• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Water contact angles on charged surfaces in aerosols

    2022-05-16 07:11:12YuTianShen申鈺田TingLin林挺ZhenZeYang楊鎮(zhèn)澤YongFengHuang黃永峰JiYuXu徐紀(jì)玉andShengMeng孟勝
    Chinese Physics B 2022年5期

    Yu-Tian Shen(申鈺田) Ting Lin(林挺) Zhen-Ze Yang(楊鎮(zhèn)澤) Yong-Feng Huang(黃永峰)Ji-Yu Xu(徐紀(jì)玉) and Sheng Meng(孟勝)

    1Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    2University of Chinese Academy of Sciences,Beijing 100049,China

    Keywords: water contact angle,charged surface,aerosols

    1. Introduction

    Interactions between water or aqueous solutions and solid substrates are fundamental to understand various physics,chemistry, and biological processes. Macroscopically, the interaction can be represented by wettability of solids or contact angle of droplet. Factors influence wettability of solids include chemical properties,nanostructures,cleanness,and electric controls, providing various prospects to understand and modify the interaction. Microscopically,hydrogen bonds and structures of highly polar water molecules on solids have been intensively studied. Understanding how the microscopic interactions would affect the macroscopic wettability is crucial in manipulation of liquid—solid interactions.

    Owing to the advantages of easy operation and electrical reversibility, electric modification of the interaction between water and solid has been widely studied. Water freezes differently on positively or negatively charged surfaces of pyroelectric materials.[1]Electric field can control evaporation of aqueous droplets and suppress the coffee stain effect.[2]A small amount of charges can efficiently impact surface frictions between solids and water droplets.[3]The voltage applied can control the shapes of electrolyte solution droplets on solids in various ways as named electrowetting.[4—6]There are many studies on how surface charge or polarity affects aqueous wettability based on molecular dynamic simulations.[7—11]However,how the net surface charge affects the contact angle of water droplet has not yet been experimentally studied, let along considering the participation of inevitable aerosol environments since the net-charged surface cannot be stable.

    Here we obtain the net-charged surfaces using pyroelectric LiTaO3crystals and observe that the net surface charge up to 0.1 C/m2can nominally affect contact angles of pure water droplets compared to the neutral surface. However,if exposed in aerosols,even a small amount of organic contaminants can efficiently increase the contact angles of water droplets. Our experimental results contribute a fundamental understanding on the interaction between the charged surface and water,and is helpful for developing new ways of electric control of wettability and microfluidics in real aerosol environments.

    2. Methods

    Water contact angles are measured using dataphysics OCA20 and analyzed using software SCA20 U. We deposit water droplets on toz-cut LiTaO3crystals supported by an insulating holder in controlled aerosols and then take videos(Fig. 1(a)). The interval between adjacent frames is 34 ms.The deposition starts at the moment when the crystal is put onto the holder, and finishes within a minute to get surface charges according to the temperature difference. The value of contact angle is obtained from the first frame when the spherical cap droplet appears on the crystal to avoid the effect of evaporation on the shape of the water droplets. Water used is ultrapure water and the volume of every droplet is 0.5 ml.Thez-cut LiTaO3crystals are purchased from Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences. Since the wettability of surface is sensitive to its roughness,[12]we use +zsurfaces of half of crystals to generate negative charges and-zsurfaces of the other half for positive charges to avoid the abrasion which happens between the bottom surfaces of the crystals and the holder.

    Fig. 1. Schematic for measuring contact angle and surface charge density on the variable temperature holder(yellow). (a)Measuring contact angle by taking sideview video, where water droplets (gray) are deposited on z-cut LiTaO3 crystals (deep blue) in controlled aerosols (light blue). (b) Measuring surface charge density using an oscilloscope, where the crystals are placed on earthing aluminum foil(gray).

    The value of the surface charge density is determined by the pyroelectric coefficient and temperature difference. The evolution of the surface charge density is presented by the detected evolution of the voltage generated at the surface in the controlled aerosols. Crystals are put on the holder covered by earthing aluminum foil and the discharging processes of the upper surfaces are detected by an oscilloscope(Fig.1(b)).The voltage at the surface can be calculated using the peak of the voltage read in oscilloscope and the resistance of probes. The resistance of the oscilloscope and two probes is 1 MΩ,10 MΩ and 60 MΩ,respectively.

    The surface charge is controlled via abrupt temperature changes. For neutral surfaces at room temperature,the holder keeps room temperature. For neutral cases at other temperatures,the crystals are preheated in a thermostat water base of the same temperature of the holder. Wet crystals are put onto the holder and the evaporating water can bring away possible surface charges. For cases with surface charges, the charge density is controlled by transferring crystal at room temperature onto the heated holder. The crystal is dried by high purity nitrogen before transfer and every water droplet is deposited on a new place. The transferring process of each crystal is less than 40 seconds. The temperature of the holder is set from 30°C to 70°C,during which the density of surface charge is proportional to the temperature change since the pyroelectric coefficient of the LiTaO3crystal is constant.[13]

    The crystals are rinsed by deionized water followed by two cycles of ultrasonic cleaning immersed in acetoneisopropyl alcohol—ethanol—ultra pure water. The span in each liquid is 5 min. We use UVO (ultra-violet ozone) treatment to clean crystals on which cos(θ) of water droplets is still lower than 0.85 after the ultrasonic cleaning. The adsorbed contaminations on the crystal surface depend on all environmental histories the crystal has ever experienced, which contain complex components and cannot be precisely controlled due to the complexity. The adsorption affects surface tension of the crystal, therefore the value of cos(θ) cannot be precisely controlled.[14—18]We finish collecting all data for the same figure before detecting another one. Meanwhile,the error of cos(θ) is inevitable since the data in every figure contains many groups of data,of which the cleaning histories are not the same. The crystals are of the same cleaning history and exposure history in each group of data to guarantee that the tendency in each graph is comparable.

    The temperature is controlled using the variable temperature holder dataphysics TPC 150. The crystal is put onto the holder of various temperatures. The duration of heat conduction is ignored since the thickness of the crystal is 0.5 mm and its thermal conductivity is about double of copper. The temperature of crystals becomes that of the holder before detections.

    All detections take place in a semi-closed chamber on the holder. There is a silt(width,2.0 mm)at the top of the chamber open to the air,through which the insulating syringe needle and the conducting probe come in. There is also a hole at the top of the chamber,through which high purity nitrogen flows from a pipe into the chamber. Three kinds of pipes are used,straight brass,straight teflon,and bent teflon. The bent teflon pipe is used unless otherwise stated. The straight pipes are 150 cm long and the bent one 190 cm long. The internal diameter of every pipe is 2.5 mm. The air of Beijing contributes to aerosols in the chamber, where the size of particulate matters mainly distributes in the range of 0.2—10 μm.[19,20]The components are complex. A humidity probe in the chamber can monitor the relative humidity. Introducing high purity nitrogen can decrease the relative humidity in the chamber,thus control the aerosol inside. High purity nitrogen keeps flow into the chamber,except during the deposition of water droplet(within a minute)to prevent possible effects of gas flow on the shape of the droplet. The relative humidity is maintained to no more than 3 before measurements. Therefore,the effect of possible fluctuation of the air is limited in the chamber since the outside air is effectively diluted in the chamber.

    The saturated vapor of 1-octadecene in Fig. 4(c) is obtained by placing liquid 1-octadecene in an open Petri dish in a closed chamber at room temperature. After an hour the crystals are put into the closed chamber for 50 min. 1-octadecene is only used in Fig.4(c).

    3. Obtaining charged surfaces using pyroelectric LiTaO3

    To study how surface charges affect water contact angles, we should firstly obtain surfaces that can be artificially charged. We choose pyroelectric LiTaO3crystal, which is an insulator and can be charged onz-cut surfaces when the temperature changes. For pyroelectric crystals,its surface charge is the product of temperature change and pyroelectric coefficient. The pyroelectric coefficient of the LiTaO3crystal used here is 2.3×10-7C/(cm2·K), which is constant below 100°C.[13]Therefore,we can obtain opposite surface charges at opposite sides of thez-cut LiTaO3by controlling its temperature. When the temperature increases, one is negatively charged while the other is positively charged. When the temperature decreases,the surface charges are opposite. Since the duration of heat conduction is reasonably ignored (see methods), we assume that the temperature of the crystal becomes the temperature of the holder before detections.

    We heat crystals from room temperature(RT).The maximum final temperature is 70°C,corresponding to the surface charge density as high as 0.1 C/m2. The electric field strength is up to 0.02 V/°A in the crystal. We change the temperature no more than 50°C to avoid the possibility that the aerosol environment could be broken through since electric fields are not perfectly confined inside the crystal. We detect the surface charge density via voltage (see methods), which is proportional to the temperature change(Fig.2(a)).

    After the temperature changes, the charged surface cannot permanently sustain due to its interaction with environments.[1,21,22]The adsorption from the aerosol gradually neutralize it. The adsorption from the environment is inevitable even after neutralization. The surface charge is temporary when the charge equilibrium of the crystal and the environment is broken down. In the controlled aerosol (see methods),we detect the evolutions of the surface charge densities represented by the voltages for the duration of 60 min,as shown in Figs. 2(b)—2(d) (the voltages at 0 min are those in Fig.2(a)). The surface charge density decreases at a higher rate when the final temperature is higher.

    Fig.2. Voltage generated as an indicator of surface charge density when LiTaO3 crystals are heated from room temperature(RT)to various final temperatures. (a) Initial voltages at various final temperatures. Evolution of voltage in the controlled aerosol when the crystals are heated to(b)30 °C,(c)50 °C or(d)70 °C.

    4. Water contact angle on charged surfaces

    We deposited water droplets onto the charged surfaces in the controlled aerosol and detected the corresponding contact anglesθ(Fig. 3(a)). In comparison, WCA on the same surfaces without net charges is also measured as in Fig. 3(b),where‘no positive’or‘no negative’means the surfaces used to generate positive or negative charges in neutralized situations.The error is inevitably big since each figure contains dozens of times of cleaning with various surface tensions. However, in each group of data the crystals are of the same cleaning history,thus the tendency is comparable (more details see methods).Each measurement is finished within 1 min and the outside air is effectively diluted in the chamber (see the discussions on Fig. 4(a)), thus the effect of possible fluctuation of the air on WCA is very limited.

    On neutralized surfaces, cos(θ) keeps almost the same value at different temperatures with the deviation lower than 0.03. This ensures that the surfaces used to hold positive or negative charges are of the same wettability when neutralized. Therefore, the differences on the charged surfaces result from the surface charges only. On positively charged surfaces,the cos(θ)is slightly higher,namely,the water contact angle is slightly lower. The cos(θ) slightly increases as the positive charge density increases. On negatively charged surfaces, the cos(θ) is almost insensitive to the charge density.The maximum difference of cos(θ) on positively and negatively charged surfaces is about 0.05 at final temperature of 70°C.Overall,the surface charges up to 0.1 C/m2nominally affect the wettability of pure water comparing to the same uncharged surface. The increasing tendency of cos(θ) on charged surfaces agrees with the understanding of surface wetting. Stronger interaction between water droplet and the solid surface induces lower WCA or higher cos(θ). When the surface is charged,the Coulomb attraction enhances the strength of the water—substrate interaction,thus decreases WCA.[8]Microscopically,when the surface is charged,the polarization of water molecules in the bottom layer turns to the direction normal to the surface,contributing more opportunities for hydrogen bonds to be formed with the upper water molecules.[9]Interaction of water with positively charged surface is 36%stronger than that with negatively charged one with the same charge density of 0.6 C/m2, according to molecular dynamic simulations.[8]

    Fig.3. Cosine of contact angle of water droplets on LiTaO3 crystals at various temperatures. (a) The cos(θ) on charged crystals heated from room temperature to various final temperatures. (b)The cos(θ)on crystals without net charge.

    5. Effect of environmental aerosols

    In environmental aerosols, surface charges participate in the adsorption of contaminations in aerosols. The adsorption can influence the WCA values since they greatly contribute to the chemical properties of surfaces. Here we explore how surface charges influence WCA in aerosols.

    5.1. Water contact angle in aerosols

    We observe that cos(θ) hardly decreases on neutralized surface during the first 60 minutes in the aerosol (Fig. 4(a)).The controlled aerosol is sufficiently clean to maintain the surface tension of the neutralized surface for an hour since the outside air is effectively diluted by high purity nitrogen in the chamber. Benefitting from the clean aerosol in which WCA maintains almost constant on neutralized surfaces, the change in evolution of WCA in the presence of surface charges can directly reflect the role of surface charges. If the surface is heated to 30°C, cos(θ) gradually decreases in 60 minutes (Fig. 4(b)). If the crystal is treated by UVO for 5 minutes before 20 or 40 minutes, cos(θ) increases immediately and gradually decreases afterward in the aerosol. UVO is the combination of ultraviolet and ozone, which can decompose organic contaminations and clean surfaces. The aerosol has the opposite influence onto the wettability of the surface comparing to UVO treatment. If the crystal is put into saturated organic vapor of 1-octadecene without surface charges for 50 minutes and then treated by UVO for 5 minutes, the cos(θ)increases upon UVO treatments(Fig.4(c)). Therefore,we conclude that adsorption of organic contaminations in the aerosol decreases cos(θ).[14—18]There are complex chemical compositions in particulate matters in the air of Beijing,which contains considerable proportion of organic matters including alkanes,olefins and alkynes.[23,24]These contribute to contaminations in the aerosol. Figure 4(d) shows the x-ray photoelectron spectroscopy (XPS) spectrum of carbon 1X peak of crystals in the controlled aerosol for 0 minutes, 1 minute and 120 hours, where the difference between 1 min (light red) or 120 h (light blue) and 0 min in the inset shows more organic contaminations for longer aerosol exposure. Furthermore,the energy dispersive spectrometer(EDS)detection shows that the atomic concentrations of carbon on crystals in the controlled aerosol for 1 minute and 120 hours are 2.12±0.36% and 9.06±0.23%, respectively. The amount of adsorbed organic contaminations gradually increases in the aerosol,resulting in the decrease of surface tension and the decrease of cos(θ).

    5.2. Effect of charged surfaces and electrification in aerosols

    In the environmental aerosol,whether the surface is neutral or charged leads to different evolution of cos(θ), as the comparison between Figs.4(a)and 4(b). We modify the surface charge density by heating crystals from room temperature to 30°C, 50°C or 70°C and detect the evolution of cos(θ)every quarter for 60 minutes(Fig.5). The controlled aerosols are all the same except that the pipe in which high purity nitrogen flows into the chamber (see methods) is straight brass pipe, straight teflon pipe or bent teflon pipe. We detect each combined situation of charge densities and controlled aerosols with different pipes. The fitted curves are linear for straight pipes and exponential for bent pipes.

    Fig.4. (a)Evolution of cos(θ)of water droplets on neutralized LiTaO3 crystals for 60 minutes in the controlled aerosol. The rectangle shows that cos(θ) hardly decreases. (b) Evolutions of cos(θ) of water droplets on LiTaO3 crystals heated to 30 °C in the controlled aerosol for 50 minutes and those be treated by UVO for 5 minutes before 20 or 40 minutes. (c) The cos(θ) of water droplets on LiTaO3 crystals in saturated vapor of 1-octadecene at room temperature for 50 minutes and 60 minutes after being treated by UVO for 5 minutes. (d)XPS spectrum of carbon 1X peak of LiTaO3 in the controlled aerosol for 0 minutes(black),1 minute(red)or 120 hours(blue). The inset is the difference between 1 min(light red)or 120 h(light blue)and 0 min.

    Fig.5. Evolution of cos(θ)of water droplets on LiTaO3 crystals heated to various temperatures in various aerosols. The pipe from which high purity nitrogen flows into the chamber is straight brass(green),straight teflon(orange)or bent teflon(brown).

    The value of cos(θ) gradually decreases for each case due to the adsorption of contaminations in aerosols. The decreasing rate on more highly charged surface is higher. There is no distinction between positive or negative surface charges.For comparison among aerosols with different pipes, the decrease of cos(θ) is higher for straight teflon than for straight brass,and the cases with bent teflon pipes are the highest. For easy viewing,we calculate the decreases from 0 to 60 minutes and list them in Tables 1 and 2.

    Higher density of surface charges indicates a stronger Coulomb attraction between the crystal surface and contaminations in the aerosols, which enhances the amount of adsorbed contaminations, resulting in the higher decrease of cos(θ). Contaminations in aerosols can be charged when passing through the pipes due to friction. They are both positively and negatively charged with various compositions according to the triboelectric series,[25,26]thus the adsorption is of no difference on positively or negatively charge surfaces.For straight pipes of the same length, the amount of charged molecules in aerosols through metallic brass is less than that in insulating teflon.[25,26]The bent teflon pipe is longer and bent,generating more charges in aerosols.[26—28]The more charged are the aerosols, the more organic contaminants can be adsorbed on the crystal surface, leading to lower cos(θ). Here the surface charges and charged aerosols decrease the cos(θ)via enhancing the adsorption of organic contaminants.

    Table 1. Decrease of cos(θ) from 0 to 60 minutes on positively charged surface.

    Table 2. Decrease of cos(θ) from 0 to 60 minutes on negatively charged surface.

    6. Conclusion and perspectives

    In summary, by employing LiTaO3crystal, we obtain controllable surface charges and explore their effects on the contact angle of pure water. We find that the net surface charges up to 0.1 C/m2can nominally affect the wettability comparing to the neutral cases,by imposing stronger interactions between the surfaces and water molecules in a few interfacial water layers. However,in aerosol environment,even a small amount of surface charge can efficiently increase the water contact angle. This decrease of surface tension roots from the adsorption of organic contaminants with the help of Coulomb attraction between the charged surfaces and the contaminants. Our results provide a fundamental understanding of interactions between surface charges and water in various environments. We expect that these findings are helpful for developing new ways for the electric control of wetting and microfluidics in real aerosol environments.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China(Grant Nos.12025407,11934003,91850120,and 11774328), the Key R&D Program of China (Grant No. 2016YFA0300902), and the Chinese Academy of Sciences.

    99精品欧美一区二区三区四区| 天堂av国产一区二区熟女人妻| www日本在线高清视频| 身体一侧抽搐| 亚洲精品美女久久久久99蜜臀| 亚洲国产欧美一区二区综合| 特大巨黑吊av在线直播| 成人高潮视频无遮挡免费网站| 亚洲av成人不卡在线观看播放网| 麻豆国产97在线/欧美| 午夜免费激情av| 日韩欧美在线二视频| 欧美精品啪啪一区二区三区| av天堂在线播放| 国产成人福利小说| 国产成人一区二区三区免费视频网站| 欧美一级a爱片免费观看看| 日本成人三级电影网站| 美女黄网站色视频| 成人无遮挡网站| 美女扒开内裤让男人捅视频| 国产黄片美女视频| 热99在线观看视频| 日日干狠狠操夜夜爽| 国产日本99.免费观看| 精品久久久久久久久久免费视频| 12—13女人毛片做爰片一| 久久中文看片网| 免费看十八禁软件| 国产在线精品亚洲第一网站| 一级黄色大片毛片| 亚洲精品色激情综合| 黄片大片在线免费观看| 国产综合懂色| 变态另类成人亚洲欧美熟女| 国产精品av视频在线免费观看| 少妇裸体淫交视频免费看高清| 免费在线观看成人毛片| 一级毛片高清免费大全| 婷婷精品国产亚洲av在线| 亚洲精品粉嫩美女一区| 很黄的视频免费| 小蜜桃在线观看免费完整版高清| 99国产极品粉嫩在线观看| 国产精品九九99| 真人一进一出gif抽搐免费| 久久国产精品人妻蜜桃| 成人av一区二区三区在线看| 久久久久久国产a免费观看| 精品熟女少妇八av免费久了| 国产成人精品久久二区二区免费| ponron亚洲| 亚洲精品美女久久av网站| 黄色视频,在线免费观看| 午夜精品久久久久久毛片777| 高潮久久久久久久久久久不卡| 亚洲中文字幕一区二区三区有码在线看 | 动漫黄色视频在线观看| 国产精品一区二区三区四区久久| 精品熟女少妇八av免费久了| 一本综合久久免费| 国内揄拍国产精品人妻在线| 嫁个100分男人电影在线观看| 亚洲欧洲精品一区二区精品久久久| av天堂中文字幕网| 国产精品免费一区二区三区在线| 国产欧美日韩一区二区精品| 午夜日韩欧美国产| 18禁黄网站禁片免费观看直播| 日本免费a在线| 首页视频小说图片口味搜索| 国产熟女xx| 久久久久久九九精品二区国产| 九色成人免费人妻av| 成人av在线播放网站| 精品国内亚洲2022精品成人| 人人妻,人人澡人人爽秒播| 久久久久久大精品| 夜夜夜夜夜久久久久| 搡老熟女国产l中国老女人| 一区二区三区高清视频在线| 极品教师在线免费播放| 久久精品国产99精品国产亚洲性色| 国产午夜精品论理片| 男女午夜视频在线观看| 99国产精品一区二区蜜桃av| 久久热在线av| 亚洲av成人不卡在线观看播放网| 国产高清有码在线观看视频| 丰满人妻熟妇乱又伦精品不卡| 女同久久另类99精品国产91| 亚洲精品粉嫩美女一区| 色视频www国产| 无限看片的www在线观看| 美女大奶头视频| 91av网站免费观看| 欧美一级毛片孕妇| 熟女电影av网| 国产午夜精品久久久久久| 国产精品美女特级片免费视频播放器 | avwww免费| 色精品久久人妻99蜜桃| 国产探花在线观看一区二区| 国产三级在线视频| 亚洲五月天丁香| 久久久久久久久免费视频了| 欧美又色又爽又黄视频| 亚洲精品中文字幕一二三四区| 老司机福利观看| 白带黄色成豆腐渣| 长腿黑丝高跟| 久久精品国产99精品国产亚洲性色| 亚洲最大成人中文| 美女高潮喷水抽搐中文字幕| 在线免费观看不下载黄p国产 | 69av精品久久久久久| 欧洲精品卡2卡3卡4卡5卡区| 一区二区三区高清视频在线| 51午夜福利影视在线观看| 99久国产av精品| 国产黄片美女视频| 国产精品九九99| 国产视频内射| 亚洲欧美精品综合一区二区三区| 19禁男女啪啪无遮挡网站| x7x7x7水蜜桃| 白带黄色成豆腐渣| 国产亚洲欧美在线一区二区| 校园春色视频在线观看| 999精品在线视频| 国产午夜精品久久久久久| 亚洲欧美激情综合另类| 国产精品一区二区三区四区免费观看 | 亚洲av免费在线观看| 99在线视频只有这里精品首页| 少妇的逼水好多| 国产野战对白在线观看| 这个男人来自地球电影免费观看| 淫妇啪啪啪对白视频| 一区二区三区高清视频在线| av视频在线观看入口| 黄色丝袜av网址大全| 一区二区三区高清视频在线| 制服丝袜大香蕉在线| 亚洲国产精品久久男人天堂| 18禁观看日本| 国产黄色小视频在线观看| www.精华液| 欧美三级亚洲精品| 国产一区二区激情短视频| 欧美黄色淫秽网站| 999久久久精品免费观看国产| 国产三级黄色录像| 美女扒开内裤让男人捅视频| ponron亚洲| 制服丝袜大香蕉在线| 日本三级黄在线观看| 国产一级毛片七仙女欲春2| 亚洲av日韩精品久久久久久密| 亚洲一区高清亚洲精品| 一二三四在线观看免费中文在| 五月玫瑰六月丁香| 91麻豆av在线| 国产爱豆传媒在线观看| 老鸭窝网址在线观看| 伦理电影免费视频| 久久久久亚洲av毛片大全| 欧美日韩乱码在线| 中文字幕最新亚洲高清| 国产野战对白在线观看| 一本一本综合久久| 一本综合久久免费| 亚洲熟妇中文字幕五十中出| 欧美日韩亚洲国产一区二区在线观看| 日韩免费av在线播放| 精品免费久久久久久久清纯| 中文字幕久久专区| 啦啦啦免费观看视频1| 国产精华一区二区三区| 中文字幕av在线有码专区| 亚洲成人精品中文字幕电影| 1024手机看黄色片| 日韩国内少妇激情av| 中文字幕人成人乱码亚洲影| 久久久国产成人免费| 国产精品99久久久久久久久| www.999成人在线观看| 欧美色欧美亚洲另类二区| 国语自产精品视频在线第100页| www日本黄色视频网| 免费看十八禁软件| 日韩欧美在线乱码| 美女高潮喷水抽搐中文字幕| 欧美日韩亚洲国产一区二区在线观看| 成人特级av手机在线观看| 欧美日韩亚洲国产一区二区在线观看| 日本免费一区二区三区高清不卡| 久久久久久久精品吃奶| 国产精品电影一区二区三区| 国产一区二区在线观看日韩 | 狂野欧美白嫩少妇大欣赏| 欧美日韩瑟瑟在线播放| 成人特级av手机在线观看| 欧美中文综合在线视频| 欧美日本亚洲视频在线播放| 嫁个100分男人电影在线观看| 亚洲av成人一区二区三| 美女高潮喷水抽搐中文字幕| 少妇的丰满在线观看| 动漫黄色视频在线观看| cao死你这个sao货| netflix在线观看网站| 一a级毛片在线观看| 别揉我奶头~嗯~啊~动态视频| 天天一区二区日本电影三级| 日本精品一区二区三区蜜桃| www.精华液| 国产一级毛片七仙女欲春2| 国内毛片毛片毛片毛片毛片| 窝窝影院91人妻| 午夜福利18| 麻豆av在线久日| 亚洲午夜理论影院| 一二三四社区在线视频社区8| 久久这里只有精品19| 成年版毛片免费区| 精品国产乱码久久久久久男人| 国产又黄又爽又无遮挡在线| 久久久久亚洲av毛片大全| 国产精品久久视频播放| 日本熟妇午夜| 哪里可以看免费的av片| www.精华液| 日韩精品青青久久久久久| 午夜福利在线观看吧| 人人妻人人看人人澡| 国产蜜桃级精品一区二区三区| 亚洲人成伊人成综合网2020| 亚洲国产高清在线一区二区三| 香蕉丝袜av| 欧美一级a爱片免费观看看| 五月伊人婷婷丁香| 国产日本99.免费观看| 亚洲中文字幕日韩| 香蕉丝袜av| 人妻丰满熟妇av一区二区三区| 国产一区在线观看成人免费| 久99久视频精品免费| 亚洲色图av天堂| 成人特级av手机在线观看| 亚洲欧洲精品一区二区精品久久久| 人人妻人人澡欧美一区二区| 操出白浆在线播放| 三级国产精品欧美在线观看 | 不卡一级毛片| 亚洲国产精品成人综合色| 小蜜桃在线观看免费完整版高清| 长腿黑丝高跟| 久久午夜综合久久蜜桃| 在线观看一区二区三区| 精品一区二区三区四区五区乱码| 夜夜看夜夜爽夜夜摸| 搡老妇女老女人老熟妇| 91在线观看av| 久久久久久国产a免费观看| 天堂影院成人在线观看| 日韩 欧美 亚洲 中文字幕| 国产美女午夜福利| 国产一级毛片七仙女欲春2| 欧美zozozo另类| 小蜜桃在线观看免费完整版高清| 1024香蕉在线观看| 亚洲国产精品久久男人天堂| 亚洲国产看品久久| 久久精品国产99精品国产亚洲性色| 国产精品综合久久久久久久免费| 毛片女人毛片| 网址你懂的国产日韩在线| 舔av片在线| 怎么达到女性高潮| 岛国视频午夜一区免费看| 亚洲avbb在线观看| 18禁裸乳无遮挡免费网站照片| 级片在线观看| 婷婷精品国产亚洲av| netflix在线观看网站| 国产伦精品一区二区三区视频9 | 国产成人福利小说| 成人亚洲精品av一区二区| 人妻夜夜爽99麻豆av| 亚洲av电影在线进入| 美女高潮的动态| 国产精品一区二区精品视频观看| АⅤ资源中文在线天堂| 久久精品国产99精品国产亚洲性色| 全区人妻精品视频| 国产精品日韩av在线免费观看| 亚洲成人久久爱视频| 激情在线观看视频在线高清| 长腿黑丝高跟| 欧美成人免费av一区二区三区| 亚洲成人免费电影在线观看| 午夜亚洲福利在线播放| 欧美一级a爱片免费观看看| 亚洲欧美日韩无卡精品| 欧美xxxx黑人xx丫x性爽| 国产1区2区3区精品| 久久精品人妻少妇| 男女之事视频高清在线观看| 国产高清videossex| 神马国产精品三级电影在线观看| 黄频高清免费视频| 国产又黄又爽又无遮挡在线| 久久精品人妻少妇| 搡老妇女老女人老熟妇| 午夜成年电影在线免费观看| 成年女人看的毛片在线观看| 亚洲熟妇熟女久久| 黄色片一级片一级黄色片| 欧美激情久久久久久爽电影| 日韩欧美三级三区| 三级毛片av免费| 欧美日韩瑟瑟在线播放| 精品乱码久久久久久99久播| 狂野欧美白嫩少妇大欣赏| 不卡av一区二区三区| 欧美黄色片欧美黄色片| 很黄的视频免费| h日本视频在线播放| 亚洲熟妇熟女久久| 欧美中文日本在线观看视频| 在线观看免费视频日本深夜| a级毛片a级免费在线| 精品国内亚洲2022精品成人| 哪里可以看免费的av片| 国产激情欧美一区二区| 亚洲精品色激情综合| 亚洲天堂国产精品一区在线| 亚洲美女视频黄频| 久久伊人香网站| 99re在线观看精品视频| 色av中文字幕| 色噜噜av男人的天堂激情| 亚洲精品456在线播放app | 精品日产1卡2卡| 人人妻人人澡欧美一区二区| 亚洲一区高清亚洲精品| 欧美av亚洲av综合av国产av| 国产v大片淫在线免费观看| 日本与韩国留学比较| 三级毛片av免费| 婷婷亚洲欧美| 亚洲av熟女| 两性午夜刺激爽爽歪歪视频在线观看| 琪琪午夜伦伦电影理论片6080| 淫妇啪啪啪对白视频| 久久久久久久久久黄片| 精品久久久久久久久久免费视频| 十八禁网站免费在线| 国产又黄又爽又无遮挡在线| 99精品欧美一区二区三区四区| 欧美中文综合在线视频| 婷婷六月久久综合丁香| 亚洲欧洲精品一区二区精品久久久| 九九久久精品国产亚洲av麻豆 | 精品人妻1区二区| 国产精品美女特级片免费视频播放器 | 日本a在线网址| 又黄又粗又硬又大视频| 亚洲欧美一区二区三区黑人| 日韩精品中文字幕看吧| 色精品久久人妻99蜜桃| 日韩中文字幕欧美一区二区| 亚洲欧美日韩高清专用| 嫩草影视91久久| 午夜激情欧美在线| 亚洲精品一区av在线观看| 日本撒尿小便嘘嘘汇集6| 欧美+亚洲+日韩+国产| 三级毛片av免费| 国产三级中文精品| 两人在一起打扑克的视频| 国产三级在线视频| 特大巨黑吊av在线直播| 黄色女人牲交| 黑人欧美特级aaaaaa片| 日韩三级视频一区二区三区| 人人妻人人看人人澡| 亚洲av电影在线进入| 亚洲成av人片在线播放无| 黄色视频,在线免费观看| 欧美日韩国产亚洲二区| 国产成人精品久久二区二区91| 亚洲国产精品合色在线| 欧美xxxx黑人xx丫x性爽| 757午夜福利合集在线观看| 亚洲精品美女久久久久99蜜臀| 欧美成人免费av一区二区三区| 国产一区在线观看成人免费| 色尼玛亚洲综合影院| 久久久成人免费电影| 欧美大码av| 欧美黑人欧美精品刺激| 精品国产乱子伦一区二区三区| 亚洲av成人av| 日韩欧美在线乱码| 国产黄色小视频在线观看| 久久久久国产精品人妻aⅴ院| 免费人成视频x8x8入口观看| 亚洲精品一卡2卡三卡4卡5卡| 免费看十八禁软件| 人妻夜夜爽99麻豆av| 熟女人妻精品中文字幕| 午夜影院日韩av| 亚洲第一欧美日韩一区二区三区| 亚洲美女视频黄频| 精品久久久久久久久久免费视频| 亚洲中文av在线| 色综合婷婷激情| 国产精品av久久久久免费| 无限看片的www在线观看| 99国产精品一区二区蜜桃av| 国产精品久久久久久久电影 | 国产激情欧美一区二区| 亚洲九九香蕉| 757午夜福利合集在线观看| 色精品久久人妻99蜜桃| 午夜福利在线观看免费完整高清在 | 美女黄网站色视频| 国产激情偷乱视频一区二区| 听说在线观看完整版免费高清| 中亚洲国语对白在线视频| 久久国产精品影院| 国产真实乱freesex| 欧美又色又爽又黄视频| 校园春色视频在线观看| 美女高潮喷水抽搐中文字幕| 在线国产一区二区在线| 一个人免费在线观看电影 | 午夜精品久久久久久毛片777| 久久欧美精品欧美久久欧美| 午夜福利成人在线免费观看| 久久久久久久久久黄片| 在线国产一区二区在线| 91久久精品国产一区二区成人 | 欧美+亚洲+日韩+国产| 女人被狂操c到高潮| 国产高清激情床上av| 久久人妻av系列| 国产成人福利小说| 超碰成人久久| 国模一区二区三区四区视频 | 欧美中文日本在线观看视频| 色综合亚洲欧美另类图片| 精品国产乱子伦一区二区三区| 久久久久久大精品| 激情在线观看视频在线高清| 男人和女人高潮做爰伦理| 18禁观看日本| 色综合欧美亚洲国产小说| 18禁国产床啪视频网站| 小蜜桃在线观看免费完整版高清| 国产成人精品久久二区二区91| 国产精品亚洲一级av第二区| 狂野欧美白嫩少妇大欣赏| 18禁黄网站禁片免费观看直播| 伦理电影免费视频| 久久久久久久午夜电影| 色老头精品视频在线观看| www.www免费av| 精品电影一区二区在线| 狂野欧美激情性xxxx| 国产欧美日韩一区二区三| 国产激情欧美一区二区| 狠狠狠狠99中文字幕| 小说图片视频综合网站| 午夜激情欧美在线| 久久亚洲精品不卡| 99热精品在线国产| 日本a在线网址| 夜夜看夜夜爽夜夜摸| 三级毛片av免费| 少妇丰满av| 欧美一级a爱片免费观看看| 舔av片在线| 一个人看的www免费观看视频| 99在线视频只有这里精品首页| 2021天堂中文幕一二区在线观| 亚洲avbb在线观看| 国产黄a三级三级三级人| 免费在线观看视频国产中文字幕亚洲| 嫩草影院入口| av在线蜜桃| 欧美黄色淫秽网站| 丰满人妻一区二区三区视频av | 色老头精品视频在线观看| 毛片女人毛片| 亚洲美女黄片视频| 观看免费一级毛片| 俄罗斯特黄特色一大片| 国产毛片a区久久久久| 欧美乱妇无乱码| 村上凉子中文字幕在线| 久久热在线av| 俄罗斯特黄特色一大片| 在线a可以看的网站| 别揉我奶头~嗯~啊~动态视频| 国产成人系列免费观看| 国产成人av激情在线播放| 免费看美女性在线毛片视频| 熟女电影av网| 国产成人aa在线观看| 97碰自拍视频| 亚洲国产精品久久男人天堂| 色综合站精品国产| 黄色成人免费大全| 18禁黄网站禁片午夜丰满| 午夜福利免费观看在线| 伦理电影免费视频| 最新中文字幕久久久久 | 欧美+亚洲+日韩+国产| 亚洲成a人片在线一区二区| 日本 av在线| 夜夜躁狠狠躁天天躁| 久久久久久久午夜电影| 欧美乱码精品一区二区三区| 亚洲国产精品成人综合色| 欧美日韩综合久久久久久 | 一个人看的www免费观看视频| 51午夜福利影视在线观看| 久久国产精品影院| 中文字幕精品亚洲无线码一区| 亚洲中文字幕一区二区三区有码在线看 | 两性午夜刺激爽爽歪歪视频在线观看| 91在线精品国自产拍蜜月 | 不卡一级毛片| av片东京热男人的天堂| 亚洲真实伦在线观看| 18美女黄网站色大片免费观看| 国产精品久久久久久久电影 | 国产精品女同一区二区软件 | www日本黄色视频网| 亚洲av成人精品一区久久| 亚洲国产欧美人成| 又黄又爽又免费观看的视频| 国产欧美日韩一区二区精品| 波多野结衣高清无吗| 丰满人妻熟妇乱又伦精品不卡| 成年女人永久免费观看视频| 99久久精品一区二区三区| 性色av乱码一区二区三区2| 在线观看66精品国产| 美女cb高潮喷水在线观看 | 国产v大片淫在线免费观看| 国产精品久久久av美女十八| 欧美一级a爱片免费观看看| 在线观看美女被高潮喷水网站 | 香蕉丝袜av| 国产视频一区二区在线看| 国产精品 国内视频| 12—13女人毛片做爰片一| 色av中文字幕| 他把我摸到了高潮在线观看| 91在线观看av| 18禁裸乳无遮挡免费网站照片| 亚洲真实伦在线观看| 色综合欧美亚洲国产小说| 哪里可以看免费的av片| 国内精品一区二区在线观看| 99riav亚洲国产免费| 日本与韩国留学比较| 淫妇啪啪啪对白视频| 亚洲av电影在线进入| 成人特级黄色片久久久久久久| 亚洲精品456在线播放app | 搡老妇女老女人老熟妇| 99久久久亚洲精品蜜臀av| 亚洲国产精品久久男人天堂| 国产一区二区激情短视频| 超碰成人久久| 一进一出抽搐动态| 在线永久观看黄色视频| 脱女人内裤的视频| 久久天躁狠狠躁夜夜2o2o| 日本与韩国留学比较| 高清在线国产一区| 嫩草影院精品99| 国产精品久久久久久久电影 | 精品国内亚洲2022精品成人| 亚洲精品粉嫩美女一区| 小说图片视频综合网站| 久久精品国产99精品国产亚洲性色| 国内揄拍国产精品人妻在线| 欧美日本视频| 亚洲精品久久国产高清桃花| 国产极品精品免费视频能看的| 国产成人欧美在线观看| 亚洲精品国产精品久久久不卡| 免费看光身美女| 日本一二三区视频观看| 国产不卡一卡二| 99久久99久久久精品蜜桃| 性色avwww在线观看| 亚洲av成人不卡在线观看播放网| 国产精品一区二区免费欧美| 亚洲九九香蕉| 黄色日韩在线| 国产精品亚洲av一区麻豆| 国产一区二区激情短视频| 成人国产综合亚洲| xxxwww97欧美| 日韩三级视频一区二区三区| 亚洲成av人片在线播放无| 国产欧美日韩一区二区精品| 国产精品久久久久久精品电影|