diffraction(EBSD)analysis was performed in a field emission scanning electron microscope with a step size of 0.12 μm. The micro-hardness of these specimens was measured with a Vickers diamond pyramid under a load of 9.8 N for 10 s. Each micro-hardness value was determined through averaging 10 independent measurements of the same sample.

    3. Results and discussion

    3.1. Model

    The ODS steel under study can be considered as a dispersion of non-magnetic spherical oxide particles in a ferromagnetic matrix. The magnetic scattering intensity from a system of polydisperse particles can be described as[25,26]

    whereRmis the median radius,σis the width of the size distribution andNis the number density. The mean radius of nanoparticles is evaluated asRmexp(σ2/2). The distribution of the volume fraction of the nanoparticles isDv(R)=N(R)Vp(R).

    The SANS magnetic scattering curves of the aged 9Cr-ODS samples are shown in Fig. 1(a). No obvious changes can be observed forqranging from 0.3 nm-1to 2 nm-1,which corresponds to the scattering from the oxide nanoparticles. Asqapproaches 0, the form factorF(qR) is close to 1, and thusI(q) should become constant, which can be derived from Eqs. (2)–(5). However, as shown in Fig. 1(a),the measured magnetic scattering intensities increased at lowqvalues, due to the scattering from large inhomogeneities at length scales larger than 30 nm(as estimated byπ/q)such as carbides and magnetic domain boundaries. The low-qregion(q <0.2 nm-1) could be fitted by a power law[27]which decays very fast toward highq. Therefore, the SANS magnetic scattering data in the measured fullqrange were modelled by

    Fig. 1. (a) SANS magnetic scattering intensities for 9Cr-ODS steel for unaged sample and five different aging durations. (b) Measured (circles) and fitted(line)SANS spectra of the unaged sample.

    whereCis a constant that relates to the background. An example of a fitted profile is shown in Fig. 1(b). All the fitted curves matched well with the measured data.TEM images were analyzed using the program Nano Measurer to obtain the nanoparticle size distribution; more than 1000 particles in each specimen were statistically analyzed.Figure 4 shows the size distributions obtained by TEM and SANS techniques for the unaged and aged samples. The results are in good agreement with each other within the uncertainty of the measurements for each sample. Since the scattering intensity is proportional to the sixth power of particle size,the SANS data were weighted by the larger particles. Accordingly,the average particle size obtained from SANS is slightly larger than that derived from the TEM results.

    3.2. Effects of thermal aging on oxide nanoparticles

    The size distribution of oxide nanoparticles in 9Cr-ODS steel under various aging conditions is described pictorially in Fig.2. The calculated magnetic contrast of 9Cr-ODS steel was 4.5×1010cm-2. The characteristics of the mean size of nanoparticles and the volume fractions are listed in Table 2.The mean radius of the precipitates of the unaged sample was 2.54±0.05 nm,with a volume fraction of 0.57±0.03 vol.%.For the sample aged for 5000 h, the mean radius and volume fraction of the nanoparticles were 2.52±0.05 nm and 0.53±0.03 vol.%, respectively. Within the uncertainties of the measurements, the fitted size distributions of all the aged samples remained unchanged.

    Table 2. Characteristics of nanoparticles deduced from SANS.

    TEM analyses were performed to cross-check the SANS results for the samples.TEM micrographs of the aged samples are shown in Fig.3. They indicate that the oxide nanoparticles were homogenously distributed in the matrix. In this study,

    Fig.2. Nanoparticle size distributions in thermally aged 9Cr-ODS steel.

    Fig. 3. TEM micrographs of 9Cr-ODS steel (a) unaged; and (b) 100 h, (c)500 h,(d)1000 h,(e)3000 h,(f)5000 h thermally aged samples.

    TheAratio is defined as the ratio of normalized scattering intensities perpendicular and parallel to the magnetic field direction[28]

    Fig.4. Size distributions obtained by TEM and SANS for(a)unaged and(b)100 h,(c)500 h,(d)1000 h,(e)3000 h,and(f)5000 h aged samples.

    Based on the SANS study by Mathonet al.,[19]the nanoparticle composition for 9Cr-ODS was assumed to be Y2Ti2O7and the theoretical value of nuclear contrast is 3.66×1010cm-2. TheAratio for Y2Ti2O7calculated from Eq. (7)was estimated to be 2.5, in good agreement with the ratios obtained from our measurements. As shown in Table 2, theAratio varies around 2.5 and keeps stable within the errors.Therefore, the chemical composition of the particles was not affected by the thermal treatments.

    The micro-hardness of the aged samples as a function of the thermal aging time is shown in Fig.5. The micro-hardness of the unaged sample was 365 Hv. The micro-hardness of the aged samples was found to be similar to that of the unaged samples. This relates to the high thermal stability of the extremely fine oxide nanoparticles, as evidenced by the SANS magnetic scattering and TEM results. Representative inverse pole figure(IPF)maps and the grain size distribution obtained by analyzing EBSD results of specimens aged for different times are shown in Fig.6. The IPF maps of 9Cr-ODS steel before aging(Fig.6(a))and after aging up to 5000 h(Fig.6(b))revealed almost no change in grain structure. The average grain size before and after the aging process at 973 K for 5000 h were about 0.9 μm and 1.0 μm,respectively.The grain sizes exhibited only a slight change. This could be related to an even distribution of oxide nanoparticles,which acted to inhibit the migration of grain boundaries and dislocations during thermal aging.

    In this study,the Y–Ti–O nanoparticles dispersed in 9Cr-ODS steels exhibited good stability at 873 K.In contrast to our recent work on as-milled mechanical alloyed 9Cr-ODS powders, the precipitation of nanoparticles with a radius of about 1 nm was observed by in situ SANS measurements at 873 K.In that study,prolonged annealing time or increasing temperature led to coarsening of the nanoparticles.[29]That is, the oxide nanoparticles could precipitate in the milled ODS powder at~873 K.However, in 9Cr-ODS steel prepared by HIP at 1443 K,the nanoparticles remained stable at lower temperatures. Oonoet al.[30]also found that the nanoparticles in 9Cr-ODS steel began to coarsen at about 1473 K during heating for 200 h, and had excellent thermal stability below 1473 K,in agreement with this work. It can be remarked here that the operating temperatures ranged from 823 K to 973 K,hence the prepared 9Cr-ODS is a potential candidate structural material for generation IV fission and fusion reactors.

    Fig.5. Evolution of the Vickers micro-hardness measured on samples after different thermal aging treatments.

    Fig.6.Inverse pole figure maps and grain size distribution obtained by EBSD analyses for(a),(b)unaged and(c),(d)5000 h aged samples.

    The high stability of 9Cr-ODS steel is attributed to two factors. First, there is a coherent relationship between the Y–Ti–O oxide nanoparticles and the matrix, resulting in a low interfacial energy and high stability of the oxide nanoparticles.[11,31,32]Secondly, the structural stability is dependent on the Cr content in the steel. Ferritic and duplex stainless steels with a Cr content above~12 wt.%are known to harden and embrittle after thermal aging at temperatures between 673 K and 823 K due to the formation of a Cr-richα′phase.[14,22]In this study, the 9Cr-ODS steel with a low Cr content of 8.88 wt.%showed good structural and performance stability.

    In summary,the Y–Ti–O oxide nanoparticles in 9Cr-ODS steel exhibited good thermal stability after aging for 5000 h at 873 K.These nanoparticles played a key role in preventing grain growth and dislocation motion, and therefore conferred good thermal stability on the prepared 9Cr-ODS steel. The structural evolution of the Y–Ti–O nanoparticles in ODS steel at higher temperatures and longer aging times is a desirable goal for future study.

    4. Conclusion

    The stability of the oxide nanoparticles in 9Cr-ODS steel during thermal aging at 873 K for up to 5000 h was investigated by SANS and TEM analysis. The SANS technique showed that the size distributions of oxide nanoparticles did not change obviously after long-term thermal aging. The mean radius and volume fraction of the oxide nanoparticles in the thermally aged sample were estimated to be 2.50 nm and 0.55 vol.%,respectively. These values are in good agreement with the results obtained from TEM observations. Furthermore,no significant changes to micro-hardness and grain size were found after aging, which can be attributed to the good thermal stability of the oxide nanoparticles.

    Acknowledgment

    Project supported by the National Key Research and Development Program of China(Grant No.2017YFB0702400).

    猜你喜歡
    海洋
    海洋之歌
    跨越海洋的30年握手
    金橋(2022年8期)2022-08-24 01:33:30
    出發(fā),去看看未來的海洋
    海洋收納包
    歡樂海洋
    心聲歌刊(2019年3期)2019-06-06 02:52:32
    海洋的路
    遠(yuǎn)行回海洋
    愛的海洋
    琴童(2017年7期)2017-07-31 18:33:48
    第一章 向海洋出發(fā)
    《海洋之歌》
    精品久久久久久电影网 | 99在线视频只有这里精品首页| 亚洲欧美一区二区三区国产| 国产乱人偷精品视频| 久久久久久久久久成人| 亚洲精品自拍成人| 一边亲一边摸免费视频| 亚洲欧美日韩高清专用| 久久草成人影院| 亚洲人成网站在线观看播放| 男女啪啪激烈高潮av片| АⅤ资源中文在线天堂| 老司机影院成人| 欧美成人午夜免费资源| 成人高潮视频无遮挡免费网站| 亚洲精品自拍成人| 嫩草影院精品99| 日本一二三区视频观看| 欧美性感艳星| 爱豆传媒免费全集在线观看| 亚洲精品一区蜜桃| 69av精品久久久久久| 国产精品日韩av在线免费观看| 激情 狠狠 欧美| 综合色丁香网| 亚洲精品国产成人久久av| 亚洲成人中文字幕在线播放| 久久久久久九九精品二区国产| 看十八女毛片水多多多| 小蜜桃在线观看免费完整版高清| 欧美精品国产亚洲| 在线观看av片永久免费下载| 亚洲精品亚洲一区二区| 国产精品国产三级专区第一集| 精华霜和精华液先用哪个| 久久精品夜夜夜夜夜久久蜜豆| 国产视频首页在线观看| 国产精品一二三区在线看| 夜夜爽夜夜爽视频| av.在线天堂| 婷婷色综合大香蕉| 两个人视频免费观看高清| 韩国高清视频一区二区三区| 一个人看视频在线观看www免费| 久久久午夜欧美精品| 亚洲国产欧洲综合997久久,| 亚洲精品国产av成人精品| 别揉我奶头 嗯啊视频| 看免费成人av毛片| 少妇被粗大猛烈的视频| 一二三四中文在线观看免费高清| 超碰97精品在线观看| 午夜视频国产福利| 亚洲真实伦在线观看| 色综合站精品国产| 精品人妻熟女av久视频| 成人综合一区亚洲| 人妻夜夜爽99麻豆av| 亚洲一级一片aⅴ在线观看| 日日干狠狠操夜夜爽| 建设人人有责人人尽责人人享有的 | 国产淫片久久久久久久久| av在线老鸭窝| 国产老妇女一区| 久久亚洲精品不卡| 日本一二三区视频观看| 免费一级毛片在线播放高清视频| 亚洲真实伦在线观看| 我要看日韩黄色一级片| 国产精品久久久久久久久免| 一个人看视频在线观看www免费| 2021天堂中文幕一二区在线观| 中文字幕熟女人妻在线| 特大巨黑吊av在线直播| 欧美日韩综合久久久久久| 久久久成人免费电影| 精品久久久久久久末码| 亚洲美女搞黄在线观看| 精品国产露脸久久av麻豆 | 天堂√8在线中文| 美女cb高潮喷水在线观看| av黄色大香蕉| 麻豆久久精品国产亚洲av| 爱豆传媒免费全集在线观看| 99久国产av精品国产电影| 男女那种视频在线观看| 身体一侧抽搐| 国产成人福利小说| a级毛色黄片| 亚洲国产日韩欧美精品在线观看| 国产三级在线视频| 久久韩国三级中文字幕| 成人综合一区亚洲| 亚洲精品,欧美精品| 综合色av麻豆| 三级毛片av免费| 国产亚洲精品av在线| 久久99精品国语久久久| 亚洲av一区综合| 久久久国产成人精品二区| 久久久久久久久久成人| 搡女人真爽免费视频火全软件| 国产精品久久久久久av不卡| 久久久精品大字幕| 婷婷色麻豆天堂久久 | 女人久久www免费人成看片 | 欧美人与善性xxx| 亚洲国产精品sss在线观看| 久久99热这里只频精品6学生 | 欧美又色又爽又黄视频| 久久精品久久精品一区二区三区| 久久精品国产99精品国产亚洲性色| 欧美激情国产日韩精品一区| 精品国产三级普通话版| 亚洲综合精品二区| 成人一区二区视频在线观看| 亚洲aⅴ乱码一区二区在线播放| 国产69精品久久久久777片| 91狼人影院| 久久99蜜桃精品久久| 免费看美女性在线毛片视频| 免费看日本二区| 精品少妇黑人巨大在线播放 | 久久人妻av系列| 国产白丝娇喘喷水9色精品| 色噜噜av男人的天堂激情| 成人午夜高清在线视频| 最近最新中文字幕大全电影3| 国产一级毛片七仙女欲春2| av又黄又爽大尺度在线免费看 | 国产精品1区2区在线观看.| 精品久久久久久电影网 | 91午夜精品亚洲一区二区三区| 亚洲欧洲日产国产| 非洲黑人性xxxx精品又粗又长| 免费av观看视频| 午夜福利在线在线| 99国产精品一区二区蜜桃av| 中文字幕久久专区| 内射极品少妇av片p| 你懂的网址亚洲精品在线观看 | 欧美精品一区二区大全| www.色视频.com| 男女国产视频网站| 国产亚洲精品久久久com| 色尼玛亚洲综合影院| 不卡视频在线观看欧美| 国语自产精品视频在线第100页| 亚洲精品久久久久久婷婷小说 | 好男人视频免费观看在线| 91精品国产九色| 欧美日韩国产亚洲二区| 日本五十路高清| 少妇的逼好多水| 一个人观看的视频www高清免费观看| 嘟嘟电影网在线观看| 国产午夜精品一二区理论片| 在线天堂最新版资源| 久久99精品国语久久久| 成人三级黄色视频| 久久99热这里只有精品18| 国产一区二区亚洲精品在线观看| 国产精品久久视频播放| 免费在线观看成人毛片| 久久人妻av系列| 国产毛片a区久久久久| 2022亚洲国产成人精品| 亚洲av免费在线观看| 99国产精品一区二区蜜桃av| 最近2019中文字幕mv第一页| 观看免费一级毛片| 国产毛片a区久久久久| 亚洲成人中文字幕在线播放| 午夜亚洲福利在线播放| 国产精品美女特级片免费视频播放器| 国内精品一区二区在线观看| 天堂√8在线中文| 色视频www国产| 99久久九九国产精品国产免费| 97超视频在线观看视频| 亚洲一区高清亚洲精品| 国产精品久久久久久久电影| 免费看美女性在线毛片视频| 亚洲在线观看片| 免费看a级黄色片| 一个人观看的视频www高清免费观看| 亚洲av成人精品一区久久| 又粗又爽又猛毛片免费看| 一个人免费在线观看电影| 欧美高清性xxxxhd video| 寂寞人妻少妇视频99o| 97在线视频观看| 久久久国产成人精品二区| 人人妻人人澡人人爽人人夜夜 | 99在线人妻在线中文字幕| 一级黄片播放器| 欧美激情久久久久久爽电影| av免费在线看不卡| 亚洲成人久久爱视频| 国产伦一二天堂av在线观看| 精品国产三级普通话版| 中文字幕精品亚洲无线码一区| 国产成人freesex在线| 美女国产视频在线观看| 久久久久网色| 日本熟妇午夜| 精品久久久久久久久av| 色视频www国产| .国产精品久久| 99在线人妻在线中文字幕| 色视频www国产| av福利片在线观看| 精品久久国产蜜桃| 老师上课跳d突然被开到最大视频| 久久久久久九九精品二区国产| 日本免费a在线| 色尼玛亚洲综合影院| 边亲边吃奶的免费视频| 免费观看性生交大片5| 国产在线一区二区三区精 | 精品久久久久久久末码| 亚洲,欧美,日韩| 久久99热这里只有精品18| 国产人妻一区二区三区在| 91狼人影院| 日日撸夜夜添| 女的被弄到高潮叫床怎么办| 中文字幕av成人在线电影| 偷拍熟女少妇极品色| 直男gayav资源| 日韩一本色道免费dvd| 两个人视频免费观看高清| 亚洲在线自拍视频| 国产精品av视频在线免费观看| 日韩亚洲欧美综合| 伊人久久精品亚洲午夜| 爱豆传媒免费全集在线观看| 亚洲av电影不卡..在线观看| 又粗又爽又猛毛片免费看| 国产免费视频播放在线视频 | 中文天堂在线官网| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日本三级黄在线观看| www.av在线官网国产| 91aial.com中文字幕在线观看| 中国国产av一级| av视频在线观看入口| 大香蕉97超碰在线| 老女人水多毛片| 亚洲中文字幕日韩| 免费av毛片视频| 美女内射精品一级片tv| 亚洲久久久久久中文字幕| 99久久九九国产精品国产免费| av免费观看日本| 日韩成人av中文字幕在线观看| 日本黄色片子视频| 国产成人一区二区在线| 日日啪夜夜撸| 久久久久久久午夜电影| 在线免费十八禁| 亚洲av中文字字幕乱码综合| 国产私拍福利视频在线观看| 亚洲欧美精品综合久久99| 日本黄大片高清| 国产精品精品国产色婷婷| 国产综合懂色| 看非洲黑人一级黄片| 精品一区二区三区视频在线| 夜夜看夜夜爽夜夜摸| 超碰av人人做人人爽久久| 中文字幕人妻熟人妻熟丝袜美| 午夜福利在线在线| 国内精品宾馆在线| 国产毛片a区久久久久| 国产亚洲午夜精品一区二区久久 | 精品欧美国产一区二区三| 久久久久国产网址| 亚洲精品国产成人久久av| 在线播放国产精品三级| 精品人妻视频免费看| 国产黄色小视频在线观看| 少妇裸体淫交视频免费看高清| 国产在视频线精品| 男女国产视频网站| 日韩欧美精品免费久久| 久久人妻av系列| 夜夜看夜夜爽夜夜摸| 亚洲欧美日韩东京热| 日韩,欧美,国产一区二区三区 | 亚洲激情五月婷婷啪啪| 亚州av有码| 久久99热6这里只有精品| 亚洲国产高清在线一区二区三| 国产黄a三级三级三级人| 国产单亲对白刺激| 午夜福利在线在线| 国产人妻一区二区三区在| 亚洲经典国产精华液单| 欧美精品国产亚洲| 精品99又大又爽又粗少妇毛片| 国产精品久久久久久久电影| 搡老妇女老女人老熟妇| 中文资源天堂在线| 欧美精品国产亚洲| 欧美一级a爱片免费观看看| 人人妻人人澡欧美一区二区| 国产亚洲精品久久久com| 一个人看视频在线观看www免费| 欧美一区二区国产精品久久精品| 乱码一卡2卡4卡精品| 中文欧美无线码| 国产精品久久久久久精品电影小说 | 国产在线男女| 亚洲精品色激情综合| 亚洲欧美精品综合久久99| 大话2 男鬼变身卡| 一本一本综合久久| 寂寞人妻少妇视频99o| 99久久无色码亚洲精品果冻| 国产精品国产高清国产av| 欧美性猛交黑人性爽| 国产 一区 欧美 日韩| av国产免费在线观看| 国产成人aa在线观看| 99视频精品全部免费 在线| 国产黄色小视频在线观看| 国产伦精品一区二区三区四那| 亚洲综合色惰| 内地一区二区视频在线| 亚洲精品成人久久久久久| 三级毛片av免费| 免费观看在线日韩| 69av精品久久久久久| 免费av观看视频| av又黄又爽大尺度在线免费看 | 欧美日本亚洲视频在线播放| 一级黄片播放器| 亚洲av日韩在线播放| 好男人视频免费观看在线| 看免费成人av毛片| 亚洲欧美日韩卡通动漫| 九草在线视频观看| 久久6这里有精品| 欧美+日韩+精品| 狂野欧美激情性xxxx在线观看| 亚洲在线观看片| 高清日韩中文字幕在线| 乱码一卡2卡4卡精品| 国产成人91sexporn| 亚洲欧美精品综合久久99| 久久国产乱子免费精品| 99久国产av精品| 亚洲乱码一区二区免费版| 99热6这里只有精品| 成人毛片a级毛片在线播放| 日本欧美国产在线视频| av.在线天堂| 能在线免费看毛片的网站| 寂寞人妻少妇视频99o| videossex国产| 国产毛片a区久久久久| 一级二级三级毛片免费看| 小蜜桃在线观看免费完整版高清| 成人特级av手机在线观看| 久久精品熟女亚洲av麻豆精品 | 免费大片18禁| 久久亚洲国产成人精品v| 久久久久久大精品| 亚洲欧美成人精品一区二区| 深爱激情五月婷婷| 搞女人的毛片| 成人午夜高清在线视频| 欧美+日韩+精品| 观看美女的网站| 91狼人影院| 国产精品精品国产色婷婷| 久久久欧美国产精品| 色综合站精品国产| 91精品一卡2卡3卡4卡| 淫秽高清视频在线观看| 亚洲无线观看免费| 日韩成人av中文字幕在线观看| 日韩国内少妇激情av| 综合色丁香网| 国产精品国产高清国产av| 一个人观看的视频www高清免费观看| 亚洲国产精品合色在线| av视频在线观看入口| 小蜜桃在线观看免费完整版高清| 一边亲一边摸免费视频| 欧美成人午夜免费资源| 亚洲av中文字字幕乱码综合| 搡女人真爽免费视频火全软件| a级毛色黄片| 亚洲精品,欧美精品| 午夜精品在线福利| 亚洲av日韩在线播放| 久久午夜福利片| 在线观看66精品国产| 国产黄色小视频在线观看| 日韩,欧美,国产一区二区三区 | 亚洲国产精品成人综合色| 伊人久久精品亚洲午夜| 99九九线精品视频在线观看视频| 国产免费男女视频| 综合色丁香网| 日日摸夜夜添夜夜添av毛片| 最近中文字幕高清免费大全6| 亚洲欧美日韩东京热| 国产精品女同一区二区软件| 搞女人的毛片| 日韩成人av中文字幕在线观看| 少妇高潮的动态图| 天天躁日日操中文字幕| 岛国毛片在线播放| 男人的好看免费观看在线视频| 亚洲第一区二区三区不卡| 狂野欧美激情性xxxx在线观看| 亚洲,欧美,日韩| 精品免费久久久久久久清纯| 91狼人影院| 亚洲欧美日韩卡通动漫| 久久鲁丝午夜福利片| 99国产精品一区二区蜜桃av| 国产成人freesex在线| 久久人人爽人人爽人人片va| 国产精品人妻久久久久久| 久久人人爽人人爽人人片va| 日韩欧美在线乱码| 男女国产视频网站| 熟妇人妻久久中文字幕3abv| 久久综合国产亚洲精品| 精品酒店卫生间| 午夜亚洲福利在线播放| 欧美日本视频| 久久6这里有精品| 内射极品少妇av片p| 欧美zozozo另类| 内射极品少妇av片p| 国产成人a∨麻豆精品| 久久鲁丝午夜福利片| 青青草视频在线视频观看| 看免费成人av毛片| 一二三四中文在线观看免费高清| 色网站视频免费| 国产麻豆成人av免费视频| 国产白丝娇喘喷水9色精品| 最近中文字幕高清免费大全6| 色综合色国产| 色播亚洲综合网| 九九在线视频观看精品| 午夜老司机福利剧场| 国产女主播在线喷水免费视频网站 | 久久久久久久久久久免费av| 美女cb高潮喷水在线观看| 国产黄片美女视频| 日日干狠狠操夜夜爽| 精品国内亚洲2022精品成人| 国产精品无大码| 别揉我奶头 嗯啊视频| 久久国产乱子免费精品| 亚洲av电影不卡..在线观看| 99久久中文字幕三级久久日本| 老师上课跳d突然被开到最大视频| 国产精品一及| 乱码一卡2卡4卡精品| 亚州av有码| 18+在线观看网站| 丰满乱子伦码专区| 麻豆一二三区av精品| 日本猛色少妇xxxxx猛交久久| videos熟女内射| 亚洲av免费在线观看| 免费一级毛片在线播放高清视频| 亚洲国产欧美人成| 国产精品国产高清国产av| 97热精品久久久久久| 小说图片视频综合网站| 亚洲国产精品成人久久小说| 久久久亚洲精品成人影院| 啦啦啦啦在线视频资源| 亚洲综合色惰| 亚洲av不卡在线观看| 高清日韩中文字幕在线| 国产又色又爽无遮挡免| 丰满乱子伦码专区| h日本视频在线播放| 亚洲av免费高清在线观看| 国产精品久久久久久久电影| 国产乱来视频区| 最新中文字幕久久久久| 欧美另类亚洲清纯唯美| 99在线人妻在线中文字幕| 色5月婷婷丁香| 偷拍熟女少妇极品色| 国语自产精品视频在线第100页| 午夜精品在线福利| 久久热精品热| 内地一区二区视频在线| 精品久久久久久久久av| 精品久久久久久久人妻蜜臀av| 国产黄片视频在线免费观看| 最近中文字幕2019免费版| 最后的刺客免费高清国语| 国内少妇人妻偷人精品xxx网站| 男人和女人高潮做爰伦理| 国产极品天堂在线| 亚洲精品乱码久久久v下载方式| 亚洲怡红院男人天堂| 国产伦精品一区二区三区四那| av视频在线观看入口| 久久久久国产网址| 久久久色成人| 国产真实伦视频高清在线观看| 91精品国产九色| 美女黄网站色视频| a级一级毛片免费在线观看| 亚洲最大成人av| 免费无遮挡裸体视频| 99在线视频只有这里精品首页| 只有这里有精品99| 国产av一区在线观看免费| 国产高清视频在线观看网站| 午夜视频国产福利| 99久久无色码亚洲精品果冻| 午夜福利网站1000一区二区三区| 国产视频内射| 免费不卡的大黄色大毛片视频在线观看 | 国产亚洲av片在线观看秒播厂 | 看非洲黑人一级黄片| 久久人妻av系列| 一级毛片久久久久久久久女| 热99在线观看视频| 免费人成在线观看视频色| 91在线精品国自产拍蜜月| 免费观看在线日韩| 麻豆精品久久久久久蜜桃| 97人妻精品一区二区三区麻豆| 一级爰片在线观看| 一级毛片久久久久久久久女| 国语自产精品视频在线第100页| 51国产日韩欧美| 成人国产麻豆网| 国产精品永久免费网站| 久久精品综合一区二区三区| 不卡视频在线观看欧美| 岛国在线免费视频观看| 永久网站在线| 特大巨黑吊av在线直播| www.色视频.com| 久久久欧美国产精品| 性色avwww在线观看| 日韩欧美 国产精品| 中文字幕制服av| 色综合站精品国产| 久久鲁丝午夜福利片| 午夜爱爱视频在线播放| 国产精品福利在线免费观看| 女的被弄到高潮叫床怎么办| 99在线人妻在线中文字幕| 欧美日韩国产亚洲二区| av在线播放精品| 日本免费一区二区三区高清不卡| 国产精品久久电影中文字幕| 日韩大片免费观看网站 | 九九在线视频观看精品| 午夜激情欧美在线| 亚洲综合色惰| 欧美成人免费av一区二区三区| 国产av不卡久久| 欧美激情久久久久久爽电影| 一区二区三区乱码不卡18| 久久99精品国语久久久| 久久人妻av系列| 91久久精品国产一区二区三区| 国产精品乱码一区二三区的特点| 一夜夜www| 精品酒店卫生间| 99在线视频只有这里精品首页| 亚洲乱码一区二区免费版| 免费黄网站久久成人精品| 亚洲精品国产成人久久av| 亚洲中文字幕日韩| av女优亚洲男人天堂| 婷婷色综合大香蕉| 美女被艹到高潮喷水动态| or卡值多少钱| 欧美日韩一区二区视频在线观看视频在线 | 亚洲av日韩在线播放| 免费在线观看成人毛片| 丰满人妻一区二区三区视频av| 久久久久久久久久成人| 一级毛片我不卡| 国产真实伦视频高清在线观看| 成人一区二区视频在线观看| 99国产精品一区二区蜜桃av| 国产女主播在线喷水免费视频网站 | 午夜爱爱视频在线播放| 久久婷婷人人爽人人干人人爱| 老女人水多毛片| 最近中文字幕高清免费大全6| 男女啪啪激烈高潮av片| 又爽又黄a免费视频| 丰满乱子伦码专区| 成年女人看的毛片在线观看| 亚洲欧美精品综合久久99| 亚洲精品色激情综合| 日韩国内少妇激情av| 精品欧美国产一区二区三| 久久99精品国语久久久| 欧美3d第一页| 成人三级黄色视频| 老师上课跳d突然被开到最大视频| 校园人妻丝袜中文字幕|