• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pressure-induced phase transitions in the ZrXY (X =Si,Ge,Sn;Y =S,Se,Te)family compounds

    2022-05-16 07:11:06QunChen陳群JuefeiWu吳玨霏TongChen陳統(tǒng)XiaomengWang王曉夢ChiDing丁弛TianhengHuang黃天衡QingLu魯清andJianSun孫建
    Chinese Physics B 2022年5期

    Qun Chen(陳群) Juefei Wu(吳玨霏) Tong Chen(陳統(tǒng)) Xiaomeng Wang(王曉夢) Chi Ding(丁弛)Tianheng Huang(黃天衡) Qing Lu(魯清) and Jian Sun(孫建)

    1National Laboratory of Solid State Microstructures,School of Physics and Collaborative Innovation Center of Advanced Microstructures,Nanjing University,Nanjing 210093,China

    2Laboratory of Computational Physics,Institute of Applied Physics and Computational Mathematics,Beijing 100230,China

    Keywords: high pressure, ZrXY (X = Si, Ge, Sn; Y = S, Se, Te) family, phase transition, superconducting temperature

    1. Introduction

    Topological semimetals (TSMs) with nontrivial band structures have been extensively studied due to their exotic properties, such as large magnetoresistance,[1—7]high charge carrier mobility,[1—7]and potential topological superconductivity.[8—11]Based on the degeneracy of the band crossing points and their distribution in the Brillouin zone, these TSMs can be classified as Dirac semimetals,[12—15]Weyl semimetals,[1,3,5,16—21]topological nodal-line semimetals,[22—29]etc. The band crossing points of Dirac semimetals are fourfold degenerate, while Weyl semimetals have doubly degenerated band crossing points.For topological nodal-line semimetals, the band crossing points create closed loops instead of separated points in the Brillouin zone. Among topological materials, ZrXY(X= Si, Ge, Sn;Y= S, Se, Te) has been studied intensively.[24,30—46]Materials of the ZrXYfamily usually host two types of Dirac states,i.e., the nodal-line state doubly protected by mirror and inversion symmetry and the two-dimensional (2D) Dirac state protected by nonsymmorphic symmetry. In addition,different members have diversified properties. For instance, ZrSiS has a large, anisotropic magnetoresistance, which can be as high as 1.4×105%at 2 K and 9 T.[47]

    On the other hand, pressure plays an important role in the phase transition of matter. It provides an easy and clean way to force a structural transition of materials without contamination by impurities,[48—50]and provides an effective way of synthesizing new materials.[51]Pressure-driven structural phase transitions are often accompanied by variations in electronic structures,resulting in different physical properties. For instance,pressure has been successfully adopted to induce superconductivity in topological materials[10,52]and phase transitions with new topological properties.[53]ZrXYfamily members also have novel properties under high pressure. For instance, ZrSiS was found to have lattice distortion induced by inhomogeneous compression under nonuniform hydrostatic pressure,[40]and ZrSiTe was found to have a drastic change in the electronic band structure under pressure.[54]

    However, the existing works on the ZrXYfamily have been performed at relatively low pressure. Here, we systematically studied the entire ZrXYfamily,includingX=Si,Ge,Sn andY= S, Se, Te, and extended the pressure range up to 200 GPa. We found several new phases and then studied their electronic and superconducting properties. For instance,ZrGeS undergoes an isosymmetric phase transition from the ambientP4/nmmstructure to a newP4/nmm-II phase. In addition, we also found a new phase called theP4/mmmphase.Remarkably, the phonon dispersion calculation results show that theP4/mmmphase of ZrGeSe and theP4/nmm-II phase of ZrGeS may be quenchable to ambient pressure. Interestingly, the estimated superconducting critical temperatures(Tc)ofP4/mmm-ZrGeSe andP4/nmm-II-ZrGeS are 8.1 K and 8.0 K at 0 GPa,respectively.

    2. Computational method

    We used the machine-learning and graph theory accelerated structure searching(Magus)code[55,56]combined withab initiocalculations to search for the stable structures of ZrXYat 50 GPa,100 GPa,150 GPa,200 GPa. The Magus code has demonstrated success in predicting the high-pressure structures of various systems.[50,51,57]We performed structure optimizations and calculations of enthalpy,mechanical properties,and electronic structures using the projector augmented wave(PAW)[58]method in the Viennaab initiosimulation package(VASP)[59]and the Perdew—Burke—Ernzerhof (PBE)[60]generalized gradient approximation(GGA)exchange—correlation density functional. Electronic localization functions (ELF)calculated by VASP were displayed by visualization for electronic structural analysis (VESTA).[61]Structures were relaxed with a high accuracy plane-wave basis energy cutoff of 400 eV. Thek-mesh spacing of Brillouin zone is 2π×0.025 °A-1. Phonon modes and frequencies of the structures were calculated by the finite displacement method implemented in the PHONOPY[62]code. The elastic constants were determined by the linear-response stress—strain method,as implemented in the VASP code, and the bulk and shear moduli were calculated based on Voigt averaging.[63]The Vickers hardness was computed by the model of Chenet al.[64]We applied a 2×2×2 supercell to calculate the force constants of all structures. Quantum Espresso (QE) code[65]was used to calculate the electron—phonon coupling constants andTcusing an energy cutoff of 120 Ry. The surface states were obtained by constructing the maximally localized Wannier functions[66]and using the surface Green function approach,[67]as implemented in the WANNIERTOOLS package.[68]We adopted 10×10×4 and 8×8×4k-point mesh for charge selfconsistent calculation, 20×20×8 and 16×16×8k-point mesh for electron—phonon coupling (EPC) linewidth integration, and 5×5×2 and 4×4×2q-point mesh for dynamical matrices ofP4/nmm-II andP4/mmmstructures,respectively.

    3. High pressure structures

    The most stable phase of all compounds in the ZrXYfamily at 0 GPa isP4/nmm, as shown in Fig. 1(a). TheP4/nmmphase of the ZrXYfamily shows a tetragonal structure formed by the stacking ofX—Zr—Y—Y—Zr layers.[69]

    We then performed crystal structure searches for the ZrXYfamily at 50 GP,100 GP,150 GP,and 200 GP,and several new structures were found. The enthalpy difference of given structures is compared with theP4/nmmphase(ground state at 0 GPa). Combining the search results and enthalpy calculations,we successfully identified four new structures at given pressures. As shown in Fig.1,they are theCmcm(space group No. 63) structure, the so-calledP4/nmm-II structure(space group No. 129), theImm2structure (space group No. 44), and theP4/mmmstructure (space group No. 123).The enthalpy—pressure curves of ZrSiSe, ZrGeS,ZrSiSe, and ZrGeSe are shown in Fig. 2. We found that the enthalpy—pressure curves of ZrSiTe, ZrGeTe and ZrSnTe are similar to those of ZrSiSe. The enthalpy—pressure curves of ZrSiTe,Zr-GeTe,and ZrSnTe are attached in Fig.S1.

    Fig.1. Crystal structures of the high-pressure phases of the ZrXY family: (a)P4/nmm structure,(b)P4/mmm structure,(c)P4/nmm-II structure,(d)Cmcm structure,(e)Imm2 structure.

    It is found that (i) ZrX(X= Si, Ge)Se and ZrX(X=Si, Ge, Sn)Te have an identical final high-pressure phase, theP4/mmmphase. The critical pressures of these family members are 102 GPa, 110 GPa, 68 GPa, 62 GPa, and 31 GPa.Because the Zr atom has a relatively large atomic radius,theseXandYatoms tend to be distributed in the Zr layers once pressure is applied. Thus, theP4/mmmstructure is formed with such a type of arrangement:Xatoms andYatoms form a corrugated shape interspersed between two layers of Zr atoms. (ii) The ZrGeSe compound undergoes a series of structural phase transitions:P4/nmm →Imm2→P4/mmm.ThisP4/nmm →Imm2 phase transition occurred at 87 GPa.Remarkably, theImm2 phase has layers formed by puckered triangular chains ofXandYalternating with layers of square nets of Zr. Due to the difference in radius between the Ge and Se atoms, Zr atoms between Ge and Se slightly fluctuate along the Zr plane, which leads to a slightly sparse stack of atoms. (iii) ZrSiS and ZrGeS have an identical final highpressure phase,theCmcmphase. The transition pressures are 100 GPa and 123 GPa. Similar to theP4/nmmphase, thisCmcmphase has two Zr—Ylayers sandwiched between two layers of Si atoms, but its Zr—Ylayers have translated half a lattice along thea-direction accompanied by shortening of the bond length of the Zr atoms along theb-direction. (iv) As shown in Fig.2,ZrGeS undergoes a series of structural phase transitions:P4/nmm →P4/nmm-II→Cmcm. The transition pressures ofP4/nmm →P4/nmm-II are~82 GPa. The highpressureP4/nmm-II phase of ZrGeS shows a very similar pattern to the ambient phase,as shown in Fig.1.Both of them areP4/nmmsymmetry, but the Wyckoff position of the Ge atom is different, from 2csites to 2asites. With the application of pressure,the Ge atoms tend to slide from the middle of the Zr—S square to the vertex of the square. Thus,the Ge layer of theP4/nmm-II structure shifts one-half of the lattice along theaorbaxis, and the two Ge atoms finally form a zig-zag distorted layer. We thus call this new structureP4/nmm-II.For ZrGeS,theaandcaxes of the ambientP4/nmmstructure are 3.25 °A and 7.15 °A,respectively,while theaandcaxes of theP4/nmm-II structure are 3.07 °A and 7.78 °A, respectively. An isosymmetric phase transition is one such phase transition in which the two phases associated with the isosymmetric phase transition possess the same space group but with different Wyckoff sites. This kind of phase transition is always found in some amorphous systems (e.g., liquid—gas transition) or electronic transitions(metal—insulator, valence transitions).[70—72]All of these results prove that theP4/nmmtoP4/nmm-II phase transition is an example of an isosymmetric phase transition. The calculated lattice parameters of these new phases at a given pressure are listed in Table S1.

    Fig.2. Calculated enthalpy—pressure relationship with respect to ground state. The enthalpy difference of(a)ZrSiS,(b)ZrGeS,(c)ZrSiSe,and(d)ZrGeSe.

    4. Stability and mechanical properties

    To determine the dynamic stability of these high-pressure phases of ZrXY, the phonon dispersion along the highsymmetry lines was calculated,as shown in Fig.S2.

    For allP4/mmmphases, the high-pressure phases show no imaginary frequency modes, indicating that all of these phases are dynamically stable at high pressure. Among thoseP4/mmmphases, ZrGeSe and ZrSnTe have no imaginary frequency modes down to zero pressure; therefore, they might be quenched recoverable under ambient conditions. For theImm2phase of ZrGeSe,phonon dispersion after transition also shows that this is a mechanically stable phase. TheCmcmphases of ZrSiS and ZrGeS show no imaginary frequency modes at high pressure. For ZrGeS,theP4/nmm-II phase has no imaginary frequency at either high pressure or 0 GPa,indicating that this new phase is stable and may be quenchable to recover at 0 GPa.

    As the symmetry remains unchanged during the isosymmetric phase transition, we want to compare the mechanical properties of ZrGeS before and after phase transformation.Through crystal symmetry analysis, we have six independent elastic constants, namely,C11,C12,C13,C33,C44, andC66as for these two tetragonal phases.[73]Within the Voigt—Reuss—Hill (VRH) approximation,[63]the macroscopic bulk moduli(B) and shear moduli (G) of a polycrystalline material can be estimated using the elastic constants of the single crystal mentioned in the preceding paragraph. Furthermore,Young’s modulus(Y)and Poisson’s ratio(ν)of the polycrystalline material can be written in terms ofBandGas are well above the limit of the elastic stability,i.e.,C11>|C12|,2C32<C33(C11+C12),andC44>0. We can see that the hardness of theP4/nmm-II phase is 2.71 GPa at 0 Gpa, 1.64 GPa at 90 GPa,which is smaller than that of theP4/nmmphase. To understand the inner principle of this intriguing phenomenon,we calculated the ELF of ZrGeS at 90 GPa with theP4/nmmphase andP4/nmm-II phase.In Fig.3,we show some planes of ELF of the given unit cell while concealing some unnecessary atoms for simplicity and intuition. From the ELF,we can see that the electrons are well localized around the Zr and S atoms,showing good metallicity. However, the electron distribution in the Ge layer changes.In theP4/nmmandP4/nmm-II phases,the electrons between Ge atoms formed covalent bonds. Compared with theP4/nmmphase,the electron distribution density of theP4/nmm-II phase decreases with the prolongation of the bonds,resulting in the weakening of the bond strength. Additionally,the shortening of the Ge—S distance changes the electron distribution between the Ge and S atoms,leading to more metallic bonding. Combining the two aspects above,the softening of theP4/nmm-II phase along thea-axis after the phase transition is comprehensible with theP4/nmmphase.

    Fig.3. ELF of ZrGeS at 90 GPa(a),(b)P4/nmm phase;(c),(d)P4/nmm-II phase.

    wherek=G/Bis the ratio of the shear modulus to the bulk modulus.

    All calculated elastic constants are presented in Table 1.They are positive and obey the Born criterion of mechanical stability.[63]Table 1 indicates that theCi jvalues of this system

    Table 1. Calculated elastic constants (Cij), bulk modulus (BH), shear modulus (GH), and Young’s modulus (Y) in GPa as well as the Debye temperature(ΘD),Poisson’s ratio(ν)of ZrGeS-P4/nmm and ZrGeS-P4/nmm-II at 0 and 90 GPa.

    5. Electronic properties

    The electronic properties of the newly predicted ZrXYare also investigated by calculating their electronic density of states (DOS) and band structures. The results show that all of these newly founded structures are metallic. We show the electronic band structures and DOS of theP4/nmm-II phase of ZrGeS and theP4/mmmphase of ZrGeSe in Fig.4. The band structures and DOS of the remaining newly discovered phase are attached in Fig. S3. For theP4/nmm-II phase of ZrGeS,the DOS near the Fermi level mainly originates from the 4d orbital of Zr, while the contributions from the 4p orbital of Ge and S are quite small. TheP4/mmmstructures of all compounds exhibit similar band structures at high pressure. Likewise,the DOS near the Fermi level mainly originates from Zr atoms,while the contributions fromXandYatoms are small.The total DOS at the Fermi level is found to increase in both IV A and VI A groups as theXatoms move from Si to Ge andYatoms move from Se to Te. We also calculated the surface states of ZrGeS and ZrGeSe,and the results show strong metallic behavior. We showed the surface states of ZrGeS at 0 and 90 GPa in Fig.S5.

    Fig.4. Calculated band structure. (a),(b)Band structures of the P4/nmm-II structure of ZrGeS at 0 GPa and 90 GPa. (c),(d)Band structures of the P4/mmm structure of ZrGeSe at 0 GPa and 120 GPa.

    6. Superconductivity

    Considering that the metallic high-pressureP4/nmm-II phase of ZrGeS and theP4/mmmphase of ZrGeSe remain stable at 0 GPa, we studied the superconducting properties of ZrGeS and ZrGeSe.

    The superconducting critical temperature (Tc) is estimated using the modified Allen—Dynes McMillan equation[74,75]

    The electron—phonon coupling constant(λ)can be evaluated using the relation

    We showed theα2F(ω) and accumulated EPC strengthλ(ω)of these two structures at 0 GPa and transition pressure,respectively,for comparison. We also plotted the phonon dispersion and linewidth of the phonon spectrum.

    Fig.5.Phonon spectra(left),phonon density of states projected onto selected atoms(middle),α2F(ω)and accumulated EPC strength λ(ω)(right).The size of the circles on the phonon dispersion is proportional to the EPC strength.(a)and(b)P4/nmm-II structures of ZrGeS at 0 GPa and 90 GPa.(c)and(d)P4/mmm structures of ZrGeSe at 0 GPa and 120 GPa.

    For ZrGeS,the phonon DOS is separated into two regions at both pressures. The low-frequency modes(0—200 cm-1)at 0 GPa and (0—363 cm-1) at 90 GPa are associated with vibrations of heavy Zr and Ge atoms,while the high-frequency branches (220—330 cm-1) at 0 GPa and (380—525 cm-1) at 90 GPa mainly originate from S atoms. The high-frequency part of phonon DOS is slightly different at 0 GPa and 90 GPa.At 90 GPa, the high-frequency part contains a small portion of Zr atom vibrations, which cannot be neglected, while at 0 GPa, almost all high-frequency phonon DOSs arise from S atoms. This is understandable because at high pressure, the shorter in-plane bond of Zr and S gives the relatively larger phonon DOS of Zr. From the phonon dispersion, it can be seen that when the pressure drops,the phonon modes are softened without a significant change in shape. Meanwhile, the EPC strength contributed by the low frequency at 0 GPa is stronger than that at 90 GPa. From Figs. 5(a) and 5(b), we can tell that almost all of the phonon modes contribute toλat 0 GPa and 90 GPa. In contrast,high-frequency phonon modes at 0 GPa contribute approximately 20% to the totalλ, while at 90 GPa, high-frequency phonon modes contribute approximately 34% ofλ. Although high-frequency phonon modes contribute more at high pressure,theirTcdrops as all the spectra harden. Our theoretical analysis provides the estimation of EPCλ=0.75, logarithmic average frequencyωlog=197 K,andTc=8.10 K with a commonly used Coulomb repulsion coefficient ofμ*= 0.1 at 0 GPa. At high pressure, the phonon dispersion hardened,and combined with shrinkage of the phonon dispersion linewidth,Tcdecreased to 1.48 K at 90 GPa withλ=0.395,ωlog=380 K.

    For ZrGeSe,our theoretical analysis provides the estimation ofλ=0.75,ωlog=197.6 K,Tc=8.04 K withμ*=0.1 at 0 GPa, while at 90 GPa,λ= 0.337,ωlog= 348.4 K,Tc=0.47 K. For phonon DOS, unlike ZrGeS, all the atoms are involved in the entire frequency range. This is consistent with the expectations of the relatively strong bonding of Zr,Ge, and Se atoms. From Figs. 5(c) and 5(d), we can clearly see that as the pressure drops,both the phonon dispersion and phonon DOS are greatly altered. The phonon DOS of ZrGeSe at 120 GPa in the high-frequency region at approximately 384 cm-1accounts for a relatively large portion of the total phonon DOS.As pressure drops,the phonon DOS of these high-frequency regions has mostly changed,except for two energy regions: one is approximately 220 cm-1of Se and the other is 204 cm-1of Zr and Ge. From the phonon dispersion,it can be seen that some modes of ZrGeSe are significantly softened,especially along theG—X—M—Gpath. The largest e—ph coupling values occur forX(0,0.5,0) andG(0,0,0), and these modes with maximal coupling are depicted in Fig.6. As shown in Fig.6(a),for high symmetry pointX,the vibrations are composed of(I)a relative motion mode of the Zr1 and two Ge atoms along thec-axis and(II)a mode where the two layers of Se atoms move in opposite directions along thea-axis.In Figs. 6(b)—6(d), we display three different modes for high symmetry pointG: Fig. 6(b), Zr1 and Zr2, Ge and Se atoms relatively vibrate along the(1,1/2,0)direction;Fig.6(c),Zr1 and Zr2, Ge and Se atoms relatively vibrate along theb-axis;Fig. 6(d), Zr1, Se and Ge atoms relatively vibrate along thec-axis. These modes shift from~200 cm-1at 90 GPa to~50 cm-1at 0 GPa. We can then distinguish three regions inα2F(ω) at 0 GPa: a low-energy region from 29 cm-1to 79 cm-1,an intermediate region from 79 cm-1to 196 cm-1,and a high-energy region from 196 cm-1to 234 cm-1. We found that the relative contributions of each region are considerably different. The low-energy modes contribute~19.5%of the totalλ, intermediate-energy modes contribute~73%ofλ,and high-energy modes contribute~7.5%ofλ.

    Fig.6. Vibration of the relative motion mode of(a)X and(b—(d)G.

    7. Conclusion

    We carried out crystal structure predictions of the ZrXYsystem under high pressure. Four new structures were found,namely,P4/nmm-II,Cmcm,Imm2, andP4/mmm. The calculation results of the formation energy, phonon spectra, and mechanical stability indicate that the high-pressure structures are stable. TheP4/nmm-II structure of ZrGeSe and theP4/mmmstructure of ZrGeSe have no imaginary frequencies at 0 GPa, which indicates that they may be quenchable to atmospheric pressure. TheP4/nmmstructure of ZrGeS undergoes an isosymmetric phase transition, and the hardness of the denser structure is less than that of the initial structure,which is somewhat anti-intuitive since the hardness usually increases with density. TheP4/nmm-II phase of ZrGeS and theP4/mmmphase of ZrGeSe are superconductors. TheTcof the two phases gradually increases with decreasing pressure,from 1.5 K at 90 GPa to 8.1 K at 0 GPa and 0.5 K at 90 GPa to 8.0 K at 0 GPa, respectively. Our study expands the understanding of ZrXYsystems under high-pressure conditions and provides theoretical guidance and support for high-pressure superconductivity in this family.

    Acknowledgments

    J.S. thanks the financial support from the National Natural Science Foundation of China (Grant Nos. 12125404,11974162, and 11834006) and the Fundamental Research Funds for the Central Universities, China. The calculations were carried out using supercomputers at the High Performance Computing Center of Collaborative Innovation Center of Advanced Microstructures,the high-performance supercomputing center of Nanjing University.

    亚洲精品在线观看二区| av不卡在线播放| 国产99白浆流出| 午夜影院日韩av| 亚洲男人天堂网一区| 狠狠狠狠99中文字幕| 中文字幕人妻熟女乱码| 亚洲精品乱久久久久久| 亚洲精品国产色婷婷电影| 女人爽到高潮嗷嗷叫在线视频| 韩国av一区二区三区四区| 悠悠久久av| 18禁国产床啪视频网站| 日韩大码丰满熟妇| 淫妇啪啪啪对白视频| 色老头精品视频在线观看| 男女午夜视频在线观看| 女人久久www免费人成看片| 久久人妻熟女aⅴ| 欧美日韩中文字幕国产精品一区二区三区 | 国产免费男女视频| 大香蕉久久成人网| 中出人妻视频一区二区| 美国免费a级毛片| 欧美+亚洲+日韩+国产| 免费在线观看完整版高清| 国产精品久久视频播放| 国产激情久久老熟女| 欧美乱码精品一区二区三区| 久久国产乱子伦精品免费另类| 国产精品二区激情视频| 免费观看a级毛片全部| 制服人妻中文乱码| 久久久精品区二区三区| 99re6热这里在线精品视频| 成年人免费黄色播放视频| 伦理电影免费视频| 成年人免费黄色播放视频| 久热这里只有精品99| 亚洲片人在线观看| 亚洲精品在线观看二区| 久久国产精品大桥未久av| 久久精品亚洲av国产电影网| e午夜精品久久久久久久| 一本一本久久a久久精品综合妖精| 精品国内亚洲2022精品成人 | 女人被狂操c到高潮| 成人国语在线视频| 亚洲精品自拍成人| 亚洲精品粉嫩美女一区| 99国产极品粉嫩在线观看| 亚洲全国av大片| 91成人精品电影| 国产在线观看jvid| 国产一区在线观看成人免费| 亚洲熟女毛片儿| 搡老熟女国产l中国老女人| 多毛熟女@视频| 国产成人一区二区三区免费视频网站| 亚洲一区高清亚洲精品| 亚洲视频免费观看视频| 黄频高清免费视频| 欧美不卡视频在线免费观看 | 一进一出抽搐动态| 免费少妇av软件| 精品一区二区三区av网在线观看| videosex国产| 精品福利观看| 国产精品美女特级片免费视频播放器 | 精品人妻熟女毛片av久久网站| 亚洲av片天天在线观看| 国产精品久久久久久人妻精品电影| 动漫黄色视频在线观看| 国产精品亚洲av一区麻豆| 午夜免费观看网址| 午夜91福利影院| 麻豆av在线久日| 午夜精品国产一区二区电影| 欧美一级毛片孕妇| 人妻一区二区av| 无限看片的www在线观看| 成年人黄色毛片网站| 久久久国产欧美日韩av| 欧美大码av| 黑丝袜美女国产一区| 国产精品免费视频内射| 国产国语露脸激情在线看| 一a级毛片在线观看| 久久 成人 亚洲| 亚洲aⅴ乱码一区二区在线播放 | 黄色女人牲交| 无人区码免费观看不卡| 国产亚洲精品久久久久久毛片 | 久久久久国产精品人妻aⅴ院 | a级毛片黄视频| 精品熟女少妇八av免费久了| avwww免费| 热re99久久国产66热| 亚洲精品自拍成人| 男女午夜视频在线观看| 人人澡人人妻人| 满18在线观看网站| 精品电影一区二区在线| 久久ye,这里只有精品| 成在线人永久免费视频| 精品国产超薄肉色丝袜足j| 中出人妻视频一区二区| 大香蕉久久网| 亚洲专区国产一区二区| 日韩一卡2卡3卡4卡2021年| 一进一出好大好爽视频| 91在线观看av| 成年人黄色毛片网站| av欧美777| 91九色精品人成在线观看| 黄片大片在线免费观看| 免费少妇av软件| 在线国产一区二区在线| 制服诱惑二区| 欧美黑人精品巨大| 亚洲午夜理论影院| 成人黄色视频免费在线看| 人妻 亚洲 视频| 一本综合久久免费| 日本一区二区免费在线视频| 亚洲av美国av| 日韩 欧美 亚洲 中文字幕| 一本一本久久a久久精品综合妖精| 免费在线观看视频国产中文字幕亚洲| 亚洲一卡2卡3卡4卡5卡精品中文| 成年动漫av网址| 国产精品久久久久成人av| 精品国产一区二区久久| 国产欧美亚洲国产| 丰满饥渴人妻一区二区三| 久久人人97超碰香蕉20202| 飞空精品影院首页| 欧美成人午夜精品| 激情在线观看视频在线高清 | 欧美激情 高清一区二区三区| 欧美亚洲日本最大视频资源| 精品一区二区三区av网在线观看| 大香蕉久久成人网| 亚洲av美国av| 久久久久久免费高清国产稀缺| 国产片内射在线| 在线观看午夜福利视频| 日韩欧美一区视频在线观看| 欧美激情久久久久久爽电影 | 91字幕亚洲| 午夜免费观看网址| 亚洲视频免费观看视频| 国产高清激情床上av| 亚洲国产精品sss在线观看 | 久久国产精品人妻蜜桃| 欧美精品人与动牲交sv欧美| 午夜福利乱码中文字幕| 精品福利观看| av一本久久久久| 欧美日韩成人在线一区二区| 1024香蕉在线观看| 亚洲精品在线美女| 伦理电影免费视频| 又大又爽又粗| 午夜免费观看网址| 久久久久久免费高清国产稀缺| 黑人欧美特级aaaaaa片| 中文欧美无线码| 日韩欧美三级三区| 热re99久久精品国产66热6| 久久人妻av系列| 欧美乱妇无乱码| 99在线人妻在线中文字幕 | 狠狠婷婷综合久久久久久88av| 国产日韩欧美亚洲二区| 国产亚洲精品一区二区www | 黄网站色视频无遮挡免费观看| 9色porny在线观看| 男人的好看免费观看在线视频 | 在线看a的网站| 日韩欧美一区视频在线观看| 在线观看66精品国产| 国产精品免费大片| 亚洲精品自拍成人| 欧美黄色片欧美黄色片| 美女视频免费永久观看网站| 免费在线观看日本一区| 国产成人一区二区三区免费视频网站| 午夜福利免费观看在线| tube8黄色片| 国产精品乱码一区二三区的特点 | 欧美日韩瑟瑟在线播放| 多毛熟女@视频| 成人手机av| 国产免费现黄频在线看| 国产野战对白在线观看| 超碰成人久久| 成人影院久久| tocl精华| 女人久久www免费人成看片| 自线自在国产av| 两性午夜刺激爽爽歪歪视频在线观看 | 一本综合久久免费| 国产男女内射视频| 一区二区三区精品91| 国产一区二区激情短视频| 国产精品综合久久久久久久免费 | 精品一区二区三区av网在线观看| 99热国产这里只有精品6| 日韩欧美免费精品| 久久久精品免费免费高清| 丰满饥渴人妻一区二区三| 国产成人精品久久二区二区免费| 久久精品国产99精品国产亚洲性色 | 国产欧美日韩一区二区三区在线| 色播在线永久视频| 熟女少妇亚洲综合色aaa.| 国产一区二区三区在线臀色熟女 | 亚洲专区国产一区二区| 日日夜夜操网爽| 可以免费在线观看a视频的电影网站| 亚洲五月天丁香| 啦啦啦 在线观看视频| 搡老岳熟女国产| 中文亚洲av片在线观看爽 | 精品视频人人做人人爽| 超碰97精品在线观看| 美国免费a级毛片| 国产精品一区二区在线不卡| 免费在线观看黄色视频的| 黄频高清免费视频| 日韩欧美三级三区| 80岁老熟妇乱子伦牲交| 久久久久久久精品吃奶| 大香蕉久久成人网| 美女 人体艺术 gogo| 亚洲综合色网址| 制服人妻中文乱码| 搡老熟女国产l中国老女人| 咕卡用的链子| 怎么达到女性高潮| 大片电影免费在线观看免费| 中文字幕人妻熟女乱码| 老鸭窝网址在线观看| 视频区欧美日本亚洲| 在线永久观看黄色视频| 女人高潮潮喷娇喘18禁视频| 亚洲精品成人av观看孕妇| 亚洲欧美一区二区三区久久| 伦理电影免费视频| 久久久久久亚洲精品国产蜜桃av| x7x7x7水蜜桃| 久久 成人 亚洲| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲国产精品sss在线观看 | 欧美最黄视频在线播放免费 | 欧美黑人欧美精品刺激| 国产淫语在线视频| av天堂在线播放| 婷婷成人精品国产| 精品福利观看| 香蕉久久夜色| 亚洲色图综合在线观看| 国产高清videossex| 久久久国产成人精品二区 | 99精国产麻豆久久婷婷| 十八禁网站免费在线| 欧美黑人精品巨大| videos熟女内射| 婷婷成人精品国产| 一级黄色大片毛片| 色婷婷久久久亚洲欧美| 国产成人精品久久二区二区免费| 成人18禁高潮啪啪吃奶动态图| 精品欧美一区二区三区在线| 无人区码免费观看不卡| 两性夫妻黄色片| 亚洲五月天丁香| 欧美激情高清一区二区三区| 宅男免费午夜| 99久久国产精品久久久| 91成年电影在线观看| 久久久精品免费免费高清| av线在线观看网站| 亚洲精品成人av观看孕妇| 香蕉久久夜色| 91老司机精品| 国产精品久久电影中文字幕 | 男人的好看免费观看在线视频 | 老熟女久久久| 亚洲精品成人av观看孕妇| 日韩免费高清中文字幕av| 精品一区二区三区av网在线观看| 国产成人欧美在线观看 | 最近最新中文字幕大全电影3 | 国产精品免费大片| 亚洲精品乱久久久久久| 久久这里只有精品19| 欧美日韩福利视频一区二区| 国产精华一区二区三区| 久久天躁狠狠躁夜夜2o2o| 国内毛片毛片毛片毛片毛片| 久久香蕉国产精品| 欧美日本中文国产一区发布| 一进一出好大好爽视频| 久久精品国产亚洲av香蕉五月 | 香蕉国产在线看| 丝袜人妻中文字幕| 日韩人妻精品一区2区三区| 在线看a的网站| 狠狠狠狠99中文字幕| 午夜亚洲福利在线播放| 叶爱在线成人免费视频播放| 黑丝袜美女国产一区| 国产成人精品在线电影| 久久精品人人爽人人爽视色| 成人免费观看视频高清| 19禁男女啪啪无遮挡网站| 天堂√8在线中文| 女人被躁到高潮嗷嗷叫费观| 美女国产高潮福利片在线看| 国产aⅴ精品一区二区三区波| 欧美精品av麻豆av| 亚洲精品国产色婷婷电影| 法律面前人人平等表现在哪些方面| 成年女人毛片免费观看观看9 | 久久午夜综合久久蜜桃| 国产片内射在线| 最新美女视频免费是黄的| 最新美女视频免费是黄的| 欧美成人午夜精品| 国产乱人伦免费视频| 欧美精品亚洲一区二区| 精品福利观看| 少妇 在线观看| 国产亚洲一区二区精品| 中文亚洲av片在线观看爽 | 叶爱在线成人免费视频播放| 中文字幕另类日韩欧美亚洲嫩草| 免费女性裸体啪啪无遮挡网站| 日韩欧美免费精品| 亚洲国产精品一区二区三区在线| 男女免费视频国产| 最近最新免费中文字幕在线| 日韩大码丰满熟妇| 美女扒开内裤让男人捅视频| 亚洲五月色婷婷综合| 一区二区日韩欧美中文字幕| 男女免费视频国产| 亚洲精品乱久久久久久| 亚洲午夜理论影院| 91字幕亚洲| 国产伦人伦偷精品视频| 久久久久久久久久久久大奶| 国产成人影院久久av| 中文字幕人妻熟女乱码| 色婷婷av一区二区三区视频| 欧美日韩亚洲国产一区二区在线观看 | 大型av网站在线播放| 免费看十八禁软件| 一级作爱视频免费观看| 亚洲成a人片在线一区二区| 免费久久久久久久精品成人欧美视频| 国产人伦9x9x在线观看| 窝窝影院91人妻| 国产亚洲精品一区二区www | 亚洲一区高清亚洲精品| 亚洲av成人一区二区三| 亚洲伊人色综图| 他把我摸到了高潮在线观看| 欧美精品人与动牲交sv欧美| 欧美另类亚洲清纯唯美| 成年版毛片免费区| 国产高清激情床上av| 在线天堂中文资源库| 久久精品国产亚洲av高清一级| 亚洲五月婷婷丁香| 免费不卡黄色视频| 色尼玛亚洲综合影院| 脱女人内裤的视频| 亚洲自偷自拍图片 自拍| 麻豆乱淫一区二区| 成人国产一区最新在线观看| 国产不卡一卡二| 捣出白浆h1v1| 欧美激情高清一区二区三区| a在线观看视频网站| 99热网站在线观看| 成人影院久久| 午夜91福利影院| 精品少妇一区二区三区视频日本电影| 91字幕亚洲| av视频免费观看在线观看| videosex国产| 一边摸一边抽搐一进一小说 | 亚洲午夜精品一区,二区,三区| 美女视频免费永久观看网站| 免费少妇av软件| 在线天堂中文资源库| 99国产精品一区二区蜜桃av | 757午夜福利合集在线观看| 亚洲精品中文字幕在线视频| 国产精品久久久av美女十八| 欧美黑人欧美精品刺激| 黄频高清免费视频| 国产熟女午夜一区二区三区| 亚洲成国产人片在线观看| 亚洲情色 制服丝袜| 精品久久久精品久久久| 久久久久久免费高清国产稀缺| 波多野结衣av一区二区av| 午夜福利,免费看| 亚洲精品中文字幕一二三四区| 欧美精品一区二区免费开放| 精品欧美一区二区三区在线| 啦啦啦视频在线资源免费观看| 国产精品一区二区精品视频观看| 韩国精品一区二区三区| 另类亚洲欧美激情| 成在线人永久免费视频| 青草久久国产| 大片电影免费在线观看免费| 一区二区三区国产精品乱码| 一级a爱视频在线免费观看| 涩涩av久久男人的天堂| 亚洲av美国av| 国产精品久久久久久人妻精品电影| 国产成人一区二区三区免费视频网站| 国产高清国产精品国产三级| 99国产精品一区二区三区| 午夜精品国产一区二区电影| 国产精品国产av在线观看| 精品免费久久久久久久清纯 | 手机成人av网站| www.自偷自拍.com| 深夜精品福利| 亚洲av欧美aⅴ国产| 99久久精品国产亚洲精品| 高潮久久久久久久久久久不卡| 亚洲午夜精品一区,二区,三区| 十八禁高潮呻吟视频| 亚洲熟妇熟女久久| 男人的好看免费观看在线视频 | 亚洲中文日韩欧美视频| 精品一区二区三区av网在线观看| 色老头精品视频在线观看| 丝瓜视频免费看黄片| 午夜免费观看网址| 啪啪无遮挡十八禁网站| 久久久国产成人精品二区 | 久久久国产成人精品二区 | 欧美成人免费av一区二区三区 | 国产免费男女视频| 99国产极品粉嫩在线观看| 国产午夜精品久久久久久| 高清毛片免费观看视频网站 | 亚洲aⅴ乱码一区二区在线播放 | 一a级毛片在线观看| 亚洲欧美激情综合另类| 亚洲精品中文字幕在线视频| 亚洲第一青青草原| 亚洲av欧美aⅴ国产| 精品久久蜜臀av无| 搡老熟女国产l中国老女人| 亚洲av成人不卡在线观看播放网| 在线免费观看的www视频| 这个男人来自地球电影免费观看| 欧洲精品卡2卡3卡4卡5卡区| 亚洲一区中文字幕在线| 国产一区在线观看成人免费| 久久中文字幕一级| 夜夜夜夜夜久久久久| 久久精品国产综合久久久| 18禁观看日本| 国产精品.久久久| bbb黄色大片| 看片在线看免费视频| 一级a爱片免费观看的视频| 欧美日韩一级在线毛片| 欧美乱色亚洲激情| 99精品欧美一区二区三区四区| 久久久国产成人精品二区 | 精品福利观看| 久久久国产精品麻豆| 精品少妇久久久久久888优播| 欧美黑人欧美精品刺激| 18禁黄网站禁片午夜丰满| 99久久99久久久精品蜜桃| 免费黄频网站在线观看国产| 午夜亚洲福利在线播放| 欧美日韩亚洲国产一区二区在线观看 | 亚洲综合色网址| 国产精品一区二区精品视频观看| 午夜福利欧美成人| 18禁美女被吸乳视频| 免费久久久久久久精品成人欧美视频| 亚洲va日本ⅴa欧美va伊人久久| 精品国产一区二区三区四区第35| 交换朋友夫妻互换小说| 色尼玛亚洲综合影院| 天堂俺去俺来也www色官网| 亚洲成av片中文字幕在线观看| 国产av又大| 老司机在亚洲福利影院| 久久精品人人爽人人爽视色| 国产精品欧美亚洲77777| 日本五十路高清| 91国产中文字幕| 久久精品亚洲精品国产色婷小说| 一进一出好大好爽视频| 久久草成人影院| 久久人人97超碰香蕉20202| 久久久久国内视频| 欧美久久黑人一区二区| 欧美亚洲日本最大视频资源| 亚洲av电影在线进入| 大片电影免费在线观看免费| 久久香蕉精品热| 女性生殖器流出的白浆| 久久久国产成人精品二区 | 亚洲一区高清亚洲精品| 又黄又爽又免费观看的视频| 丰满的人妻完整版| 香蕉国产在线看| 91在线观看av| 久久狼人影院| 成年人黄色毛片网站| 热re99久久国产66热| av在线播放免费不卡| 亚洲色图 男人天堂 中文字幕| 亚洲av成人一区二区三| 在线观看免费视频网站a站| 国产精品成人在线| 久久精品国产综合久久久| av欧美777| 别揉我奶头~嗯~啊~动态视频| 又黄又粗又硬又大视频| 久久精品国产清高在天天线| 三级毛片av免费| 精品福利观看| 日本黄色日本黄色录像| 性少妇av在线| 亚洲专区国产一区二区| 国产精品.久久久| 午夜久久久在线观看| 女人被躁到高潮嗷嗷叫费观| 精品国产一区二区三区久久久樱花| 欧美国产精品一级二级三级| 久久久久久久国产电影| 人成视频在线观看免费观看| 精品少妇久久久久久888优播| tube8黄色片| 男人的好看免费观看在线视频 | 热re99久久精品国产66热6| 国产av精品麻豆| av天堂久久9| 村上凉子中文字幕在线| 母亲3免费完整高清在线观看| 一级毛片女人18水好多| 国产精品久久久av美女十八| 午夜精品在线福利| 欧美国产精品va在线观看不卡| 亚洲,欧美精品.| 国产单亲对白刺激| 丝袜在线中文字幕| 交换朋友夫妻互换小说| 91精品国产国语对白视频| 久热这里只有精品99| 很黄的视频免费| 激情视频va一区二区三区| 五月开心婷婷网| 国产片内射在线| 午夜福利视频在线观看免费| 亚洲熟女精品中文字幕| 一边摸一边抽搐一进一出视频| 国产三级黄色录像| 国产片内射在线| 无遮挡黄片免费观看| 99香蕉大伊视频| 国产乱人伦免费视频| 成在线人永久免费视频| 高潮久久久久久久久久久不卡| 久久精品熟女亚洲av麻豆精品| 久久久精品国产亚洲av高清涩受| 亚洲欧美精品综合一区二区三区| 黄色视频,在线免费观看| 人妻丰满熟妇av一区二区三区 | 捣出白浆h1v1| 亚洲欧洲精品一区二区精品久久久| 涩涩av久久男人的天堂| 亚洲人成电影免费在线| 亚洲成人免费电影在线观看| 亚洲精品中文字幕一二三四区| 亚洲av日韩精品久久久久久密| 母亲3免费完整高清在线观看| 久久热在线av| 国产精品影院久久| 一级作爱视频免费观看| 久久国产精品影院| 狠狠狠狠99中文字幕| 亚洲午夜理论影院| 黄色视频不卡| 丰满迷人的少妇在线观看| 亚洲片人在线观看| 中文字幕色久视频| 亚洲伊人色综图| 国产精品美女特级片免费视频播放器 | 亚洲第一青青草原| 多毛熟女@视频| 国产真人三级小视频在线观看| 99久久精品国产亚洲精品| 999久久久国产精品视频| 香蕉国产在线看| 亚洲欧美激情在线| 国产精品久久视频播放|