• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Assessing the effect of hydrogen on the electronic properties of 4H-SiC

    2022-05-16 07:10:56YuanchaoHuang黃淵超RongWang王蓉YiqiangZhang張懿強(qiáng)DerenYang楊德仁andXiaodongPi皮孝東
    Chinese Physics B 2022年5期

    Yuanchao Huang(黃淵超) Rong Wang(王蓉) Yiqiang Zhang(張懿強(qiáng))Deren Yang(楊德仁) and Xiaodong Pi(皮孝東)

    1State Key Laboratory of Silicon Materials and School of Materials Science and Engineering,Zhejiang University,Hangzhou 310027,China

    2Institute of Advanced Semiconductors&Zhejiang Provincial Key Laboratory of Power Semiconductor Materials and Devices,Hangzhou Innovation Center,Zhejiang University,Hangzhou 311200,China

    3School of Materials Science and Engineering&College of Chemistry,Zhengzhou University,Zhengzhou 450001,China

    Keywords: 4H-silicon carbide,hydrogen,electronic properties,passivation

    1. Introduction

    As a leading third-generation semiconductor,silicon carbide (SiC) is leaping in an explosive development to meet the increasing demand of electrical vehicles, 5G communications and renewable-energy systems. There exist over 250 polymorphs for SiC,among which 4H-SiC has attracted great attention owning to its wide bandgap, high carrier mobility,high thermal conductivity, and high stability.[1—3]4H-SiC ingots are usually grown by the physical vapor transport(PVT)method, during which hydrogen gas (H2) is used to optimize the surface of the seed crystal and tune the growth condition of 4H-SiC.[4—7]4H-SiC epilayers are often homoepitaxially grown by chemical vapor deposition (CVD), during which H2is widely used as the carrier gas.[8—11]It should be also noted that H impurities are frequently incorporated during the processing of 4H-SiC-based devices.[12—15]Therefore, understanding the effect of H on the electronic properties of 4H-SiC is critical to the development of 4H-SiC technologies.

    Considerable efforts have already been devoted to investigate H in 4H-SiC.[16—30]For n-type 4H-SiC, it was found that H—ion implantation, H2-plasma treatment, and hightemperature H2annealing could reduce the concentration of electrons and increase the resistivity of 4H-SiC.[20—22]The reduction of the electron concentration was controversially attributed to the formation of NC—H complexes, as well as the creation of electron traps such as H interstitials and intrinsic defects.[20]The hole concentration of p-type 4H-SiC also decreased after high-temperature H2annealing,[22—25]as a result of H2annealing-induced decomposition of AlSi—H complexes and the creation of positively charge H,[22—24]which differed from the behavior of H in n-type 4H-SiC. H2-plasma treatment was found to reduce the photoluminescence of both Alrelated defects and N—Al complexes.[25]But the underlying mechanism remains ambiguous. Moreover, intrinsic carbon vacancies (VC) were found to seriously reduce carrier lifetime in 4H-SiC.[26—29]It was experimentally found that H2-atomsphere annealing was actually not capable of passivating VCin 4H-SiC.[32,33]However, it was theoretically proposed that H might passivate VC.[34—36]It is apparent that a clear picture on H in 4H-SiC remains elusive.

    In this work, we systemically explore the effect of H on the electronic properties of both n-type and p-type 4H-SiC.The passivation of H on intrinsic defects such as VCand silicon vacancies(VSi)in 4H-SiC is also evaluated. We find that

    2. Computational methodology

    First-principles calculations are carried out by the projector-augmented wave(PAW)method,as implemented in the Viennaab initiosimulation package (VASP).[37,38]The wave functions are expanded by using the plane waves up to a kinetic energy cutoff of 500 eV.The Perdew—Burke—Ernzerhof revised for solids(PBEsol)functional with the GGA exchange correlation is adopted for the structural relaxation.[39]The supercell size and atomic positions are fully relaxed until the total energy per cell and the force on each atom converge to less than 1×10-6eV and 0.01 eV/°A,respectively. For accurate bandgap energy and defect level description, the hybrid density functional of Heyd,Scuseria,and Ernzerhof(HSE06),which mixes 25% of screened Hartree—Fock exchange to the PBE exchange functional, is employed during the calculation of electronic properties.[38]H impurities are modeled in 128-atom 4H-SiC supercells. For Brillouin zone integration,the Monkhorst—Pack scheme with aΓ-centered 2×2×2 specialk-points mesh is used.[39]Defect formation energies of H are calculated by the well-established mixedk-point scheme.[42,43]

    3. Results and discussion

    3.1. Configurations

    Fig.1. Relaxed structures of H in 4H-SiC.HC,HSi,,i ,,andare denoted by gray,orange,purple,yellow,cyan,and pink balls,respectively. Si and C atoms are denoted by red and white balls,respectively.

    Fig.2. (a)Accessible range of chemical potentials(green area)for equilibrium incorporation of H in 4H-SiC,(b)calculated formation energies of H in 4H-SiC.

    During the incorporation of H in 4H-SiC,thermodynamic equilibrium growth conditions require a series of limitations on the achievable values for chemical potentials of the constituents (μi). Firstly, the values ofμSiandμCare limited to maintain the stable 4H-SiC:

    where ΔHf(CH4) are formation energy of CH4. By solving Eqs.(1)—(3),we can get the accessible range for values of the chemical potentials,as shown by the green regions in Fig.2(a).We then take the Si-rich limit[point A in Fig.2(a)]and the Crich limit growth condition [point B in Fig. 2(a)] to calculate the formation energies of H in 4H-SiC.

    Fig. 3. Single-electron levels of dominant H interstitials, dopants, and intrinsic defects in 4H-SiC.Pink and blue regions indicate the CB and the VB of 4H-SiC,respectively. The up and down arrows denote the occupied spinstates of electrons on the defect levels.

    3.2. H in n-type 4H-SiC

    The high dopability of N in 4H-SiC endows 4H-SiC a great success in high power electronics. For n-type 4H-SiC substrates, the resistivity in the order of 10-3Ω·cm is highly desired to guarantee its conductivity. During the homoepitaxy of n-type 4H-SiC layers, the electron concentration of the ntype buffer layer should be as high as possible to guarantee the conversion efficiency of basal plane dislocations.[48,49]However, the doping efficiency of N still lags behind the demand of ideal power-device applications. In this section, we evaluate the effects of compensation (or passivation) of H on the electronic properties of n-type 4H-SiC.

    Fig. 4. (a) Calculated formation energies of NC, NC—H, HSi i—te , and Hbi cin 4H-SiC,(b)calculated binding energy of the NC—H complex in 4H-SiC.

    Fig. 5. (a) Fermi energies of 4H-SiC grown at 1800 K and 2400 K as functions of the concentration of N, (b) Fermi energies of 4H-SiC grown at 1800 K and 2400 K as functions of the concentration of H under different background concentrations of N.

    The typical temperatures of PVT growth and CVD homoepitaxy of 4H-SiC are 2400 K and 1800 K,respectively.[1]Therefore,we investigate the effects of H on the Fermi energy and carrier concentration of n-type 4H-SiC at the temperatures of 2400 K and 1800 K. As shown in Fig. 5(a), the Fermi energy of 4H-SiC grown under 1800 K is slightly higher than that of 4H-SiC grown under 2400 K,due to lower concentration of thermally excited electrons at lower temperatures. This indicates that the hole concentration of 4H-SiC grown under 1800 K is higher than that of 4H-SiC grown under 2400 K.When the concentration of N increases from 1015cm-3to 1016cm-3,the increase of Fermi energy of 4H-SiC grown under 1800 K is more significant than that for 4H-SiC grown under 2400 K. For 4H-SiC grown under lower temperatures,the hole concentration is lower, which means that it is easier to tune the Fermi energy of 4H-SiC by increasing the concentration of N. When the concentration of N increases to 1019cm-3, the Fermi energy of 4H-SiC grown under 1800 K and 2400 K increase to 2.6 eV and 2.8 eV,respectively.Taking 4HSiC with the N-doping concentration of 1019cm-3as an example,we find that the effect of unintentional incorporated H exerts negligible effect on the n-type doping of 4H-SiC.Only when the concentration of H exceeds 1018cm-3, the Fermi energy of 4H-SiC begins to decrease [Fig. 5(b)]. When the concentration of H increases to 1020cm-3, the Fermi energy of 4H-SiC is pinned at 1.4 eV due to the self-compensation of H[Fig.5(b)].

    3.3. H in p-type 4H-SiC

    The p-type 4H-SiC substrates are of great importance to the development of n-channel bipolar devices based on 4H-SiC, which hold great promise for ultra-high voltage (>10 kV) applications.[50—53]Al owns the lowest ionization energy among all group-III elements in 4H-SiC,which makes it as the most popular p-type dopant in 4H-SiC.It is well known that the lowest defect configuration of Al is AlSi. Therefore,we investigate the interaction of H with AlSiin this section,the effect of dominant intrinsic defect of VCis also taken into consideration.

    Fig.6.(a)Calculated formation energiesofAlSi,AlSi—H,VC,HSi i—te,andHbi c in 4H-SiC,(b)calculatedbinding energyofthe AlSi—Hcomplexin4H-SiC.

    3.4. H passivation of VC

    When 4H-SiC is applied in power electronics, VChas been identified as the carrier-lifetime killer in bipolar devices based on 4H-SiC.[26—30]By trapping carriers in its deep defect level, VCseverely reduces the carrier lifetime and thus the blocking voltage of the 4H-SiC drift layer.[53]Various approaches such as carbon ion implantation followed by thermal annealing,thermal oxidation,and annealing with a carbon cap,have been proposed to eliminate VCin 4H-SiC.[54—57]For the sake of reducing processing complexity and cost,we evaluate whether H can passivate the defect states of VC.

    As shown in Fig. 2, passivating VCby 4 H atoms can effectively eliminate the defect level of VCand potentially improve the carrier lifetime in 4H-SiC. Therefore, we calculate the defect formation energies of VC—nH (n=1—4) to verify whether H is capable of passivating VCand enhance the carrier lifetime of 4H-SiC.As shown in Fig.7(a),the defect formation energies of VC—nH(n=1—4)are all larger than that of pure VC.Although the deep defect states of VC—4H disappears in 4H-SiC, VC—4H has the highest formation energy among all VC—nH (n= 1—4) complexes. This indicates that equilibrium incorporation of H cannot eliminate the defect states of VC. Nonequilibrium approaches, such as H ion implantation or irradiation may capable of passivating VCby H. The binding energy of VC—nH(n=1—4)complexes are calculated byEb(VC—nH)=ΔHf(VC)+nΔHf(Hi)-ΔHf(VC-nH).As shown in Fig.7(b),when the Fermi energy of 4H-SiC is in the range from 0.44 eV to 3.03 eV, the binding energies of VC—4H is positive,indicating the VC—4H complex is stable against decomposition.This means that nonequilibrium passivation of VCby H is effective to eliminate the defect states of VCand thus enhance the carrier lifetime of moderately doped 4H-SiC with Fermi energy ranging from 0.44 eV to 3.03 eV.

    Fig.7. (a)Formation energies and(b)binding energies of VC—nH(n=1—4)complexes in 4H-SiC.

    3.5. H passivation of VSi

    Since 2015, VSihas been manipulated as isolated spin qubits for quantum computing.[58—63]Isolated VSicolor centers were created by laser writing,ion implantation or electron irradiation.[58]It was found that both the photoluminescence(PL) wavelength and intensity were not uniform throughout the VSiarray of 4H-SiC.[64,65]In this section,we evaluate the possible reason of H passivation on the nonuniform PL emission of VSiarrays in 4H-SiC.

    As shown in Fig. 8(a), (VSi—4H)0and (VSi—3H)-complexes have the lowest formation energies in p-type and n-type 4H-SiC, respectively. This indicates that H would passivate VSiand change the optical properties of VSidefects in 4HSiC.The occupied defect state of VSilies in 0.72 eV above the VBM of 4H-SiC, which agrees well with experimental and theoretical results.[40,41]When VSiis passivated by 4 H atoms,the defect state disappears from the bandgap of 4H-SiC.This gives rise to the disappear of PL emission of VSi. When VSiis passivated by 3 H atoms, the defect states shift to 0.70 eV above the VBM of 4H-SiC. This results in the change of PL emission wavelength and intensity for the VSiarrays in 4HSiC.[66]

    We also calculate the binding energies of VSi—nH (n=1—4) complexes byEb(VSi—nH) = ΔHf(VSi)+nΔHf(Hi)-ΔHf(VSi—nH). As shown in Fig.8(b),the binding energies of VSi—nH (n=1—4) complexes are all positive. This indicates that once the complexes are formed, VSi—nH (n=1—4) complexes are stable against decomposition. Because of the low binding energies of VSi—nH(n=1—4)complexes,thermal annealing is needed to decompose VSi—nH(n=1—4)complexes,and promote the uniformity for the PL properties of VSiarray in 4H-SiC.

    Fig.8. (a)Formation energies and(b)binding energies of VSi—nH(n=1—4)complexes in 4H-SiC.

    4. Conclusion

    In conclusion, we have systematically investigated the role of H in the electronic properties of 4H-SiC. We have

    Acknowledgments

    Project supported by the National Key Research and Development Program of China(Grant No.2018YFB2200101),the National Natural Science Foundation of China (Grant Nos. 91964107 and U20A20209), the “Pioneer” and “Leading Goose” Research and Development Program of Zhejiang Province,China(Grant No.2022C01021),and partial support from the National Natural Science Foundation of China for Innovative Research Groups(Grant No.61721005). The National Supercomputer Center in Tianjin is acknowledged for computational support.

    国产综合懂色| 精品一区二区三区视频在线| 激情 狠狠 欧美| 综合色丁香网| 亚洲va在线va天堂va国产| 国产亚洲av嫩草精品影院| 国产精品美女特级片免费视频播放器| 啦啦啦啦在线视频资源| 麻豆精品久久久久久蜜桃| 91精品国产九色| 国产精品永久免费网站| 亚洲欧美日韩高清在线视频| 国产成人午夜福利电影在线观看| 三级经典国产精品| 欧美精品一区二区大全| 免费观看a级毛片全部| 免费不卡的大黄色大毛片视频在线观看 | 精品久久国产蜜桃| 超碰av人人做人人爽久久| 免费搜索国产男女视频| 高清毛片免费观看视频网站| 一级黄片播放器| 久久精品国产亚洲av天美| 日本三级黄在线观看| 日韩一区二区视频免费看| 精品少妇黑人巨大在线播放 | 此物有八面人人有两片| 亚洲欧美日韩无卡精品| 一区福利在线观看| 乱人视频在线观看| 午夜免费激情av| 干丝袜人妻中文字幕| 国产色婷婷99| 黄色日韩在线| 亚洲成人中文字幕在线播放| 国产视频首页在线观看| 成人性生交大片免费视频hd| 亚洲天堂国产精品一区在线| 色综合色国产| 永久网站在线| 丰满的人妻完整版| 最近中文字幕高清免费大全6| 中文字幕精品亚洲无线码一区| 国产成人a区在线观看| 国产白丝娇喘喷水9色精品| 亚洲自拍偷在线| 欧美性猛交黑人性爽| 亚洲国产精品成人综合色| 一级黄片播放器| 日韩欧美国产在线观看| 免费av观看视频| 日韩欧美在线乱码| 伊人久久精品亚洲午夜| 熟女电影av网| 国产三级中文精品| 3wmmmm亚洲av在线观看| 深夜精品福利| 偷拍熟女少妇极品色| 欧美在线一区亚洲| 九色成人免费人妻av| a级毛片免费高清观看在线播放| 一个人观看的视频www高清免费观看| 日本一二三区视频观看| 中文字幕精品亚洲无线码一区| 别揉我奶头 嗯啊视频| 看片在线看免费视频| 免费av不卡在线播放| av.在线天堂| 男人舔奶头视频| 国产不卡一卡二| 看非洲黑人一级黄片| 亚洲国产精品sss在线观看| 最好的美女福利视频网| 欧美bdsm另类| 九九热线精品视视频播放| 成人午夜高清在线视频| 欧美xxxx性猛交bbbb| 99久久成人亚洲精品观看| 欧美日本视频| 免费观看在线日韩| 婷婷色综合大香蕉| 亚洲无线在线观看| 欧美xxxx黑人xx丫x性爽| 99在线视频只有这里精品首页| 国产精品伦人一区二区| 国内精品久久久久精免费| 欧美+日韩+精品| 国产女主播在线喷水免费视频网站 | 99热全是精品| 丝袜喷水一区| 日韩大尺度精品在线看网址| 老熟妇乱子伦视频在线观看| 亚洲精品亚洲一区二区| 国产精品av视频在线免费观看| av在线天堂中文字幕| 麻豆国产av国片精品| 国产久久久一区二区三区| 天堂av国产一区二区熟女人妻| 成人特级黄色片久久久久久久| 97人妻精品一区二区三区麻豆| 亚洲自偷自拍三级| 国产成人a∨麻豆精品| 麻豆精品久久久久久蜜桃| 日韩视频在线欧美| 看十八女毛片水多多多| 亚洲欧美精品专区久久| 天堂√8在线中文| 天天躁日日操中文字幕| 婷婷色av中文字幕| 国产在线男女| 永久网站在线| www.色视频.com| 日本爱情动作片www.在线观看| 国产麻豆成人av免费视频| 午夜久久久久精精品| 亚洲国产精品合色在线| 22中文网久久字幕| 免费av毛片视频| 狠狠狠狠99中文字幕| 国产精品美女特级片免费视频播放器| 十八禁国产超污无遮挡网站| 白带黄色成豆腐渣| 中文欧美无线码| 国产视频首页在线观看| 麻豆成人午夜福利视频| 中文字幕人妻熟人妻熟丝袜美| 不卡视频在线观看欧美| 男人舔奶头视频| 哪里可以看免费的av片| 97热精品久久久久久| 国产精品蜜桃在线观看 | 欧美日韩精品成人综合77777| 欧美一区二区国产精品久久精品| 禁无遮挡网站| 亚洲国产精品国产精品| 国产精品乱码一区二三区的特点| 亚洲av中文av极速乱| 国产一区二区在线av高清观看| 国产成人影院久久av| 国产91av在线免费观看| 亚洲无线观看免费| 国产乱人视频| 国产成年人精品一区二区| 一本久久精品| 亚洲国产精品久久男人天堂| 成人高潮视频无遮挡免费网站| 2021天堂中文幕一二区在线观| 国产一区二区在线av高清观看| 亚洲欧美日韩高清专用| 国内久久婷婷六月综合欲色啪| 看免费成人av毛片| 亚洲成人精品中文字幕电影| 一级毛片电影观看 | 国产精品久久视频播放| 晚上一个人看的免费电影| 日日摸夜夜添夜夜添av毛片| 神马国产精品三级电影在线观看| 国产精品三级大全| 在现免费观看毛片| 乱码一卡2卡4卡精品| .国产精品久久| www日本黄色视频网| 97在线视频观看| 能在线免费看毛片的网站| 色视频www国产| 亚洲三级黄色毛片| av天堂中文字幕网| 少妇人妻一区二区三区视频| 久久久久久国产a免费观看| 插阴视频在线观看视频| 亚洲成a人片在线一区二区| 精品久久久噜噜| 欧美最新免费一区二区三区| 黄片无遮挡物在线观看| 欧美性猛交黑人性爽| 禁无遮挡网站| 国产精品永久免费网站| 少妇熟女aⅴ在线视频| av天堂在线播放| 亚洲内射少妇av| 亚洲婷婷狠狠爱综合网| 性欧美人与动物交配| 赤兔流量卡办理| 悠悠久久av| 亚洲自偷自拍三级| 欧美xxxx黑人xx丫x性爽| 中文字幕制服av| 麻豆成人av视频| 91久久精品电影网| 97超视频在线观看视频| 六月丁香七月| 免费黄网站久久成人精品| 亚洲性久久影院| 国产乱人视频| 亚洲国产欧洲综合997久久,| 欧美成人一区二区免费高清观看| 国产精品久久久久久久久免| 欧美日本视频| 久久欧美精品欧美久久欧美| 国产国拍精品亚洲av在线观看| 97热精品久久久久久| 级片在线观看| 看十八女毛片水多多多| 最新中文字幕久久久久| 综合色丁香网| 久久草成人影院| 亚洲色图av天堂| 男女下面进入的视频免费午夜| 综合色丁香网| 女的被弄到高潮叫床怎么办| 久久久久国产网址| 亚洲成人中文字幕在线播放| av视频在线观看入口| 欧美高清性xxxxhd video| 精品不卡国产一区二区三区| 国产私拍福利视频在线观看| 久久九九热精品免费| 可以在线观看毛片的网站| 日本免费一区二区三区高清不卡| 舔av片在线| 一级av片app| 欧美激情久久久久久爽电影| 少妇丰满av| videossex国产| 国产色爽女视频免费观看| 麻豆久久精品国产亚洲av| 久久精品综合一区二区三区| 99热全是精品| 不卡视频在线观看欧美| 久久精品夜夜夜夜夜久久蜜豆| 一边摸一边抽搐一进一小说| 日本三级黄在线观看| 亚洲国产高清在线一区二区三| 国产亚洲91精品色在线| 日韩 亚洲 欧美在线| 97超碰精品成人国产| 中文欧美无线码| 免费搜索国产男女视频| av黄色大香蕉| av在线蜜桃| 成人特级av手机在线观看| 成年免费大片在线观看| 亚洲欧美日韩东京热| 国产伦精品一区二区三区视频9| 亚洲va在线va天堂va国产| 青春草视频在线免费观看| 2022亚洲国产成人精品| а√天堂www在线а√下载| 晚上一个人看的免费电影| 国产高清不卡午夜福利| 亚洲熟妇中文字幕五十中出| 国产黄色视频一区二区在线观看 | 在线a可以看的网站| 亚洲国产欧美在线一区| 精品无人区乱码1区二区| 两性午夜刺激爽爽歪歪视频在线观看| 一区福利在线观看| 男人的好看免费观看在线视频| 国内揄拍国产精品人妻在线| av卡一久久| 日韩视频在线欧美| 中文欧美无线码| 国产成人a∨麻豆精品| 国产在线精品亚洲第一网站| 成人毛片a级毛片在线播放| 最近视频中文字幕2019在线8| 亚洲av不卡在线观看| 你懂的网址亚洲精品在线观看 | 亚洲av第一区精品v没综合| 久久久久久久久久久丰满| 三级国产精品欧美在线观看| 丰满乱子伦码专区| 国产精品久久久久久久久免| 国产亚洲精品久久久久久毛片| 国产成人精品婷婷| 啦啦啦啦在线视频资源| 国语自产精品视频在线第100页| 日韩欧美三级三区| 中文字幕精品亚洲无线码一区| 九草在线视频观看| 国产精品,欧美在线| 欧美xxxx性猛交bbbb| 天天一区二区日本电影三级| 日日撸夜夜添| 久久久久网色| av在线亚洲专区| avwww免费| 亚洲va在线va天堂va国产| 国产伦精品一区二区三区四那| 国产精品无大码| 能在线免费看毛片的网站| 国产激情偷乱视频一区二区| 国产真实伦视频高清在线观看| 一区二区三区四区激情视频 | 久久热精品热| 欧美一区二区国产精品久久精品| 91精品国产九色| 天堂中文最新版在线下载 | 国产成人a∨麻豆精品| 日韩大尺度精品在线看网址| 国产午夜精品久久久久久一区二区三区| 一区二区三区免费毛片| 看片在线看免费视频| 少妇丰满av| 成人av在线播放网站| 国产伦一二天堂av在线观看| 一区福利在线观看| av女优亚洲男人天堂| 日韩,欧美,国产一区二区三区 | 亚洲内射少妇av| 一级av片app| 久久精品91蜜桃| 久久久精品欧美日韩精品| 亚洲图色成人| 日韩人妻高清精品专区| 免费人成视频x8x8入口观看| 啦啦啦观看免费观看视频高清| 久久人人精品亚洲av| 中国美女看黄片| 天堂av国产一区二区熟女人妻| 在线观看一区二区三区| 国内精品宾馆在线| 91狼人影院| 国产精品久久久久久精品电影| 好男人视频免费观看在线| 中文字幕久久专区| 日韩欧美精品v在线| 美女cb高潮喷水在线观看| 91狼人影院| 丰满人妻一区二区三区视频av| 久久精品夜色国产| 在线观看66精品国产| 中文字幕熟女人妻在线| av黄色大香蕉| 国产av在哪里看| 一区二区三区免费毛片| 国产成人午夜福利电影在线观看| 久久99热这里只有精品18| 在线免费观看不下载黄p国产| av天堂中文字幕网| 舔av片在线| 观看免费一级毛片| 国产精品无大码| 欧美色视频一区免费| 久久精品国产亚洲av涩爱 | 国产精品野战在线观看| 看非洲黑人一级黄片| 日韩 亚洲 欧美在线| 小说图片视频综合网站| or卡值多少钱| 亚洲精品456在线播放app| 熟女电影av网| 欧美一区二区亚洲| 国内精品久久久久精免费| 3wmmmm亚洲av在线观看| 亚洲成人久久爱视频| 久久久久久久久久久免费av| a级毛片a级免费在线| 国产在视频线在精品| 村上凉子中文字幕在线| 国产片特级美女逼逼视频| 国产精品国产高清国产av| 久久久精品94久久精品| 又爽又黄a免费视频| 国产 一区精品| 简卡轻食公司| 一个人看的www免费观看视频| 国产精品爽爽va在线观看网站| 中文在线观看免费www的网站| 91aial.com中文字幕在线观看| 国内精品宾馆在线| 免费无遮挡裸体视频| a级毛片a级免费在线| 老师上课跳d突然被开到最大视频| 中文欧美无线码| 久99久视频精品免费| 九九在线视频观看精品| 精品免费久久久久久久清纯| 欧美最黄视频在线播放免费| 久久亚洲精品不卡| 麻豆精品久久久久久蜜桃| 日本-黄色视频高清免费观看| 观看美女的网站| 欧美最黄视频在线播放免费| 色综合亚洲欧美另类图片| 日本黄色片子视频| 国产爱豆传媒在线观看| 在线观看午夜福利视频| 欧美+日韩+精品| 亚洲国产欧美人成| 国产亚洲av片在线观看秒播厂 | 亚洲图色成人| 亚洲自拍偷在线| 亚洲人与动物交配视频| 国产极品精品免费视频能看的| 色播亚洲综合网| 亚洲无线观看免费| 床上黄色一级片| 国产综合懂色| 男人舔女人下体高潮全视频| 国产视频内射| 日本免费一区二区三区高清不卡| 亚洲va在线va天堂va国产| 国产毛片a区久久久久| 91久久精品国产一区二区三区| 国产不卡一卡二| 成人性生交大片免费视频hd| 亚洲成人av在线免费| 亚洲七黄色美女视频| 久久久久久久久中文| 波多野结衣高清作品| 亚洲图色成人| 日本色播在线视频| 秋霞在线观看毛片| 国产女主播在线喷水免费视频网站 | 国产精品国产高清国产av| 黄色视频,在线免费观看| 亚洲丝袜综合中文字幕| 国产精品免费一区二区三区在线| 亚洲av电影不卡..在线观看| 久久99精品国语久久久| 久99久视频精品免费| 亚洲欧美精品自产自拍| 久久午夜福利片| 天天一区二区日本电影三级| 国产精品精品国产色婷婷| 可以在线观看毛片的网站| 日韩欧美三级三区| 高清在线视频一区二区三区 | 国产亚洲5aaaaa淫片| av女优亚洲男人天堂| 99视频精品全部免费 在线| 成人午夜高清在线视频| 熟妇人妻久久中文字幕3abv| 久久久久久久午夜电影| 欧美一级a爱片免费观看看| 日韩欧美一区二区三区在线观看| 精品日产1卡2卡| 91aial.com中文字幕在线观看| 午夜激情欧美在线| 国产免费一级a男人的天堂| 性色avwww在线观看| 国产精品1区2区在线观看.| 日日干狠狠操夜夜爽| 久久久久久久久久成人| 日韩强制内射视频| 日韩一区二区视频免费看| 国产成人精品婷婷| 久久久久久久亚洲中文字幕| 久久亚洲精品不卡| 人妻久久中文字幕网| 亚洲成人中文字幕在线播放| 日本黄色片子视频| 亚洲精品久久久久久婷婷小说 | 男插女下体视频免费在线播放| 变态另类成人亚洲欧美熟女| 丝袜美腿在线中文| 欧美激情久久久久久爽电影| 一夜夜www| 91狼人影院| av在线天堂中文字幕| 欧美高清成人免费视频www| 精品久久国产蜜桃| 美女被艹到高潮喷水动态| 亚洲国产欧美在线一区| 午夜精品一区二区三区免费看| 亚洲av免费在线观看| 国产大屁股一区二区在线视频| 丰满的人妻完整版| 99久久成人亚洲精品观看| 婷婷六月久久综合丁香| 久久久久久久久中文| 永久网站在线| 在线观看午夜福利视频| 一级黄色大片毛片| 日韩欧美精品免费久久| 国语自产精品视频在线第100页| 色播亚洲综合网| 国产精品.久久久| 一个人免费在线观看电影| 亚洲,欧美,日韩| 青青草视频在线视频观看| 国产成人午夜福利电影在线观看| 九九热线精品视视频播放| 日韩欧美在线乱码| 我要看日韩黄色一级片| 尾随美女入室| 欧美性猛交╳xxx乱大交人| 日日摸夜夜添夜夜添av毛片| 噜噜噜噜噜久久久久久91| kizo精华| 一级二级三级毛片免费看| 日日摸夜夜添夜夜添av毛片| 亚洲av一区综合| 欧美日本视频| 国产黄色小视频在线观看| 天天一区二区日本电影三级| 99国产精品一区二区蜜桃av| 免费无遮挡裸体视频| 久久午夜福利片| 国产老妇女一区| 日本一二三区视频观看| 婷婷精品国产亚洲av| 亚洲精品影视一区二区三区av| 三级经典国产精品| 成人无遮挡网站| 免费观看在线日韩| 麻豆国产av国片精品| 日本免费一区二区三区高清不卡| 亚洲人与动物交配视频| 2022亚洲国产成人精品| 久久99热6这里只有精品| 精品人妻视频免费看| 嘟嘟电影网在线观看| 最新中文字幕久久久久| 国内久久婷婷六月综合欲色啪| 美女国产视频在线观看| 99热这里只有是精品50| 黑人高潮一二区| 丝袜喷水一区| 国产国拍精品亚洲av在线观看| 国产伦精品一区二区三区四那| 中文字幕熟女人妻在线| 国产探花极品一区二区| 丝袜美腿在线中文| 欧美最新免费一区二区三区| 最近手机中文字幕大全| 麻豆久久精品国产亚洲av| 51国产日韩欧美| 国产三级中文精品| 色视频www国产| 日韩中字成人| 国产av一区在线观看免费| 国产成年人精品一区二区| 可以在线观看毛片的网站| 嫩草影院精品99| 亚洲欧美日韩东京热| 国产精品久久视频播放| 亚洲第一区二区三区不卡| 成人av在线播放网站| 日产精品乱码卡一卡2卡三| 如何舔出高潮| 精品一区二区免费观看| 国产成人精品一,二区 | av专区在线播放| 18禁在线播放成人免费| 大香蕉久久网| 欧美xxxx黑人xx丫x性爽| 日本黄大片高清| 非洲黑人性xxxx精品又粗又长| 亚洲成人精品中文字幕电影| 亚洲美女搞黄在线观看| av免费在线看不卡| 亚洲三级黄色毛片| 黄色视频,在线免费观看| 国内精品一区二区在线观看| 国模一区二区三区四区视频| 两个人的视频大全免费| 国产中年淑女户外野战色| 五月伊人婷婷丁香| 中文在线观看免费www的网站| 久久久成人免费电影| 国产乱人偷精品视频| 哪里可以看免费的av片| 91狼人影院| 男人和女人高潮做爰伦理| 久久欧美精品欧美久久欧美| 免费看av在线观看网站| 色综合亚洲欧美另类图片| 免费人成在线观看视频色| av在线天堂中文字幕| 国产精品1区2区在线观看.| 1024手机看黄色片| 欧美日本亚洲视频在线播放| 亚洲av不卡在线观看| 99热只有精品国产| 赤兔流量卡办理| 欧美激情在线99| 亚洲电影在线观看av| 最近2019中文字幕mv第一页| 哪个播放器可以免费观看大片| 午夜久久久久精精品| 哪里可以看免费的av片| 国产伦一二天堂av在线观看| 中国美女看黄片| 久久热精品热| 蜜桃亚洲精品一区二区三区| 久久精品国产清高在天天线| 国产激情偷乱视频一区二区| 少妇裸体淫交视频免费看高清| 小说图片视频综合网站| 亚洲人与动物交配视频| eeuss影院久久| 成人美女网站在线观看视频| 99九九线精品视频在线观看视频| 老熟妇乱子伦视频在线观看| 麻豆国产av国片精品| 日本与韩国留学比较| 直男gayav资源| 国产国拍精品亚洲av在线观看| 麻豆成人av视频| 高清毛片免费观看视频网站| 午夜福利在线在线| 别揉我奶头 嗯啊视频| 色哟哟·www| 国产成人freesex在线| 日本一二三区视频观看| 人人妻人人澡欧美一区二区| 尤物成人国产欧美一区二区三区| 色综合站精品国产| 免费无遮挡裸体视频| 国产精品一区www在线观看| 3wmmmm亚洲av在线观看| 啦啦啦观看免费观看视频高清| 天美传媒精品一区二区|