• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Energy levels and transition data of 3p63d8 and 3p53d9 configurations in Fe-like ions(Z=57,60,62,64,65)

    2022-05-16 07:09:08BaoLingShi施寶玲YiQin秦毅XiangFuLi李向富BangLinDeng鄧邦林GangJiang蔣剛andXiLongDou豆喜龍
    Chinese Physics B 2022年5期

    Bao-Ling Shi(施寶玲) Yi Qin(秦毅) Xiang-Fu Li(李向富) Bang-Lin Deng(鄧邦林)Gang Jiang(蔣剛) and Xi-Long Dou(豆喜龍)

    1Institute of Atomic and Molecular Physics,Sichuan University,Chengdu 610065,China

    2College of Electrical Engineering,Longdong University,Qingyang 745000,China

    3College of Geophysics,Chengdu University of Technology,Chengdu 610059,China

    Keywords: Fe-like ions,energy levels,wavelengths,transition rates

    1. Introducti on

    Atomic structure parameters have been considered as a promising approach to improve our understanding of the physical processes of astrophysical plasmas.[1—4]On the other hand,knowledge of emission lines generated by these high-Zelements is essential for the abundance of stars.[5]It is therefore a continuous focus of attention. Considerable attempts,including laser-produced plasmas, grazing-incidence spectrographs,electron-beam ion trap(EBIT),tokamak plasmas,etc.,have been devoted to excavating these atomic data and won considerable achievements.[6—11]However,the current atomic data are still insufficient in explanation of the existing results.

    Among these highly charged ions, of particular interest are Fe-like ions. Its wavelengths and transition rates are useful for studying the abundance of stars.[12,13]Experimentally the spectrum of Fe-like ions is primarily produced by laserproduced plasmas. Its emission lines, in general, range from x-ray to extreme ultraviolet(EUV)spectral regions.[14]These emission spectrums have profound implications not only for spectral diagnosis in inertial confinement fusion experiments,but also for analyzing the abundance of galaxy clusters and the geometry of star flares.[15]These applications stimulated extensive researches on atomic structure parameters for Felike ions. Ekberget al.[16,17]investigated the landscape of energy levels and wavelengths of the 3p63d8—3p53d9E1 transitions configurations for Fe-like ions(44≤Z ≤70)using laserproduced plasmas and grazing-incidence spectrographs. The measured wavelengths are significant for the determination of quantum electrodynamics effects in highly charged ions.Ralchenkoet al.[18]and Radtkeet al.[19]identified E1 and magnetic dipole (M1) emission lines of Fe-like W ion using the Berlin EBIT. Their results indicated that some of the M1 lines are extremely useful towards the diagnosis of temperature and density of hot fusion devices. Louzonet al.[20]proposed the x-ray spectrum,in wavelengths ranging from 8 °A to 10 °A, and identified resonance transitions 3d—4f, 3d—5f, 3p—4d, and 3d—4p of Fe-like Sm ion employing laser-produced plasmas. Such measured wavelengths play a major role in testing the most advanced theories of relativistic atomic structure. The L-shell emission lines from Fe-like Au53+ion are reported by Brownet al.[21]Its strong 3d5/2→2p3/2emission lines can be used for diagnosing charge state distribution in high energy density plasmas, for instance, those identified in the laser inlet hole of a hot cavity radiation source.With the aid of these experimental data, theoretical calculations not only enrich the family of HCIs,but also provide key insights into the identification of measured lines and explanation of the existing results. Guoet al.[5]predicted the energy levels, transition probabilities, and wavelengths of 3d8ground configurations in Fe-like Hf,Ta,W,and Au ions using the second-order relativistic many-body perturbation theory(RMBPT)and the parallel RCI methods. Taking advantage of the reliable Flexible Atomic Code(FAC)and MCDHF as well as multi-configuration Dirac—Fock(MCDF)methods,the theoretical group has filled a gap in excitation energies,oscillator strengths,wavelengths,line strengths,radiative lifetimes,transition rates of electric quadrupole(E2),and M1 transitions of the 3s23p63d8ground configurations for Fe-like ions(Z=72—83).[22—24]

    Despite intensive experimental and theoretical efforts,there is still a lack of complete and unambiguous atomic data of lanthanide elements. The atomic data of lanthanide elements were expected in many high-tech fields, including lighting, optoelectronic applications, atomic clocks, and so on.[25]These absent lines of lanthanide elements in different ionization stages contribute crucially to detecting the growth of peculiar stars in astrophysics.[26]Moreover, lanthanides were used for studying the ejected materials of neutron star mergers, especially for addressing nucleosynthesis and star formation.[27]Of particular interest are some emission lines of La and Sm ions found in the spectra of solar flares and corona.[28]In addition,it should be stressed that integrated radiation data of highly charged Gd and Tb elements are needed for the next generation of EUV lithography as the origin of light sources.[29]Unfortunately, little has been decided about the available atomic data of lanthanide elements,in particular Fe-like ions(Z=57,60,62,64,65),needed for laboratory and astrophysical plasmas modeling and diagnosing.

    In this paper,we established a consistent set of energy levels,wavelengths,transition rates,oscillator strengths,and line strengths for the lowest 21 states of 3p63d8—3p53d9E1 transitions configurations in Fe-like ions (Z=57,60,62,64,65)using the MCDHF method. The correlation effects of VV and CV electrons were systematically considered. Meanwhile,we employed Breit interaction and QED corrections to treat accurately atomic state wave functions. Our results are in excellent agreement with the previous observations, indicating that our theoretical calculations are reliable. Moreover, we predicted some new transition data, offering actionable insights for future experiments. The layout of this paper is as follows: In Section 2, we introduce the theoretical methods and calculational details. In Section 3,we present the results and discussions of our calculated atomic parameters. We make a summary in Section 4.

    2. Methods

    2.1. MCDHF theory

    In this paper, all of our calculations are carried out on basis of the MCDHF[30—32]approach, as implemented in GRASP2018 general relativistic atomic structure code.Some significant details have been extensively discussed elsewhere,[33—38]in which the Dirac—Coulomb Hamiltonian can be expressed as

    wherePis the parity,JandMbeing, respectively, the total angular quantum number and the magnetic quantum number.NCSFsis the number of CSFs andcidenotes the configuration mixing coefficients for the statei.γirepresents other appropriate labeling of the configuration state functioni, e.g.,coupling scheme and orbital occupancy. The calculations on many levels are performed in the so-called extended optimal level (EOL) scheme. Under the relativistic self-consistent field (RSCF) procedure,[39]both the radial parts of the Dirac orbitals and expansion coefficientsciare optimized to selfconsistency.[39]In calculations based on the subsequent RCI,the Breit interaction

    where Δx=Ex(experiment)/Ex(theory),x=fs presents the fine structure of a given spectral term.

    2.2. Transition parameters

    whereAlandAvare transition rates in length and velocity forms,respectively.

    2.3. Calculational procedure

    For Fe-like ions, in our calculations, 1s22s22p63s2is treated as the core electrons. The even and odd parities belonging to 3p63d8and 3p53d9configurations were calculated separately. CSFs are obtained by the active set approach,[49]by allowing single and double(SD)excitations from then=3 shells of reference configurations to active set of orbitals withn ≤7,l ≤4, in which only one electron substitutions are allowed from the 3s core-shell. No substitutions are allowed from then=1,2 shells,which is defined as an inactive closed core. VV and CV electron correlation effects are generally considered in this way. Taking into account the lists of CSFs increase very rapidly with the expanding active set of orbitals,we only retain the CSFs that directly interact with it in the reference configurations.[22—40]To check the convergence of computed parameters,active orbitals are enlarged step by step in a systematic way. The optimization is also layer by layer.At each stage, the newly added orbitals are optimized, while the previous ones are fixed. After that, Breit interaction in the low-frequency limit and QED corrections(e.g.,self-energy and vacuum polarization)are included in the RCI calculations.

    3. Results and discussion

    3.1. Energy levels

    We begin by monitoring the convergence of our MCDHF calculations. For Fe-like Sm36+ion,the resulting energies of the lowest 21 states belonging to the 3p63d8and 3p53d9configurations with respect to increasing active set of orbitals are concluded in Table 1. Obviously, from Table 1 we can find the energy differences between adjacentnare decreased gradually upon increasing active set of orbitalsn. For these energy levels, the mean relative differences are around 0.36%,0.22%, 0.01%, and 0.01% for calculations based on the expansion fromn=3 and expansions obtained from SD excitations to active setsn=4, 5, 6, and 7. The calculated energy levels of all states atn=7 active orbital are almost the same as those of all states atn=6 active orbital. The maximum difference betweenn=7 andn=6 calculations is even less than 132 cm-1.Such facts indicate the energy levels have converged when the active set of orbitalsnis increased to 7. Subsequently, the same computational scheme then proceeded to monitor the convergence of other Fe-like ions(Z=57,60,64,65). Similar to Fe-like Sm36+ion,we concluded that these selected ions possess identical trends of variation in energy upon increasing active set of orbitals. Excitation energies were predicted to converge successfully with active set of orbitalsnincreased to 7. Atn=7,the identified maximum differences are 152 cm-1,138 cm-1,127 cm-1,and 77 cm-1for Fe-like ions(Z=57,60,64,65)relative ton=6 calculations,respectively.The computed energy levels withn=7 are presented in Table S1 of supporting information for all Fe-like ions(Z=57,60,62,64,65).

    For comparison, the experimental values by Ekberget al.[16]using laser-produced plasmas and the energy differences between theoretical and experimental results are summarized together in Table S1 of supporting information. From the inspection of Table S1, it should be pointed out that our simulated energy levels, aside from four levels (3p63d83P0,3p53d93P0, 3p53d93F2, and 3p53d91P1), agree fairly well with experimental results for Fe-like Sm36+ion,with the difference less than 1000 cm-1. The energy level of 3p53d93F2state is determined to be 3769876 cm-1,which deviates from experimental value(3771340 cm-1)up to 1464 cm-1,the reason behind this is that the CV correlation effect arising from subshell 2p is not included in our calculation. Prior literature has found that these facts have a significant impact on energy levels.[50,51]Herein, since the limitation of available computational resources, the electron correlation effects are not fully considered. In fact, the atomic parameters of Felike Sm36+ion have been investigated by Ivanovaet al.[52]by means of the relativistic perturbation theory method of the zero-approximation model.For reference,their computed data together with energy differences compared to available data reported by Ekberget al.[16]are summarized in Table S1 of supporting information. It is apparent that most of the energy levels deviate from the experimental values significantly.For example, we note that the energy levels of 3p63d83P0,3p53d93P0,3p53d93P2,3p53d91F3,and 3p53d93F2states are reported to be 162800 cm-1,2829200 cm-1,3634600 cm-1,3695800 cm-1, 3763600 cm-1, respectively. These results are far away from experimental values up to 6210 cm-1,6290 cm-1, 7630 cm-1, 8790 cm-1, and 7740 cm-1. Compared with the relativistic perturbation theory method of the zero-approximation model, we concluded that MCDHF calculations with the inclusion of electron correlation effects and higher-order corrections are more suitable to investigate atomic parameters of Fe-like ions. Subsequently,we proceed to investigate energy levels of other Fe-like ions(Z=57, 60,64,65)using MCDHF method,the obtained results are listed in Table S1 of supporting information. Meanwhile,in the last column of Table S1,we list the estimated uncertaintyδEfsbetween the present energy levels and experiment values. Our results for energy levels of these Fe-like ions are in good agreement with observed ones by Ekberget al.[16]The relative deviations are within 0.1%except for a few states,of which the largest relative difference is about 0.8% for the 3p63d83P0state. We expect that the current results can be used as a reference for other calculations of Fe-like sequence ions.

    Table 1. Energy levels(all in unit cm-1)for the lowest 21 states in Fe-like Sm36+ ion as a function of increasing active sets of orbitals.

    Figure 1 shows the contribution of Breit interaction and QED corrections to the excitation energies for the lowest 21 states of 3p63d8and 3p53d9configurations in Fe-like Sm36+ion. As displayed in Fig. 1, the total (Breit and QED) corrections reduce excitation energies by about 0.16%—2.09%and narrow the gap between the theoretical values and experimental observations, especially for the 3p53d93F2state,in which the energy is significantly decreased by around 30000 cm-1. By contrast, the 3p63d81D2and 3p63d83P0states have somewhat higher energies than Coulomb energies by about 3000 cm-1and 5000 cm-1, respectively. And the accuracy of energies improved by about 5.48% and 3.20%.Overall, the improved agreement between the theoretical and experimental results suggests it is highly necessary to incorporate Breit and QED corrections for RCI calculations of the highly charged heavy ions.[53]Subsequently, we identify respectively the influence of Breit interaction and QED corrections on energy levels. The Breit correction reduce all energy levels (relative to Coulomb energies) of the 3p63d8and 3p53d9configurations by about 0.29%—2.21% (Fig. 1), with two exceptions: 3p63d81D2and 3p63d83P0, respectively,in which the energies are higher than Coulomb energies by around 5.50% and 3.19% (Fig. 1). It should be stressed that the QED corrections have little effect on energy levels, the contribution to the energy levels appears in the range of around 0.01%—0.18%. We,therefore,concluded that Breit interaction is the dominant contribution to energy in the higher-order corrections.

    Figures 2 and 3 present the effects of Breit interaction and QED corrections on energy levels of 3p63d8and 3p53d9configurations along the sequence, respectively. In Fig. 2, note that there are identical variation tendencies for levels 4 and 5,levels 7 and 9, levels 10 to 13, levels 14 to 17, thus we only present levels 2 to 4,levels 6 to 8,level 10,level 14,levels 18 to 21. It is shown from Fig. 2 that the contribution of Breit interaction is improved for each level considered with the nuclear charge Z increasing. The reason behind this is that the attraction between the nucleus and the extranuclear electrons is positively correlated with the nuclear chargeZ. It is well known that Breit interaction is the embodiment of the interaction between electrons,[54]the Breit interaction thus enhance accordingly. Figure 3 shows the effect of the QED corrections on energy levels with respect to Z. Similarly, we only show levels 2 to 4,level 8,level 10,level 14,levels 18 and 20.Notably,these levels have the consistent tends for levels 4—7,levels 8 and 9, levels 10—13, levels 14—17, levels 18 and 19,levels 20 and 21,thus the latter is ruled out here. From Fig.3 we found that the contribution of QED effects, as expected,increase with the increase ofZfor a majority of the levels,this is because the QED corrections are proportional toZ4. While for levels 3 and 20, the increasingZleads to a reduction of the QED contribution,which is consistent with the conclusion summarized by Malyshevet al.[55]and Huet al.[56]

    Fig.1. Corrections of Breit and QED effects to the MCDHF energies for the lowest 21 states of 3p63d8 and 3p53d9 configurations in Fe-like Sm36+ ion,all energies are relative to the ground state.

    Fig.2. Contribution from Breit interaction to the energy levels of 3p63d8 and 3p53d9 configurations for Fe-like ion as a function of nuclear charge Z.

    Fig. 3. Contribution from QED corrections to the energy levels of 3p63d8 and 3p53d9 configurations for Fe-like ion as a function of nuclear charge Z.

    3.2. Transition parameters

    Having decided the energy levels of all Fe-like ions(Z=57, 60, 62, 64, 65), we further investigated the wavelengthsλ, transition ratesA, weighted oscillator strengthsg f, line strengthsS,and uncertainty estimators dTof 3p63d8—3p53d9E1 transitions configurations using MCDHF method. The resulting data are listed in Tables S2—S6 of supporting information. The E1 transition rates are given in both velocity (v)and length (l) forms. Our MCDHF transition rates in velocity forms(Av)and length forms(Al)show good agreement for strong transitions. Such results can be used as an indicator to verify the reliability of our calculations.[57]It should be noted that, however, there are substantial discrepancies betweenAvandAlfor some weak transitions, this may be attributed to a small imbalance arising from correlation effects that alter the transition rates significantly in one of the gauges.[58]The other transition parameters, including weighted oscillator strengthsg fand line strengthsS, are presented with the length form,there is a widespread consensus which is generally thought to be more accurate than the velocity form.[59,60]

    In Table 2, we have compared the E1 transitions wavelengths of Fe-like La31+,Nd34+,Sm36+,and Gd38+ions with the available experimental values. Interestingly, it is apparent from Table 2 that our E1 transitions wavelengths are overall consistent with the available experimental values reported by Ekberget al.[16]again validating our calculation scheme.As shown in Table 2, for Fe-like Sm36+ion, in most cases,our MCDHF wavelengths are shorter than the observations.Comparing our calculated and experimental values, the striking difference has been predicted to occur in the 3p63d81G4→3p53d91F3transition level,whose value is-0.017 °A(relative difference of 0.058%), which is quite satisfactory. Regarding Fe-like La31+, Nd34+, and Gd38+ions, the greatest deviation between our MCDHF values and experimental ones is found to be 0.041 °A,and the relative deviation of about 0.13%.Thus, we can conclude with confidence that our computed wavelengths are highly accurate,which is enough to determine ground state correlation effects and quantum electrodynamics effects in highly charged ions.

    Table 2. Comparison of wavelengths(in unit °A)for E1 transitions with the experimental values in Fe-like La31+,Nd34+,Sm36+,and Gd38+ ions.

    Finally,we estimate uncertainty dTon the transition rateA(in unit s-1) for Fe-like Sm36+ion. It is widely accepted for evaluating the quality of E1 transition rates. The smaller the uncertainty dT, the higher quality of E1 transition rates.As shown in Fig. 4, the uncertainty dTagrees within 10%for most of the strong transitions. Moreover, for the strong lines observed from 3p63d83P1→3p53d93D1together with 3p63d83P2→3p53d93D2transitions, the uncertainty dTis well below 0.1%. In contrast to these stronger transitions,the uncertainty dTis relatively larger for the small amounts of weaker transitions. This situation is reasonable and has a precedent, where the authors found that some weaker transitions are composed of two-electron or intercombination lines transitions, the transition rates for this kind of transition are difficult to compute accurately.[61,62]

    Fig.4. The uncertainty estimators dT for transition rates A(in unit s-1)of E1 transitions in Fe-like Sm36+ ion.

    4. Conclusions

    Using the MCDHF method, we have performed a comprehensive investigation on the energy levels among the lowest 21 states of the 3p63d8and 3p53d9configurations in Fe-like ions(Z=57,60,62,64,65). Our results of energy levels are in good agreement with available experimental measurements.The relative differences agree with within 0.1%for a majority of the energy levels. Our detailed discussion suggests that it is highly necessary to consider electron correlation effects and higher-order corrections in calculations of the highly charged heavy ions. For transition data, we have reported the transition wavelengths. Compared with the experimental data, the overall deviation is well below 0.041 °A.The uncertainty dTof transition rateA(in unit s-1)agree to within 10%for most of the strong E1 transitions. Overall, our calculations indicated that the MCDHF method with the inclusion of more electron correlation effects and higher-order corrections is more accurate than the relativistic perturbation theory approach towards identifying atomic data of Fe-like ions. Additionally,we have obtained a new set of transition parameters, namely, wavelengths,transition rates,weighted oscillator strengths,and line strengths for E1 transitions. These results would benefit lines identification, modeling of astrophysical and laboratory plasmas.

    Acknowledgment

    The authors express sincere appreciation to professor J¨onsson P for providing the GRASP2018 program for free.

    久9热在线精品视频| 亚洲人成伊人成综合网2020| 女人十人毛片免费观看3o分钟| 99精品欧美一区二区三区四区| 变态另类丝袜制服| 国产蜜桃级精品一区二区三区| 搡女人真爽免费视频火全软件 | 久久久久免费精品人妻一区二区| 黄色丝袜av网址大全| 在线十欧美十亚洲十日本专区| 99国产极品粉嫩在线观看| 搡女人真爽免费视频火全软件 | 亚洲在线观看片| 日韩欧美在线二视频| 成人av在线播放网站| 午夜福利视频1000在线观看| 日韩亚洲欧美综合| 青草久久国产| 99国产精品一区二区蜜桃av| 免费搜索国产男女视频| 99国产精品一区二区蜜桃av| 亚洲国产精品成人综合色| 91在线精品国自产拍蜜月 | 国产中年淑女户外野战色| 国产成人av教育| 美女 人体艺术 gogo| 亚洲精品456在线播放app | 婷婷精品国产亚洲av| 老司机深夜福利视频在线观看| 精品福利观看| 欧美日韩综合久久久久久 | 88av欧美| 变态另类丝袜制服| 噜噜噜噜噜久久久久久91| 国内毛片毛片毛片毛片毛片| 亚洲av日韩精品久久久久久密| 男女之事视频高清在线观看| 久久亚洲真实| 中国美女看黄片| 午夜激情欧美在线| 99热这里只有精品一区| 亚洲国产中文字幕在线视频| 欧美午夜高清在线| 舔av片在线| 欧美性猛交╳xxx乱大交人| 黄色视频,在线免费观看| 性色av乱码一区二区三区2| 18禁美女被吸乳视频| 国产精品久久久久久人妻精品电影| 免费人成视频x8x8入口观看| 嫩草影院入口| 一区二区三区免费毛片| 黄片大片在线免费观看| 久久久久九九精品影院| 毛片女人毛片| 成年人黄色毛片网站| 在线观看日韩欧美| 成人性生交大片免费视频hd| 亚洲人与动物交配视频| 很黄的视频免费| 亚洲精品456在线播放app | 啦啦啦观看免费观看视频高清| 高潮久久久久久久久久久不卡| 亚洲国产欧美网| 在线十欧美十亚洲十日本专区| 岛国在线观看网站| 国产精品98久久久久久宅男小说| 熟女电影av网| 精品不卡国产一区二区三区| 午夜福利在线观看免费完整高清在 | 亚洲,欧美精品.| 国产精品三级大全| 中文字幕熟女人妻在线| 男女视频在线观看网站免费| 午夜福利视频1000在线观看| 18禁黄网站禁片午夜丰满| 免费看日本二区| 亚洲人成网站高清观看| 午夜日韩欧美国产| 久久久久国产精品人妻aⅴ院| 女同久久另类99精品国产91| 日本免费一区二区三区高清不卡| 波多野结衣高清无吗| 国产不卡一卡二| 男人舔女人下体高潮全视频| 亚洲熟妇熟女久久| 岛国在线免费视频观看| 美女cb高潮喷水在线观看| 国产成人av教育| 精品人妻一区二区三区麻豆 | 成人欧美大片| 亚洲最大成人中文| 两个人的视频大全免费| 日韩欧美 国产精品| 在线视频色国产色| 亚洲精品色激情综合| 我要搜黄色片| 1024手机看黄色片| 老司机午夜十八禁免费视频| 国产久久久一区二区三区| 夜夜躁狠狠躁天天躁| 国产精品一区二区三区四区免费观看 | 少妇高潮的动态图| 人妻夜夜爽99麻豆av| 精华霜和精华液先用哪个| 国产91精品成人一区二区三区| 床上黄色一级片| 一个人免费在线观看的高清视频| 18禁美女被吸乳视频| 欧美乱妇无乱码| 久久久国产成人精品二区| 真实男女啪啪啪动态图| 亚洲欧美日韩东京热| 国产免费一级a男人的天堂| 人人妻人人澡欧美一区二区| www.色视频.com| 久久久国产精品麻豆| 中亚洲国语对白在线视频| 熟女人妻精品中文字幕| 欧美极品一区二区三区四区| 丁香六月欧美| 国产乱人伦免费视频| 日韩人妻高清精品专区| 男人舔女人下体高潮全视频| 十八禁网站免费在线| 久久亚洲真实| 欧美一级毛片孕妇| 午夜视频国产福利| 亚洲电影在线观看av| 3wmmmm亚洲av在线观看| 九九热线精品视视频播放| www.www免费av| 国产成人av教育| 日韩欧美在线二视频| 99精品在免费线老司机午夜| 色老头精品视频在线观看| 国产高清视频在线播放一区| 国内揄拍国产精品人妻在线| 亚洲精品粉嫩美女一区| 国产精品 国内视频| 一进一出抽搐动态| 99久久成人亚洲精品观看| 9191精品国产免费久久| 一个人看的www免费观看视频| 好男人电影高清在线观看| 久久精品夜夜夜夜夜久久蜜豆| 天天添夜夜摸| 18禁裸乳无遮挡免费网站照片| 欧美丝袜亚洲另类 | 乱人视频在线观看| 免费观看的影片在线观看| 国产97色在线日韩免费| 两个人看的免费小视频| 搞女人的毛片| 日韩人妻高清精品专区| 最新中文字幕久久久久| 国产一区二区三区在线臀色熟女| www.www免费av| 亚洲男人的天堂狠狠| 国产伦在线观看视频一区| 一进一出抽搐gif免费好疼| 午夜a级毛片| 叶爱在线成人免费视频播放| 美女高潮的动态| 午夜福利成人在线免费观看| 国产亚洲精品一区二区www| 亚洲 国产 在线| 五月玫瑰六月丁香| 欧美成人性av电影在线观看| 三级毛片av免费| 久久久久久久亚洲中文字幕 | 午夜福利在线观看免费完整高清在 | 色综合婷婷激情| 国内少妇人妻偷人精品xxx网站| 99热只有精品国产| 一个人观看的视频www高清免费观看| 老司机午夜十八禁免费视频| 国产激情欧美一区二区| 熟女电影av网| 国产伦精品一区二区三区视频9 | 亚洲成人久久爱视频| 亚洲av成人精品一区久久| 757午夜福利合集在线观看| 五月伊人婷婷丁香| 国产伦人伦偷精品视频| 99热6这里只有精品| 亚洲在线自拍视频| 国产黄片美女视频| 欧美av亚洲av综合av国产av| 亚洲精品粉嫩美女一区| 性色avwww在线观看| 欧美日韩亚洲国产一区二区在线观看| 亚洲成av人片在线播放无| 91字幕亚洲| 久久久久久久午夜电影| 亚洲国产色片| 久久久精品大字幕| 身体一侧抽搐| 亚洲精品色激情综合| 午夜老司机福利剧场| 亚洲人成网站在线播| 757午夜福利合集在线观看| 亚洲av成人不卡在线观看播放网| 久久久久久久久久黄片| 亚洲aⅴ乱码一区二区在线播放| 国产中年淑女户外野战色| 久久精品国产综合久久久| ponron亚洲| 国产欧美日韩一区二区三| 欧美zozozo另类| 国产69精品久久久久777片| 香蕉久久夜色| 欧美av亚洲av综合av国产av| 日韩欧美免费精品| 欧美丝袜亚洲另类 | 嫁个100分男人电影在线观看| 99久久综合精品五月天人人| 韩国av一区二区三区四区| 亚洲精品在线观看二区| 宅男免费午夜| 51午夜福利影视在线观看| 又爽又黄无遮挡网站| 亚洲国产日韩欧美精品在线观看 | 亚洲人成伊人成综合网2020| av专区在线播放| 不卡一级毛片| 99精品欧美一区二区三区四区| 亚洲国产欧洲综合997久久,| 久久久久久久精品吃奶| 国产视频内射| 国产亚洲精品av在线| 国内精品一区二区在线观看| 女人高潮潮喷娇喘18禁视频| 他把我摸到了高潮在线观看| 国产av不卡久久| 亚洲成人久久爱视频| 中文字幕高清在线视频| 悠悠久久av| 一二三四社区在线视频社区8| 一本久久中文字幕| 淫妇啪啪啪对白视频| 日本黄大片高清| 亚洲内射少妇av| 桃色一区二区三区在线观看| 搡老熟女国产l中国老女人| 无遮挡黄片免费观看| 黄色视频,在线免费观看| 久久草成人影院| 757午夜福利合集在线观看| 久久精品国产亚洲av香蕉五月| 最近最新免费中文字幕在线| 最近最新中文字幕大全电影3| 黄色日韩在线| 丰满的人妻完整版| 一本久久中文字幕| 国产色婷婷99| 大型黄色视频在线免费观看| 淫秽高清视频在线观看| 免费看日本二区| 黄色成人免费大全| 一进一出好大好爽视频| 午夜免费激情av| 久久人妻av系列| 亚洲电影在线观看av| 久久久久久久午夜电影| 亚洲成a人片在线一区二区| 国产成+人综合+亚洲专区| 日韩成人在线观看一区二区三区| 69av精品久久久久久| 欧美日韩亚洲国产一区二区在线观看| 国语自产精品视频在线第100页| 久久精品国产清高在天天线| 日韩亚洲欧美综合| 日韩欧美在线乱码| 久久国产乱子伦精品免费另类| 欧美成人性av电影在线观看| 国产av一区在线观看免费| 又紧又爽又黄一区二区| 欧美黄色片欧美黄色片| 好男人在线观看高清免费视频| 免费观看精品视频网站| 色哟哟哟哟哟哟| 亚洲av日韩精品久久久久久密| 欧美3d第一页| 婷婷亚洲欧美| 最新中文字幕久久久久| 欧美成人a在线观看| 三级男女做爰猛烈吃奶摸视频| 美女黄网站色视频| 成人av在线播放网站| 亚洲国产欧美网| 亚洲国产精品sss在线观看| 最近最新免费中文字幕在线| 两个人看的免费小视频| 中文字幕av成人在线电影| 天美传媒精品一区二区| 黄色丝袜av网址大全| 国内精品美女久久久久久| 色综合站精品国产| 欧美中文日本在线观看视频| 欧美日韩综合久久久久久 | 天堂影院成人在线观看| 精品一区二区三区人妻视频| 久久久精品欧美日韩精品| 亚洲av电影不卡..在线观看| 午夜两性在线视频| 国产精品爽爽va在线观看网站| 亚洲avbb在线观看| 身体一侧抽搐| 少妇裸体淫交视频免费看高清| 亚洲国产中文字幕在线视频| 精品不卡国产一区二区三区| 亚洲国产精品成人综合色| netflix在线观看网站| 99在线人妻在线中文字幕| 日韩欧美国产在线观看| 午夜免费观看网址| 国产精品 欧美亚洲| 五月伊人婷婷丁香| 久久草成人影院| 国产av在哪里看| 日韩有码中文字幕| 老汉色∧v一级毛片| 一本久久中文字幕| 欧美三级亚洲精品| 高清毛片免费观看视频网站| 一级黄色大片毛片| 午夜福利在线观看吧| 757午夜福利合集在线观看| 深爱激情五月婷婷| 好看av亚洲va欧美ⅴa在| 麻豆国产97在线/欧美| 国产色爽女视频免费观看| 草草在线视频免费看| 蜜桃亚洲精品一区二区三区| av国产免费在线观看| 美女高潮的动态| 精品人妻1区二区| 午夜激情欧美在线| 久久久久亚洲av毛片大全| bbb黄色大片| 国产高潮美女av| 毛片女人毛片| 我的老师免费观看完整版| 给我免费播放毛片高清在线观看| 国产极品精品免费视频能看的| 在线观看午夜福利视频| 免费av不卡在线播放| 亚洲aⅴ乱码一区二区在线播放| 伊人久久精品亚洲午夜| 丝袜美腿在线中文| 亚洲最大成人中文| 一个人观看的视频www高清免费观看| 亚洲最大成人中文| 国产精品久久久久久人妻精品电影| 免费看光身美女| 一个人免费在线观看电影| 国产伦在线观看视频一区| 极品教师在线免费播放| 搞女人的毛片| 69av精品久久久久久| 亚洲国产精品合色在线| 欧美成人a在线观看| h日本视频在线播放| 91久久精品国产一区二区成人 | 天天添夜夜摸| 欧美日韩国产亚洲二区| 狠狠狠狠99中文字幕| 99国产精品一区二区三区| 少妇裸体淫交视频免费看高清| 看片在线看免费视频| 精品国产美女av久久久久小说| 日本三级黄在线观看| 热99在线观看视频| 国产精品永久免费网站| 18禁国产床啪视频网站| 天堂网av新在线| 十八禁网站免费在线| 高潮久久久久久久久久久不卡| 中文字幕人妻丝袜一区二区| 免费人成在线观看视频色| 岛国视频午夜一区免费看| 日本一本二区三区精品| 亚洲av成人av| 中文字幕av在线有码专区| 久久久久久久午夜电影| 亚洲无线观看免费| 日日干狠狠操夜夜爽| 又黄又爽又免费观看的视频| 丝袜美腿在线中文| 国产精品亚洲美女久久久| 久久精品影院6| 精品人妻一区二区三区麻豆 | 岛国在线观看网站| 国产探花在线观看一区二区| 免费av毛片视频| 亚洲精品456在线播放app | 欧美另类亚洲清纯唯美| 精品一区二区三区视频在线观看免费| 天堂√8在线中文| 国产亚洲精品久久久com| 一级毛片高清免费大全| 亚洲精品日韩av片在线观看 | 色视频www国产| 9191精品国产免费久久| 日韩 欧美 亚洲 中文字幕| 男女之事视频高清在线观看| 亚洲人成网站在线播| 亚洲乱码一区二区免费版| 一级作爱视频免费观看| 少妇高潮的动态图| 亚洲精品色激情综合| 亚洲最大成人手机在线| 少妇的逼水好多| av天堂在线播放| 中文字幕熟女人妻在线| 亚洲精品乱码久久久v下载方式 | 亚洲人成网站在线播| 成人国产一区最新在线观看| 最后的刺客免费高清国语| 色老头精品视频在线观看| 国产三级黄色录像| 久久久久久久亚洲中文字幕 | 国产一区二区激情短视频| 精品一区二区三区av网在线观看| 在线免费观看的www视频| 亚洲久久久久久中文字幕| 国产三级中文精品| 国产成人aa在线观看| 日韩人妻高清精品专区| 熟女人妻精品中文字幕| 精品国产超薄肉色丝袜足j| 免费看十八禁软件| 免费av不卡在线播放| 色播亚洲综合网| 亚洲欧美日韩东京热| 成年女人永久免费观看视频| 精品久久久久久久久久免费视频| 国产欧美日韩一区二区三| av黄色大香蕉| 美女大奶头视频| 午夜精品在线福利| 亚洲av五月六月丁香网| 69av精品久久久久久| 精品久久久久久成人av| 精华霜和精华液先用哪个| 一进一出抽搐动态| 亚洲av免费在线观看| 免费大片18禁| 成人精品一区二区免费| 五月伊人婷婷丁香| 黄片大片在线免费观看| 成年版毛片免费区| 国产一区二区在线av高清观看| 国产精品电影一区二区三区| 88av欧美| 日本一本二区三区精品| 久久精品国产清高在天天线| 国产精品永久免费网站| 国产精品久久久人人做人人爽| 免费看日本二区| 悠悠久久av| 听说在线观看完整版免费高清| 69人妻影院| 嫁个100分男人电影在线观看| 免费av不卡在线播放| 超碰av人人做人人爽久久 | 午夜免费成人在线视频| 午夜老司机福利剧场| 麻豆成人av在线观看| 最近视频中文字幕2019在线8| 丁香六月欧美| 国产精品,欧美在线| 国产精品久久电影中文字幕| 91av网一区二区| 老司机午夜十八禁免费视频| 1000部很黄的大片| 麻豆国产av国片精品| 欧美日韩黄片免| 国产精品嫩草影院av在线观看 | 欧美日韩乱码在线| 又黄又粗又硬又大视频| 亚洲精品美女久久久久99蜜臀| 亚洲精品国产精品久久久不卡| 亚洲在线自拍视频| 日本与韩国留学比较| 日韩av在线大香蕉| 中文字幕久久专区| 亚洲,欧美精品.| 日本黄色片子视频| 精品国产亚洲在线| 真人一进一出gif抽搐免费| 国产精品国产高清国产av| 淫秽高清视频在线观看| 淫妇啪啪啪对白视频| 欧美av亚洲av综合av国产av| 热99re8久久精品国产| 成人特级黄色片久久久久久久| 亚洲欧美日韩卡通动漫| 99久久99久久久精品蜜桃| 国产欧美日韩精品亚洲av| 国产成人啪精品午夜网站| 老熟妇仑乱视频hdxx| 欧美成人性av电影在线观看| 人妻丰满熟妇av一区二区三区| 亚洲国产精品999在线| 国产精华一区二区三区| 免费一级毛片在线播放高清视频| 国产午夜精品久久久久久一区二区三区 | 久久久久精品国产欧美久久久| 此物有八面人人有两片| 日韩有码中文字幕| 18+在线观看网站| 色吧在线观看| 久久伊人香网站| 亚洲美女视频黄频| av女优亚洲男人天堂| 成年女人看的毛片在线观看| 亚洲av电影在线进入| av专区在线播放| 国产精品日韩av在线免费观看| 久久久色成人| 亚洲电影在线观看av| 午夜福利视频1000在线观看| 亚洲国产精品合色在线| 亚洲av熟女| 一区二区三区国产精品乱码| 国产精品免费一区二区三区在线| 女人被狂操c到高潮| 久久久久久九九精品二区国产| 中国美女看黄片| 又黄又粗又硬又大视频| 19禁男女啪啪无遮挡网站| 精品人妻一区二区三区麻豆 | 国产亚洲精品久久久久久毛片| 两个人视频免费观看高清| 久久久久国产精品人妻aⅴ院| 一区二区三区免费毛片| 久久精品91蜜桃| 亚洲五月婷婷丁香| 波野结衣二区三区在线 | 色av中文字幕| 日韩 欧美 亚洲 中文字幕| 精品日产1卡2卡| 国内揄拍国产精品人妻在线| 黄色片一级片一级黄色片| ponron亚洲| 99riav亚洲国产免费| 9191精品国产免费久久| 在线观看美女被高潮喷水网站 | 小蜜桃在线观看免费完整版高清| 亚洲性夜色夜夜综合| 老司机深夜福利视频在线观看| 国产精品久久久久久人妻精品电影| 三级男女做爰猛烈吃奶摸视频| 给我免费播放毛片高清在线观看| 老熟妇仑乱视频hdxx| 两人在一起打扑克的视频| eeuss影院久久| av黄色大香蕉| 99在线人妻在线中文字幕| 亚洲成av人片在线播放无| 91在线精品国自产拍蜜月 | 黄片大片在线免费观看| 久久久久久人人人人人| 少妇丰满av| 亚洲欧美精品综合久久99| 亚洲精品一区av在线观看| 国产淫片久久久久久久久 | 日本熟妇午夜| 色播亚洲综合网| 国产一级毛片七仙女欲春2| 三级毛片av免费| 国产真人三级小视频在线观看| 亚洲第一电影网av| 哪里可以看免费的av片| 18+在线观看网站| 日日干狠狠操夜夜爽| 黄色成人免费大全| 午夜免费激情av| 欧美日韩黄片免| 热99re8久久精品国产| 少妇人妻一区二区三区视频| 欧洲精品卡2卡3卡4卡5卡区| 国产精品免费一区二区三区在线| 国产av麻豆久久久久久久| 叶爱在线成人免费视频播放| 少妇高潮的动态图| 美女cb高潮喷水在线观看| 又粗又爽又猛毛片免费看| www国产在线视频色| 国产免费av片在线观看野外av| 国产色婷婷99| 乱人视频在线观看| 成年版毛片免费区| 男人和女人高潮做爰伦理| 亚洲 国产 在线| 婷婷丁香在线五月| 91麻豆精品激情在线观看国产| 免费人成在线观看视频色| 免费大片18禁| 欧美日韩综合久久久久久 | 国产精品久久久久久久电影 | 男人舔奶头视频| 欧美另类亚洲清纯唯美| 99精品欧美一区二区三区四区| 在线国产一区二区在线| 欧美zozozo另类| 九九在线视频观看精品| av片东京热男人的天堂| www.999成人在线观看| 手机成人av网站| 亚洲成人久久爱视频| 国产精品免费一区二区三区在线| 欧美日韩瑟瑟在线播放|