• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Raman spectroscopy investigation on the pressure-induced structural and magnetic phase transition in two-dimensional antiferromagnet FePS3

    2022-05-16 07:11:06HongZeng曾鴻TingtingYe葉婷婷PengCheng程鵬DeyuanYao姚德元andJunfengDing丁俊峰
    Chinese Physics B 2022年5期

    Hong Zeng(曾鴻) Tingting Ye(葉婷婷) Peng Cheng(程鵬) Deyuan Yao(姚德元) and Junfeng Ding(丁俊峰)

    1Key Laboratory of Materials Physics,Institute of Solid State Physics,HFIPS,Chinese Academy of Sciences,Hefei 230031,China

    2University of Science and Technology of China,Hefei 230026,China

    Keywords: FePS3,layered magnetic materials,high pressure,Raman spectroscopy

    1. Introduction

    Recent discoveries of magnetic two-dimensional (2D)van der Waals(vdW)materials,which can stably retain longrange magnetic ordering with a single atomic layer thickness,provide rich opportunities for future novel devices and probing magnetic fundamental properties.[1–14]Various 2D magnets have recently been proposed, such as Cr2Ge2Te6, CrI3,and Fe3GeTe2.[1–4]Transition metal phosphorus trisulfides(TMPS3,TM= Fe, Ni, Mn, etc.) are an important family of vdW layered antiferromagnetic materials exhibiting different kinds of magnetically ordered states by altering the choice of metal ion, which has been a versatile platform for investigating low-dimensional magnetism.[15–19]One such material,FePS3, is a magnetic Mott insulator with a large spin(S=2)and has an Ising-type antiferromagnetic ordering down to the monolayer limit withTN~118 K.[20–24]

    Pressure has been proven to be an effective tool to tune the structural,electronic,and magnetic properties of these 2D magnetic materials.[25–29]Earlier high-pressure x-ray experiments suggested that there are three different phases with increasing pressures up to 18.1 GPa.[29]At ambient pressure,FePS3has a monoclinic lattice with space groupC2/m, denoted as the low-pressure(LP)phase and shown in Fig.1(a).The first phase transition occurs at approximately 4 GPa,transforming to high-pressure (HP) phase HP-I with a monoclinic structure(C2/m). There is a visible difference between these two phases in which the adjacent layers slide with each other,causing a displacement of the unit cell along thea-axis and a reduction in theβangle between theaandcaxes, as shown in Fig. 1 (from 107.34°to 89.33°). The second phase transition occurs at approximately 14 GPa, changing to highpressure phase HP-II with a trigonal structure(P-31m) in the concomitance of the volume collapse.[28–31]Moreover, the insulator-to-metal transition (IMT) occurs accompanying the second transition with a reduction in the unit cell and the vdW gap.[25,26,30]However, exactly determining the crystal structure at high pressure is always a challenge because of the inhomogeneous pressure distribution, multiple phase coexistence,broadening of diffraction peaks, and so on. Thus, further investigations using other techniques are needed to verify the structural evolution under pressure detected by x-ray diffraction.

    In addition to the changes in the structural and electron transitions, layered FePS3undergoes various magnetic order transitions under pressure.[27,28,31]There is now increasing controversy about the magnetic structure evolution with different views. Zhanget al.[31]used DFT +Ucalculations to indicate that the FePS3-C2/mLP phase and the FePS3-C2/mHP-I phase are both in the zigzag antiferromagnetic(z-AFM) state, whereas the FePS3-P-31mHP-II phase is nonmagnetic(NM),suggesting a collapse of the Fe spin configuration due to the spin-crossover transition from magnetic highspin(S=2)to nonmagnetic low-spin(S=0).[28,31]However,Coaket al.[27]used neutron powder diffraction to measure the magnetic structure evolution up to 18.3 GPa at different temperatures. The two different magnetic structures, which are the overall antiferromagnetic structures within theabplanes,switch at 2 GPa from the magnetic propagation vector and are altered fromk=(0,1,1/2) tok=(0,1,0) with a halving of the magnetic unit cell size,[27]shown in supplementary information Fig. S1. In addition, at high pressure, a suppression of this long-range magnetic order due to the pressure-induced increasing crystal field splitting energyΔ[31]and appearance of short-range magnetic order even existing above room temperature were observed,[27]while earlier high-pressure x-ray emission spectroscopy[28]and related calculations reported a nonmagnetic state (S=0) via pressure-induced spin quenching after the disappearance of the long-range magnetic order in theseTMPS3materials.[28,31–33]

    Fig.1. Crystallographic structure of FePS3 in the low-pressure monoclinic phase(LP,space groupC2/m),intermediate pressure monoclinic phase(HPI,space group C2/m)and high-pressure trigonal phase(HP-II,space group P-31m). Fe atoms are pictured in blue,P in purple,and S in yellow. Crystallographic parameters are taken from earlier XRD experimental data for FePS3 at 0, 10 GPa, and 18 GPa. The illustrations were created using VESTA software.[29,34]

    To further clarify the effect of pressure on FePS3,we conducted a systematic investigation of pressure dependent Raman spectroscopy, which has been proven to be a powerful tool to probe the crystalline structure and magnetic structure changes in these 2D magnetic materials.[35,36]Here, our results verify two structural phase transitions and two magnetic structure transitions with reference to earlier calculations and experiments for various high-pressure phases.[27–31]

    2. Experimental details

    Commercially available high-quality single crystals of FePS3(purchased from Six Carbon Technology) were used for Raman spectroscopy and high-pressure experiments. The materials were synthesized using the chemical vapor transport(CVT)method and checked by single crystal x-ray diffraction(XRD).[22,37,38]High-pressure Raman measurements were performed up to 18.9 GPa at room temperature in a symmetric diamond anvil cell (DAC) with 300 μm culet-sized diamonds. The thin FePS3flake studied herein was prepared by mechanical exfoliation and then loaded into the sample chamber. Pressure was determined by measuring the shift in the fluorescence wavelength of ruby chips. Silicone oil was used as the pressure transmitting medium(PTM).The Raman spectra were recorded in a backscattering configuration with a 532 nm excitation wavelength laser using a confocal microscope setup with a 20×objective(N.A.=0.25)and a triple grating Raman spectrometer (1200 mm-1grating) coupled to a thermoelectrically cooled CCD detector. The appropriate laser power of 5 mW was chosen to improve the signal-to-noise ratio as well as avoid an excessive heating effect.

    3. Results and discussion

    3.1. Crystal structure and Raman studies at ambient pressure

    The optical image of the single crystal sample of FePS3is illustrated in Fig.2(a). Bulk FePS3at ambient pressure and room temperature has a monoclinic structure with the space groupC2/mchecked by single x-ray diffraction,in which the number on the peaks corresponds to the (00l) index.[39]As shown in Fig. 1(a), the crystal structure of FePS3at ambient pressure is composed of two-dimensional(2D) layers extended parallel to theabplane and bonded by weak van der Waals interactions along thecaxis, similar to other layered materials, such as graphite and MoS2. For each layer, Fe atoms are octahedrally coordinated with six S atoms,while P atoms are tetrahedrally coordinated with three S atoms forming a [PS3]2-unit, which is further connected with another unit forming a[P2S6]4-unit of a bipyramid shape.[23,24]

    Fig. 2. (a) XRD patterns of single crystals of FePS3, corresponding to the crystal plane of (00l). The inset shows a photograph of the FePS3 sample. (b)Raman spectroscopy of FePS3 single crystals at room temperature(300 K)using a 532 nm excitation laser.

    The primitive cell of bulk FePS3has 10 atoms in total (two FePS3formula units), and it possesses 30 phonon modes at the irreducible Brillouin zone center given byΓ=8Ag+6Au+7Bg+9Bu.[22–24,40,41]Based on the group analysis,the Raman active modes in FePS3are of Ag and Bg symmetry,and the corresponding Raman tensors are

    From the Raman spectra of the cleaved FePS3sample in Fig. 2(b), we can see that at ambient pressure, there are six modes with green laser excitation (λ=532 nm). They center at 106.2 cm-1, 158 cm-1, 223.7 cm-1, 246.1 cm-1,278.7 cm-1and 378.6 cm-1, identified as Pi,i=1,...,6 in Fig. 2(b). The experimental observed mode frequencies are summarized in Table 1 and are in good agreement with the experimental and theoretical results in the literature.[22–24]The low-frequency modes P1and P2are from vibrations involving Fe atoms and have dramatic changes accompanying a sudden Raman intensity increase due to the onset of antiferromagnetic ordering.[41,42]Interestingly,P1at room temperature in the paramagnetic phase shows an asymmetric and broad line shape, whereas four sharp peaks from P1emerge below the Neel temperature. It can be understood in terms of zone folding, which the in-plane unit cell doubles in size and the first Brillouin zone is halved due to the onset of antiferromagnetic ordering.[23,24,43]We note that the line shape of P1is almost unchanged by the variations in pressure shown in the supplementary information Fig.S2; therefore,we applied the one-Lorentzian peak fit for simplification. On the other hand,the high-frequency modes P3–P6,similar to the corresponding modes for the variousTMPS3materials,[35,36,40]are mostly ascribed to the molecular-like vibrations from the bipyramid structures of the[P2S6]4-unit with a very small Fe ions contribution.

    Table 1. Raman frequencies(in cm-1)for FePS3 at different pressures.The experimental Raman frequencies measured at ambient pressure and related high-pressure Raman calculations(18 GPa) are listed for comparison.

    3.2. High-pressure Raman investigation

    To investigate the pressure-driven phase transition in FePS3, the Raman spectrum and phonon frequency change of the thin flake sample were measured under pressures up to 18.5 GPa shown in Figs.3(a)and 3(b).

    3.2.1. Pressure-induced structural phase transition

    Fig.3. (a)Pressure dependence of the Raman spectrum for the single crystal flake FePS3. (b)Pressure-dependent frequencies of several Raman peaks using Lorentz fit. (c)FWHM of P6 and P8 under pressure. (d)2D plot of the Raman intensity as a function of pressure and Raman shift.

    In the low-pressure region (below 10 GPa), most of the phonon frequencies exhibit varying degrees of blueshift due to the usual pressure-induced volume contraction effect,whereas the frequency of P1remains almost unchanged,which we will discuss its special pressure dependence later after obtaining more detail of the structural information. We can identify an obvious inflection point at 4 GPa, after which the shift of linewidth decreases dramatically. Moreover, the full width at half maximum(FWHM)of P6decreases at the same point,as shown in Fig.3(c). This special pressure is consistent with the first phase transition point in the earlier high-pressure x-ray experiment reported by Haineset al.[29]To study the phase transition of FePS3carefully, another sample was measured,and the pressure-dependent phonon frequencies and 2D contour under pressure are shown in Fig.3(d)and supplementary Fig. S3 (repeated experiment), respectively. Corresponding abrupt changes of slope at 4 GPa are obviously seen when we use the formulaωp=ω0+(dω/dp)pto linearly fit the high frequency modes P4–P6, which are mainly attributed to molecular-like vibrations from the[P2S6]4-bipyramid structure as discussed above.More detailed information is shown in supplementary information Table S1 and Figs.S4–S5. Therefore, it is reasonable to expect that the [P2S6]4-unit has two different pressure-dependent deformation models: below 4 GPa,the two units in adjacent layers are forced to slide with respect to each other, leading to the two bipyramids directly above one another; above 4 GPa, pressure-induced deformation of the P–S tetrahedron becomes more pronounced, especially the decreasing P–S distance along thec-axis, in which the P and S atoms are almost in the same plane with the disappearance of the bipyramid structure, as shown in Fig. 1(c).Thus, our Raman results support that the HP-I phase has the same monoclinic symmetry (C2/m) as the LP phase for the first phase transition at 4 GPa.

    At high pressure, P4and P5are relatively close to each other and merge into one peak (P7), which is difficult to distinguish because of the weaker intensity and the broader line width. A similar frequency anomaly is seen at the same pressure point at 13 GPa. Moreover,we note that the P6peak becomes an asymmetrical line shape above 10 GPa. We suspect that the asymmetry is related to the phase transition in which a new peak appears, resulting in a discontinuous phonon frequency and dramatically broadening the linewidth when we use a single peak to fit it. With further increasing pressure,an abrupt change in the slope in the frequency occurs at 13 GPa.Furthermore,in the phase transition,new Raman peaks gradually develop,while some of the other peaks disappear. These results indicate the coexistence of HP-I and HP-II between 10 GPa and 13 GPa.

    To further identify the symmetry of the HP-II phase, the Raman modes at 18.5 GPa are listed in Table 1 with reference to the earlier calculations based on trigonal symmetry reported by Evarestovet al.[30]For the HP-II phase in supplementary information Figs.S6 and S7,there are four modes(P7–P10) at 18.5 GPa observed at approximately 81.2 cm-1,258.1 cm-1,356.7 cm-1,and 396.2 cm-1,respectively,which are in good agreement with earlier calculated phonon frequencies, as shown in Table 1. Remarkably, we note the dramatic reduction in the area and intensity of Raman modes, which can be clearly observed in supplementary information Fig.S5 and Raman mapping Fig.3(d). This intriguing result could be due to the pressure-induced changes from insulating to metallic band structures,in which metallization decreases the depth of penetration for the laser. In summary,we have analyzed the anomalistic phonon behavior around the second phase transition from monoclinic symmetry(C2/m)to trigonal symmetry(P-31m).

    3.2.2. Pressure-induced magnetic structure transition

    After establishing the Raman signatures of the structural phase transition and pressure,we next discuss the possible scenario underlying the pressure-induced magnetic structure transition by analyzing the low-frequency peaks(P1, P2and P10)originating from vibrations including magnetic Fe ions.

    Earlier works have established spin-dependent peaks, P1and P2, as indicators for an antiferromagnetic transition, as we mentioned above. In addition, the spin-disorder-induced mode P1, which has a mixed nature with components originating from theMandΓpoints and appears without magnetic ordering,is sensitive to spin structure but not as sensitive to lattice vibration.[22–24]Moreover,the weak interlayer interaction has little effect on the antiferromagnetic ordering, in which the Neel temperature remains almost unchanged to the monolayer limit.[24]Therefore, these results likely explain the different pressure-dependent frequency evolution, in which the frequency of P2gradually upshifts while the frequency of P1is almost unchanged. Hence, spin-related, not lattice parameter sensitive P1has an advantage in exploring the magnetic structure change under compression.

    Here, we note the abnormal behavior of P1at approximately 2 GPa and 12 GPa. More details can be found in the Raman intensity and area of the P1mode as a function of pressure(Fig.4). First,the largest value for the intensity and area of fitting curve are observed and centered at 2 GPa. It is also clear upon observing the brighter region of P1in the 2D mapping pattern, Fig. 3(d). The same result can be seen for a repeat experiment shown in supplementary information Fig.S3.Moreover, the linewidth and intensity of this peak have been significantly broadened and sharply decreased at high pressure up to the coexistence of two phases until it disappears with P2.

    Suzuki and Kamimura[44]developed a general theory of the spin-dependent phonon Raman scattering in magnetic crystals as follows,I(T)=|R+M〈S0·S1〉/S2|2,whereRandM〈S0·S1〉/S2represent the ordinary spin-independent Raman tenor and spin-dependent term, respectively. And in their categorization, FePS3belongs to 0<R/M. Scagliottiet al.[41]and Leeet al.[24]applied this theory to the correlation between the Raman intensity and magnetic transition in FePS3. In the MnPS3, three magnetic phase transitions were also identified by Raman intensity.[45]Pressure can effectively tune the nearest neighbor spin correlation function〈S0·S1〉/S2, and drives the magnetic phase transitions. As we mentioned above, P1, the spin-related mode, and its intensity are key indicators for magnetic structure transition in FePS3.[22,24,44]Therefore,the abnormal Raman intensity variation in our Raman experiments suggests that there are two different magnetic structures that switch at 2 GPa, which is in accordance with the earlier neutral diffraction experiments.The magnetic phase transition is likely to be originated from the pressure-driven halving of the magnetic unit cell size.[27]In addition, this mode is absent at high pressure, indicating a large change in the Fe spin structure with suppression of the long-range order, which is coincident with the structural phase transition.It is worth noting that one new low-frequency Raman mode gradually appears with increasing pressure, as shown in supplementary information Figs. S6 and S7, which may be related to the spin order on Fe ions.Detailed investigations of bothin situhigh-pressure experiments and theoretical calculations in the HP-II phase are needed in the future to reveal the origin of this Raman mode.

    Fig.4. Pressure dependence of the FWHM,area and peak height of P1.

    4. Conclusion and perspectives

    In conclusion, the pressure-dependent Raman spectroscopy of thin flake single crystal FePS3is measured to investigate the evolution of lattice vibration, structural phase transition and magnetic structure transition. With increasing pressure, two structural phase transitions are found: the LP phase (C2/m) FePS3first transforms to the HP-I phase(C2/m) at approximately 4 GPa distinguishing by two different pressure-dependent deformation models of the bipyramid [P2S6]4-unit, then goes to the HP-II phase (P-31m) after undergoing the two phases coexisting approximately from 10 GPa to 13 GPa. The insulator-to-metal transition accompanying a collapse of the unit cell volume is identified by the dramatic drop in Raman intensities. Moreover,by monitoring the spin-related Raman peaks,we suggest that FePS3exhibits a magnetic structure transition at approximately 2 GPa and a huge change in spin structure with the disappearance of these Raman modes at the second phase transition. Thus,our work motivates further systematic studies on 2D magneticTMPS3,which are significant for future ultrathin magnetic devices and a fundamental understanding of magnetism.

    Acknowledgements

    We thank Mr.Huachao Jiang from Institute of Solid State Physics,HFIPS,Chinese Academy of Sciences for his technical supports on the high pressure measurements. Project supported by the National Natural Science Foundation of China(Grant Nos. 52002372, 12004387, 51672279, 51727806,11874361,and 11774354)),Science Challenge Project(Grant No. TZ2016001), and the CASHIPS Director’s Fund (Grant No. YZJJ201705).

    男人爽女人下面视频在线观看| 另类亚洲欧美激情| 亚洲av男天堂| 亚洲成人免费av在线播放| 国产免费av片在线观看野外av| 久久人妻福利社区极品人妻图片| 午夜成年电影在线免费观看| 精品视频人人做人人爽| 啦啦啦在线免费观看视频4| 大片免费播放器 马上看| 一区二区三区激情视频| 欧美精品av麻豆av| 欧美变态另类bdsm刘玥| 欧美日韩黄片免| 国产成人精品久久二区二区免费| 一进一出抽搐动态| 啦啦啦免费观看视频1| 男女下面插进去视频免费观看| 精品福利观看| 国产成人av教育| 国产成人精品久久二区二区免费| 最新在线观看一区二区三区| 亚洲精品美女久久久久99蜜臀| a 毛片基地| 亚洲色图综合在线观看| 后天国语完整版免费观看| 天天影视国产精品| 超色免费av| 精品第一国产精品| 51午夜福利影视在线观看| 99re6热这里在线精品视频| 久久久久久久国产电影| 后天国语完整版免费观看| 国产精品香港三级国产av潘金莲| 久久热在线av| 黄片小视频在线播放| 国产精品 国内视频| 国产精品一区二区精品视频观看| 热re99久久国产66热| 色播在线永久视频| 国产男女内射视频| 天天操日日干夜夜撸| 嫁个100分男人电影在线观看| 99热国产这里只有精品6| 日本撒尿小便嘘嘘汇集6| 精品国产一区二区三区久久久樱花| 蜜桃国产av成人99| 免费在线观看日本一区| 两性夫妻黄色片| 黄色视频不卡| 国产在线观看jvid| 97精品久久久久久久久久精品| 一本久久精品| 人妻久久中文字幕网| 久久久国产成人免费| 老司机影院毛片| 欧美中文综合在线视频| 丰满迷人的少妇在线观看| 黄频高清免费视频| 免费女性裸体啪啪无遮挡网站| av有码第一页| 精品少妇黑人巨大在线播放| 新久久久久国产一级毛片| 在线观看舔阴道视频| 国产欧美日韩综合在线一区二区| www.av在线官网国产| 亚洲伊人色综图| 久久久久网色| 精品久久蜜臀av无| 国产亚洲一区二区精品| 黑人操中国人逼视频| 精品国产乱子伦一区二区三区 | 91大片在线观看| 国产国语露脸激情在线看| 亚洲av日韩精品久久久久久密| 国产成+人综合+亚洲专区| 亚洲av日韩在线播放| 男女床上黄色一级片免费看| 日韩欧美一区视频在线观看| 美国免费a级毛片| 久久精品国产亚洲av高清一级| 日韩 欧美 亚洲 中文字幕| 啦啦啦免费观看视频1| 中文字幕制服av| 国产亚洲一区二区精品| a级毛片黄视频| 欧美 亚洲 国产 日韩一| svipshipincom国产片| 50天的宝宝边吃奶边哭怎么回事| 美女国产高潮福利片在线看| 亚洲中文字幕日韩| 精品福利观看| 婷婷色av中文字幕| 久久久国产欧美日韩av| 久久久国产欧美日韩av| 美女高潮喷水抽搐中文字幕| 久久国产精品影院| 精品一区在线观看国产| 黑人猛操日本美女一级片| 午夜精品久久久久久毛片777| 一个人免费在线观看的高清视频 | 性色av一级| 亚洲第一av免费看| 91老司机精品| 欧美精品一区二区免费开放| a级毛片在线看网站| 一个人免费在线观看的高清视频 | 国产成人欧美| 国产精品国产三级国产专区5o| 亚洲国产精品成人久久小说| 精品国产超薄肉色丝袜足j| 久久久久久免费高清国产稀缺| 涩涩av久久男人的天堂| 日本91视频免费播放| 亚洲,欧美精品.| 一个人免费在线观看的高清视频 | 汤姆久久久久久久影院中文字幕| 国产熟女午夜一区二区三区| 精品国产乱码久久久久久小说| 亚洲精品自拍成人| 国产一区二区三区在线臀色熟女 | 一本色道久久久久久精品综合| 午夜激情av网站| 国产免费视频播放在线视频| 9色porny在线观看| 一级毛片精品| 久久久久国产精品人妻一区二区| 久久人人97超碰香蕉20202| 亚洲精品第二区| 国产一级毛片在线| 国产成人系列免费观看| av视频免费观看在线观看| 日韩视频在线欧美| 国产亚洲精品第一综合不卡| 新久久久久国产一级毛片| 国产av一区二区精品久久| 在线天堂中文资源库| 亚洲七黄色美女视频| 亚洲七黄色美女视频| 99精品久久久久人妻精品| 精品欧美一区二区三区在线| 午夜免费鲁丝| 在线 av 中文字幕| 婷婷成人精品国产| 亚洲第一av免费看| 中国美女看黄片| 国产日韩一区二区三区精品不卡| 国产深夜福利视频在线观看| 美女大奶头黄色视频| 9色porny在线观看| 巨乳人妻的诱惑在线观看| 一级片免费观看大全| 亚洲欧美日韩高清在线视频 | 亚洲精品久久成人aⅴ小说| 丝袜人妻中文字幕| 91精品伊人久久大香线蕉| 亚洲欧美一区二区三区久久| 亚洲中文日韩欧美视频| 啦啦啦视频在线资源免费观看| 国产亚洲精品一区二区www | 国产男女超爽视频在线观看| 亚洲激情五月婷婷啪啪| 亚洲免费av在线视频| www.精华液| 美女国产高潮福利片在线看| 999精品在线视频| 午夜免费观看性视频| 99精国产麻豆久久婷婷| 国产欧美日韩一区二区精品| 日本猛色少妇xxxxx猛交久久| 欧美日韩国产mv在线观看视频| 12—13女人毛片做爰片一| 99re6热这里在线精品视频| 免费高清在线观看视频在线观看| 日韩中文字幕视频在线看片| 丰满少妇做爰视频| 亚洲av成人不卡在线观看播放网 | 精品一区在线观看国产| av在线老鸭窝| 另类亚洲欧美激情| 高清黄色对白视频在线免费看| 99热网站在线观看| 我要看黄色一级片免费的| tube8黄色片| 国产伦人伦偷精品视频| 国产成人av教育| 久久青草综合色| 久热爱精品视频在线9| 亚洲国产精品999| 午夜精品久久久久久毛片777| 精品少妇久久久久久888优播| 一区二区三区乱码不卡18| 激情视频va一区二区三区| 老司机影院成人| 欧美激情久久久久久爽电影 | 成人三级做爰电影| 国产成人免费无遮挡视频| 777久久人妻少妇嫩草av网站| 老熟女久久久| 欧美精品高潮呻吟av久久| 亚洲中文av在线| 亚洲熟女精品中文字幕| 丰满迷人的少妇在线观看| 一二三四在线观看免费中文在| 精品一区二区三卡| 中文字幕人妻丝袜制服| 日韩大码丰满熟妇| 窝窝影院91人妻| 亚洲国产精品一区三区| 亚洲成人手机| 亚洲男人天堂网一区| 操美女的视频在线观看| 久久久精品区二区三区| 高清黄色对白视频在线免费看| 久久青草综合色| 日韩 欧美 亚洲 中文字幕| 免费观看a级毛片全部| 国产成+人综合+亚洲专区| 人人妻人人爽人人添夜夜欢视频| 亚洲精品乱久久久久久| 日韩制服丝袜自拍偷拍| 汤姆久久久久久久影院中文字幕| 美女国产高潮福利片在线看| 国内毛片毛片毛片毛片毛片| 真人做人爱边吃奶动态| 欧美黑人欧美精品刺激| 男女国产视频网站| 日本五十路高清| 91国产中文字幕| 亚洲欧美清纯卡通| 国产一区二区激情短视频 | 十八禁网站免费在线| 精品欧美一区二区三区在线| 亚洲少妇的诱惑av| 国产极品粉嫩免费观看在线| 成人国产一区最新在线观看| 午夜福利在线观看吧| 欧美日韩国产mv在线观看视频| 欧美老熟妇乱子伦牲交| 国产精品 欧美亚洲| 午夜免费成人在线视频| 一区在线观看完整版| 欧美日韩av久久| 免费高清在线观看日韩| 国产成人av激情在线播放| 精品国产一区二区三区四区第35| 极品人妻少妇av视频| 国产亚洲一区二区精品| a级毛片在线看网站| 咕卡用的链子| 大香蕉久久网| 久久久久久久久免费视频了| kizo精华| 男女高潮啪啪啪动态图| 97在线人人人人妻| 十八禁人妻一区二区| 真人做人爱边吃奶动态| 国产一区二区三区综合在线观看| 成人影院久久| 亚洲第一av免费看| 在线av久久热| 新久久久久国产一级毛片| 国产一区二区三区av在线| 曰老女人黄片| 视频区欧美日本亚洲| 国产日韩一区二区三区精品不卡| 两个人免费观看高清视频| 成人国产av品久久久| 精品亚洲乱码少妇综合久久| 香蕉国产在线看| 五月天丁香电影| 午夜福利在线免费观看网站| 丰满人妻熟妇乱又伦精品不卡| 亚洲精品第二区| 视频区欧美日本亚洲| 高清av免费在线| www日本在线高清视频| 久久久水蜜桃国产精品网| 亚洲精品乱久久久久久| 国产亚洲精品第一综合不卡| 一进一出抽搐动态| 亚洲精品中文字幕在线视频| 国产精品成人在线| 亚洲成人免费电影在线观看| 这个男人来自地球电影免费观看| a 毛片基地| 日韩欧美免费精品| 亚洲av片天天在线观看| 国产精品.久久久| 91大片在线观看| 久久狼人影院| 久久久国产一区二区| 精品人妻1区二区| 国产av又大| 亚洲午夜精品一区,二区,三区| 99国产综合亚洲精品| 国产av国产精品国产| a级片在线免费高清观看视频| 日韩中文字幕视频在线看片| 国产精品麻豆人妻色哟哟久久| 一区二区av电影网| 男人舔女人的私密视频| 国产极品粉嫩免费观看在线| 狠狠精品人妻久久久久久综合| 国产色视频综合| 久久国产精品影院| 国产黄色免费在线视频| 美女国产高潮福利片在线看| 纵有疾风起免费观看全集完整版| av一本久久久久| 秋霞在线观看毛片| 狂野欧美激情性bbbbbb| av电影中文网址| 涩涩av久久男人的天堂| 精品国产乱码久久久久久男人| 色婷婷av一区二区三区视频| 国产精品99久久99久久久不卡| 久久av网站| 欧美xxⅹ黑人| 国产精品欧美亚洲77777| 欧美精品啪啪一区二区三区 | 欧美xxⅹ黑人| 自拍欧美九色日韩亚洲蝌蚪91| 国产成人a∨麻豆精品| 曰老女人黄片| 999久久久国产精品视频| 日本精品一区二区三区蜜桃| 老司机午夜十八禁免费视频| 老司机亚洲免费影院| 精品亚洲成国产av| 亚洲性夜色夜夜综合| 亚洲精品国产色婷婷电影| 精品国内亚洲2022精品成人 | 桃花免费在线播放| 热re99久久国产66热| 欧美变态另类bdsm刘玥| 国产精品亚洲av一区麻豆| 午夜免费成人在线视频| 最新在线观看一区二区三区| 欧美av亚洲av综合av国产av| 色综合欧美亚洲国产小说| av在线老鸭窝| 亚洲国产欧美在线一区| 久久久国产欧美日韩av| 日韩中文字幕视频在线看片| 精品一区二区三卡| 免费久久久久久久精品成人欧美视频| 男女无遮挡免费网站观看| 菩萨蛮人人尽说江南好唐韦庄| 九色亚洲精品在线播放| 俄罗斯特黄特色一大片| 久久国产亚洲av麻豆专区| 成年人免费黄色播放视频| 亚洲情色 制服丝袜| 亚洲欧美色中文字幕在线| 热99re8久久精品国产| 天天躁夜夜躁狠狠躁躁| 亚洲伊人久久精品综合| 日本91视频免费播放| 最新在线观看一区二区三区| 亚洲第一av免费看| 国产成人啪精品午夜网站| 一区福利在线观看| 久久ye,这里只有精品| 国产欧美日韩一区二区三 | 久久国产精品男人的天堂亚洲| 各种免费的搞黄视频| 精品亚洲成a人片在线观看| 国产成人免费观看mmmm| 亚洲国产毛片av蜜桃av| 亚洲avbb在线观看| 欧美午夜高清在线| 人人妻人人添人人爽欧美一区卜| 捣出白浆h1v1| 一级毛片精品| 国产av精品麻豆| 欧美乱码精品一区二区三区| 亚洲欧美精品自产自拍| 97人妻天天添夜夜摸| 亚洲精华国产精华精| 一级黄色大片毛片| 两性夫妻黄色片| 美女视频免费永久观看网站| 三级毛片av免费| 日韩欧美国产一区二区入口| 亚洲av男天堂| 日韩 欧美 亚洲 中文字幕| 亚洲avbb在线观看| 80岁老熟妇乱子伦牲交| 亚洲情色 制服丝袜| 99国产精品免费福利视频| 50天的宝宝边吃奶边哭怎么回事| 女人久久www免费人成看片| 丁香六月欧美| 日韩视频一区二区在线观看| av不卡在线播放| 51午夜福利影视在线观看| 成年人午夜在线观看视频| 国产成人精品无人区| 久久久久网色| 超色免费av| 国产精品久久久久久精品古装| 欧美精品一区二区免费开放| 女人被躁到高潮嗷嗷叫费观| 高清在线国产一区| 国产av一区二区精品久久| 欧美另类一区| 国产伦理片在线播放av一区| 国精品久久久久久国模美| 90打野战视频偷拍视频| 99国产精品一区二区三区| 纵有疾风起免费观看全集完整版| 日韩一区二区三区影片| 欧美日韩一级在线毛片| 国产野战对白在线观看| 日本猛色少妇xxxxx猛交久久| 国产精品久久久人人做人人爽| 久久国产精品人妻蜜桃| 国产一区二区三区综合在线观看| 99九九在线精品视频| 中文字幕人妻丝袜制服| 亚洲精品一卡2卡三卡4卡5卡 | 水蜜桃什么品种好| 亚洲美女黄色视频免费看| 欧美成人午夜精品| 国产欧美日韩综合在线一区二区| av在线老鸭窝| 男女国产视频网站| 国产一区二区三区综合在线观看| 在线观看舔阴道视频| 欧美xxⅹ黑人| 国产日韩欧美视频二区| 国产精品成人在线| 老熟女久久久| 熟女少妇亚洲综合色aaa.| 亚洲视频免费观看视频| 黄色毛片三级朝国网站| 性色av乱码一区二区三区2| 岛国在线观看网站| 久久性视频一级片| 亚洲精品国产av蜜桃| 桃花免费在线播放| 精品人妻在线不人妻| 成人影院久久| 亚洲中文av在线| 一本综合久久免费| 麻豆av在线久日| 国产精品1区2区在线观看. | 精品人妻熟女毛片av久久网站| 久久久精品94久久精品| 美女午夜性视频免费| 久久久久精品国产欧美久久久 | 波多野结衣一区麻豆| 亚洲精品中文字幕在线视频| 国产成人一区二区三区免费视频网站| 国产xxxxx性猛交| 两人在一起打扑克的视频| 老熟女久久久| 亚洲avbb在线观看| 99精品欧美一区二区三区四区| 精品国内亚洲2022精品成人 | tube8黄色片| √禁漫天堂资源中文www| 欧美午夜高清在线| 美女福利国产在线| 欧美xxⅹ黑人| 激情视频va一区二区三区| 午夜老司机福利片| 在线观看免费视频网站a站| 制服人妻中文乱码| 国产精品九九99| 超碰成人久久| 视频在线观看一区二区三区| 亚洲全国av大片| 操出白浆在线播放| 三上悠亚av全集在线观看| 久久九九热精品免费| 欧美精品亚洲一区二区| 亚洲欧美精品自产自拍| av天堂久久9| 1024香蕉在线观看| 国产激情久久老熟女| 久久狼人影院| 成人三级做爰电影| 日本欧美视频一区| e午夜精品久久久久久久| 韩国精品一区二区三区| 一进一出抽搐动态| 狠狠精品人妻久久久久久综合| 久久久国产成人免费| 亚洲精品在线美女| 中文欧美无线码| 久久久久国产精品人妻一区二区| 美女大奶头黄色视频| 我要看黄色一级片免费的| 天天添夜夜摸| 亚洲成人手机| 日本精品一区二区三区蜜桃| 我的亚洲天堂| 99re6热这里在线精品视频| 久久ye,这里只有精品| 久久精品国产亚洲av香蕉五月 | 国产日韩欧美在线精品| 亚洲综合色网址| 国产一区有黄有色的免费视频| 少妇的丰满在线观看| 少妇精品久久久久久久| 日本vs欧美在线观看视频| 久久久久网色| av超薄肉色丝袜交足视频| 高清欧美精品videossex| 深夜精品福利| av天堂久久9| 日本精品一区二区三区蜜桃| xxxhd国产人妻xxx| 成年人免费黄色播放视频| 亚洲国产精品一区二区三区在线| 欧美日韩精品网址| 男女免费视频国产| 亚洲专区国产一区二区| 国产精品 国内视频| 欧美国产精品va在线观看不卡| 精品国产乱码久久久久久男人| 亚洲国产精品成人久久小说| 欧美在线一区亚洲| 欧美国产精品va在线观看不卡| 欧美精品一区二区大全| 麻豆乱淫一区二区| 亚洲一区二区三区欧美精品| 亚洲五月色婷婷综合| 69精品国产乱码久久久| 嫩草影视91久久| 欧美亚洲 丝袜 人妻 在线| 久久久久久久大尺度免费视频| 亚洲天堂av无毛| 纯流量卡能插随身wifi吗| 欧美成狂野欧美在线观看| 天天躁夜夜躁狠狠躁躁| 国产精品亚洲av一区麻豆| 欧美在线黄色| 2018国产大陆天天弄谢| 久久久精品免费免费高清| 久久久久精品国产欧美久久久 | 久久免费观看电影| 婷婷色av中文字幕| 精品一区二区三区四区五区乱码| 国产xxxxx性猛交| 国产日韩一区二区三区精品不卡| 国产亚洲欧美在线一区二区| 欧美 亚洲 国产 日韩一| 啪啪无遮挡十八禁网站| 国产精品一二三区在线看| 制服诱惑二区| 十八禁高潮呻吟视频| 老司机福利观看| 一本一本久久a久久精品综合妖精| 一级毛片精品| 亚洲精品中文字幕一二三四区 | 精品国产国语对白av| 国产av精品麻豆| 日韩 亚洲 欧美在线| 波多野结衣一区麻豆| 国产欧美日韩一区二区三区在线| 亚洲av男天堂| 国产精品久久久人人做人人爽| 人人妻人人添人人爽欧美一区卜| 最近中文字幕2019免费版| 欧美日韩av久久| 中国美女看黄片| 女人被躁到高潮嗷嗷叫费观| 老司机午夜十八禁免费视频| 日本欧美视频一区| 亚洲av电影在线观看一区二区三区| 日本精品一区二区三区蜜桃| 国产成人a∨麻豆精品| 91av网站免费观看| 久久久久国产精品人妻一区二区| tocl精华| 无遮挡黄片免费观看| 丰满人妻熟妇乱又伦精品不卡| 欧美激情极品国产一区二区三区| 午夜福利影视在线免费观看| 欧美精品人与动牲交sv欧美| 丝袜脚勾引网站| 女人精品久久久久毛片| 丝袜喷水一区| 男女高潮啪啪啪动态图| 国产精品九九99| 在线 av 中文字幕| 久久久久久久久久久久大奶| 女人被躁到高潮嗷嗷叫费观| 91麻豆av在线| 18禁国产床啪视频网站| 一级毛片精品| 欧美精品一区二区大全| 欧美成人午夜精品| 国产一区二区在线观看av| 久热这里只有精品99| 高潮久久久久久久久久久不卡| 免费高清在线观看日韩| 亚洲国产精品成人久久小说| 国产一区二区三区av在线| 在线观看人妻少妇| 亚洲欧洲日产国产| 成年人免费黄色播放视频| 国产精品久久久久成人av| 中国美女看黄片| 亚洲精品国产av蜜桃| 日韩大片免费观看网站| 国产欧美日韩一区二区三 | tube8黄色片| 50天的宝宝边吃奶边哭怎么回事| 欧美激情高清一区二区三区| 秋霞在线观看毛片| 老司机午夜十八禁免费视频|