• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Current oscillation in GaN-HEMTs with p-GaN islands buried layer for terahertz applications

    2022-05-16 07:12:20WenLuYang楊文璐LinAnYang楊林安FeiXiangShen申飛翔HaoZou鄒浩YangLi李楊XiaoHuaMa馬曉華andYueHao郝躍
    Chinese Physics B 2022年5期
    關(guān)鍵詞:李楊飛翔

    Wen-Lu Yang(楊文璐), Lin-An Yang(楊林安), Fei-Xiang Shen(申飛翔), Hao Zou(鄒浩),Yang Li(李楊), Xiao-Hua Ma(馬曉華), and Yue Hao(郝躍)

    State Key Discipline Laboratory of Wide Band-gap Semiconductor Technology,School of Microelectronics,Xidian University,Xi’an 710071,China

    Keywords: p-GaN island,high electron mobility transistor(HEMT),AlGaN/GaN,electron domain

    1. Introduction

    For applications of terahertz(THz)technology,much research has been devoted to finding efficient solid-state terahertz sources at room temperature.[1,2]As a typical structure based on heterojunction, HEMTs have gained widespread attention on account of their excellent properties such as high breakdown electric field,high electron velocity and concentration,and is usually studied as an amplifier.[3,4]In recent years,with the progress of material growth and device manufacturing technology, HEMTs have been considered as a possible THz source.

    There are two types of mechanisms for generating THz oscillation in HEMTs. One is the plasma instability in the two-dimensional electron gas(2DEG)channel,which can result in high-frequency oscillations above 1 THz. The other is the Gunn effect.Under the action of a high electric field,a part of the electrons transition into the high-energy valley,thereby increasing effective mass and decreasing mobility. This contributes to part of the electron accumulation, thus forming Gunn domains.[2]Gunn domains cause an oscillating output current and some experiments and simulations have reported current instability in HEMTs, in which the current oscillation frequency even reaches the THz range.[5]Compared to the vertically structural Gunn diodes,HEMTs advantageously are compatible with traditional planar device process.[6,7]For GaN-based HEMTs,the 2DEG with a high electron concentration induced by the polarization effect is very beneficial for the formation of electronic domains and makes devices have good combined frequency–power performance.[8]Studies on Gunn oscillation in GaN-based planar Gunn devices have achieved significant results, and the frequency of the devices has approached the THz range.[9–11]

    However, there are still some challenges in using GaNbased HEMTs as Gunn oscillation sources. The high electric field region at the edge of the gate is too narrow, making it difficult to obtain a stable oscillating current in traditional GaN-based HEMTs. The method of applying a large gate bias voltage to expand the high electric field region to trigger the formation of Gunn domains may cause large leakage currents and increase the risk of device damage. In addition,to achieve terahertz oscillation, the oscillation channel length of these Gunn devices is usually less than 1 μm. This not only reduces the breakdown voltage of the device but also increases the difficulty of the process,especially the deposition of ohmic electrodes.[12]

    In this paper, a novel GaN-based HEMT with a p-GaN islands buried layer(PIBL)is proposed based on the Silvaco-TCAD simulation. By introducing the p-GaN island in the buffer under the channel of the gate–drain region,the electric field in the 2DEG channel can be redistributed to make it more conducive to trigger the formation of electronic domains. We investigate the mechanism of generation and regulation of the formation of electronic domains in the channel, particularly the influence of the position of p-GaN island and the appliedVgson the electronic domain and oscillation frequency.

    2. Device structure and parameters for simulation

    The schematic diagrams of AlGaN/GaN HEMTs with the PIBL structure used in our simulation are shown in Fig.1,and detailed device parameters are listed in Table 1. The thickness and length of the p-GaN island affect the electric field strength and the length of the domain-forming region and thereby the formation of electronic domains. In order to obtain a stable oscillating current,we set the p-GaN island to have the lengthLp=0.3 μm.

    Table 1. Device structure parameters in the simulation.

    Fig.1. Schematic of AlGaN/GaN HEMTs with PIBL.

    The source and drain electrodes are vertical ohmic contact electrodes located on both sides of the device and are in contact with the 2DEG channel. This type of source/drain electrodes fabricated by re-growth technology is commonly used in high-frequency GaN-based HEMTs[13–15]since it can provide excellent control of the channel electric field. The significant reduction of the on-resistance can also promote the generation and propagation of electronic domains. In our simulation,the ohmic contact resistance is set as 0.4 Ω/mm. The p-GaN island is located in the GaN buffer layer below the gate edge and has floating potential.The p-GaN island-shaped buried layer structure in this paper can be achieved by using the method reported with the GaN-based current aperture vertical electron transistor (CAVET).[16–18]Firstly, dry etching technology is applied to selectively etch the p-GaN layer to form the island at the designated position. Then, the GaN layer is grown to fill the etched trench via the use of re-growth technology. Finally,low-temperature molecular beam epitaxy(MBE)technology is adopted to grow an AlGaN/GaN heterojunction.The p-GaN island region is uniformly doped,and the thickness of the p-GaN island is defined as 10 nm in our numerical simulation. In realistic processing,some methods can be used to reduce the influence of Mg diffusion into the 2DEG channel, such as regrowing the AlGaN/GaN layer above the p-GaN island in a low-temperature environment using MBE technology[19,20]or increasing the distance between the PIBL and the heterojunction interface.

    Donor-like defects/impurities inevitably exist at the interface of the p-GaN island and surrounding GaN. The state at the p-GaN/GaN interface, mainly introduced by ion implantation and secondary epitaxy,should be considered in the simulation.[21,22]In the simulation, we set the trapped charge density to be 2.8×1012cm-2with location at the p–n junction interface (E-Ev=3.2 eV).[23,24]A previous article reports that optimizing the interface cleaning and growth conditions can reduce the interface state density.[25]

    Non-local transport effects such as the velocity overshoot have great influence on sub-micron devices and should be considered in simulations. Therefore, we adopt the energybalance(E-B)transport model instead of the traditional drift–diffusion (D–D) transport model in the simulation, the E-B model being a non-local model widely used in high-frequency and small-sized devices. Due to the buried p–n junction in the device,Shockley–Read–Hall(SRH)model is also included in our simulation.

    Table 2. Transport model parameters at room temperature (T =300 K).[9,26,27]

    Fig.2. Velocity versus electric field dependence of 2DEG and bulk GaN.

    To reasonably characterize 2DEG in the AlGaN/GaN heterostructure, we employ the fitting parameters of the mobility model obtained from Monte Carlo simulations and experiments in the simulation. The effects of the interface state,velocity overshoot and carrier scattering mechanisms are all taken into account.[26]The velocity–electric field dependence parameters at room temperature(T=300 K)used in our simulation are listed in Table 2.[9,26,27]Figure 2 plots the velocityversus-electric field dependence of 2DEG. Compared with bulk GaN, 2DEG shows a higher peak drift velocity and a higher saturation drift velocity.

    In addition,we use the method of transient simulation to generate a stable current oscillation waveform instead of the circuit-level simulation,mounting the device into the RLC network,where the maximum time step is 0.1 ps and the ramping rate is 33 V/ns. The fast Fourier algorithm is used to analyze the oscillating current waveform obtained at each voltage bias point.

    3. Simulation results and discussion

    Figures 3 and 4 show the transient simulation results of conventional HEMTs and PIBL HEMTs under the same voltage bias conditions. The distribution of the electric field and electron concentration in the channel are shown in Figs.5 and 6, where the gate bias voltageVgs=0.6 V and the drain bias voltageVds=12.5 V.Figure 3 gives a comparison of the transient drain current for GaN-HEMTs with and without a PIBL structure. In the proposed HEMT, an evident oscillation appears like a Gunn oscillation, while the conventional HEMT maintains a stable output current.A lower drain current for the PIBL structural HEMT is attributed to the PIBL structure reducing the local electron concentration in the 2DEG channel.The frequency spectrum of the oscillation current calculated by fast Fourier analysis is shown in Fig. 4, yielding an available fundamental frequency at around 377 GHz,accompanied by the ratio of the oscillation current amplitude of the fundamental component to the average componentIf1/Iavg≈3.84%.The frequency is far higher than thefTandfMAXof the equivalent conventional GaN HEMT with a gate length of 0.2 μm.[3]In previous articles,the p-GaN buried layer was often used in CAVET as a current blocking layer to adjust the distribution of the bulk electric field.[14–16,28,29]In this paper,however,PIBL is used to adjust the local electric field distribution which aims to form a perturbation field at the edge of the gate.

    The p-GaN region and the surrounding GaN material form a p–n junction, thus depleting part of the 2DEG. The p-GaN island reduces the electron concentration in the 2DEG channel above it, thereby forming a local high resistance region. Most of the drain voltage is applied to this high resistance region so that a relatively wide high electric field region is formed in the channel, which makes it easier for electrons to transition into a high-energy valley, thereby triggering the formation of Gunn domains, as shown in Fig. 5. Due to the low mobility of electrons in the high energy valley, the electron drift velocity is low, which causes the accumulation of electrons. The electrons behind the domain arrive at a higher velocity, making the domain grow. Simultaneously, the drift velocity of electrons within the domain and the electric field outside the domain continue to decrease. When the velocity of the domain(νdomain)is equal to the drift velocity of electrons outside the domain,the domain stops growing. When the domain is absorbed, the output current will fluctuate, and new domains will be generated,thus forming periodic oscillations.

    Fig.3. Transient behavior of drain terminal current.

    Fig.4. Frequency spectrum of the oscillation drain current obtained by fast Fourier analysis.

    The electron concentration distributions for both HEMTs are drawn in Fig.6. The generation and movement of domains caused changes in the electron concentration in the PIBL region. For the PIBL structural HEMT, the gate acts as a hot electron injector that reduces the length of the “dead zone”and easily triggers the formation of electron domains. The results of the transient simulation show that it can generate a stable oscillation current and achieve the frequency of the fundamental wave up to 377 GHz,far higher than thefTandfMAXof conventional 0.2 μm gate GaN HEMTs.

    The influence ofNpon the fundamental frequency of the device and the minimumVdsrequired for generating stable oscillation is depicted in Fig. 7. With the increase ofNpfrom 2.5×1018cm-3to 3×1018cm-3, the electric field strength of the PIBL region in the channel is more likely to meet the conditions required for domain generation, so that the minimumVdsrequired for device operation decreases from 11.8 V to 10 V. In addition, it can be observed that the fundamental frequency decreases from 377 GHz to 344 GHz. AsNpincreases, the p–n junction composed of the p-GaN island and the n-GaN buffer layer above the island depletes more 2DEG.The reduction of the channel electron concentration above the island forms a local high resistance region,which changes the electric field distribution in the channel. The electric field is mainly concentrated on the drain side of the PIBL structure.This changes the nucleation sites of the electronic domains and the distance from the electron domain nucleation point to the drain side of PIBL structure, which affects the device frequency.

    Fig. 5. Electric field distribution in 2DEG channel, where the time step is 0.1 ps for transient simulation. Solid lines are obtained from HEMT with PIBL,and dashed lines from HEMT without PIBL.

    Fig. 6. Electron concentration distribution in the 2DEG channel, where the time step is 0.1 ps. Solid lines are obtained from HEMT with PIBL, and dashed lines from HEMT without PIBL.

    The distanceDpbetween the p-GaN island and the heterojunction interface is a critical processing parameter of device fabrication since it significantly affects the performance of the device. In order to investigate the influence ofDpon the channel electric field and the oscillation characteristics, we selectDpfrom 5 nm to 15 nm for simulation. The results regardingDpare shown in Fig. 8 under the bias ofVgs=0.6 V,Vds=12.5 V.AsDpincreases from 5 nm to 15 nm,the extracted oscillation frequency decreases from 400 GHz to 344 GHz. WhenDp=5 nm,excessively closing the PIBL region to the channel would make the island have a very strong depletion effect on the 2DEG channel.Although the high electric field above the PIBL region facilitates the transition of electrons from the low energy valley to the high energy valley, the too low electron concentration in the channel makes it difficult for the PIBL region to meet the conditions of electron domain formation. As a result, the oscillation frequency of 400 GHz andIrf/Iavgof 3% are obtained due to the high electron domain velocity and narrow electron domain width.Similarly, for the sample withDp=10 nm, the higher electron concentration in the channel above PIBL contributes to electron accumulation,which increases the width of the electron domain and reduces the electron domain rateνdomain,thus reducing the fundamental frequency of the oscillating current but increasing theIrf/Iavg. Also, a too-smallDpwould cause Mg-dopant diffusing into the 2DEG channel and impact the operation of HEMT.Conversely,a too-largeDpsuppresses the p-GaN island modulating the electric field of the channel, so that it is difficult to trigger the stable oscillation of the current.Therefore,it is necessary to adjustDpaccording to the device process.

    Fig.7. Influence of Np on the fundamental frequency and the minimum Vds required for generating stable oscillation.

    We also investigated the oscillation characteristics of HEMTs with two PIBLs, which are aimed at enhancing the higher-order harmonic components of the output current. The second p-GaN island is located between the first one and the drain.It obviously requires higher gate and drain biases to sustain a sufficient electric field strength and perturbation. Simulation results show that the device’s operating mode is consistent with the aforementioned HEMT with one PIBL whenVgsis lower than 5 V.This means that the adjustment of the second island to the electric field of 2DEG channel is weak. AsVgsincreases to 5 V–6 V accompanied byVdsapproaching 29 V,the formation of Gunn domains appears at the position above the second island. In this case, the fundamental frequency of the oscillation current is around 100 GHz; concurrently, the fifth harmonic component exhibits a significant enhancement.However,an excessively higher gate voltage will cause a large leakage current,which negatively influences normal operation,even leading to a high risk of breakdown for HEMTs. Thus,it is difficult to use in actual circuits.

    Fig.8. Influence of Dp on the fundamental oscillation frequency and Irf/Iavg,where Vgs=0.6 V and Vds=12.5 V.

    4. Conclusion

    In this paper, we propose GaN-HEMTs with a PIBL structure and the oscillation mechanism of a drain current by using the numerical simulation on the Silvaco-TCAD platform.The simulation results show that the 0.2 μm gate HEMT with one PIBL can generate the stable oscillation of the drain current with a fundamental frequency up to 377 GHz at the low gate bias ofVgs=0.6 V.The electric field distribution in HEMTs with a PIBL structure is more conducive to the formation of Gunn-like domains. The position of the PIBL structure significantly affects the oscillation frequency and the RF output power of the device. By appropriately increasingDp, the influence of Mg diffusion on the 2DEG in the actual device can be reduced,although this reduces the oscillation frequency of the output current. At present,the RF output power of the device is relatively low,and it is difficult to meet the application requirements of actual circuits,but this kind of HEMT may reduce the requirements for device size and simplify the circuit scale of the THz system, therefore exhibiting great potential for THz applications compared with vertically structural Gunn diodes.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grant Nos. 61974108 and 61674117), the National Natural Science Foundation for Young Scholars of China (Grants No. 61804119), and the Postdoctoral Science Foundation of China(Grants No.2018M643576).

    猜你喜歡
    李楊飛翔
    李楊設(shè)計(jì)作品
    毛紡科技(2024年1期)2024-02-27 05:51:08
    陳信祥:數(shù)字化項(xiàng)目管理的深耕者
    飛翔吧,少年!
    軍事文摘(2021年18期)2021-12-02 01:27:52
    飛翔(上)
    逼出來的飛翔
    Effect of sintering temperature on luminescence properties of borosilicate matrix blue–green emitting color conversion glass ceramics?
    飛翔
    快樂語文(2019年15期)2019-08-27 01:14:22
    導(dǎo)演李楊今后會(huì)做商業(yè)化嘗試
    誰的愛情沒有瘀青
    第二顆紐扣:失戀博物館“鎮(zhèn)館故事”
    国产日韩一区二区三区精品不卡 | 亚洲性久久影院| 一级黄片播放器| 最近手机中文字幕大全| 成人无遮挡网站| 国产精品免费大片| 少妇人妻一区二区三区视频| 亚洲欧美日韩东京热| 亚洲第一av免费看| 久久99热6这里只有精品| 男男h啪啪无遮挡| 午夜免费观看性视频| 丰满少妇做爰视频| 精品久久久久久久久av| 激情五月婷婷亚洲| 9色porny在线观看| 亚洲国产精品专区欧美| 日韩av不卡免费在线播放| 亚洲欧美日韩东京热| 大又大粗又爽又黄少妇毛片口| 天堂俺去俺来也www色官网| videossex国产| 大片电影免费在线观看免费| 欧美日韩在线观看h| 成年美女黄网站色视频大全免费 | 99热全是精品| 卡戴珊不雅视频在线播放| av又黄又爽大尺度在线免费看| 精华霜和精华液先用哪个| 天堂中文最新版在线下载| 色网站视频免费| 久久久久久久久久人人人人人人| 人人妻人人看人人澡| 免费人成在线观看视频色| 久久久a久久爽久久v久久| 久久久久久久国产电影| 国产无遮挡羞羞视频在线观看| 熟女人妻精品中文字幕| 久久久久网色| 成人无遮挡网站| 高清不卡的av网站| 久久综合国产亚洲精品| 欧美另类一区| 国产一区亚洲一区在线观看| 五月玫瑰六月丁香| 亚洲欧洲国产日韩| 中国三级夫妇交换| 亚洲精品自拍成人| 欧美日韩一区二区视频在线观看视频在线| 精品酒店卫生间| 国产成人一区二区在线| 精品视频人人做人人爽| 在线观看人妻少妇| 精品亚洲乱码少妇综合久久| 久久人人爽人人片av| 中文乱码字字幕精品一区二区三区| 日韩欧美精品免费久久| 国模一区二区三区四区视频| 午夜免费鲁丝| 大码成人一级视频| 精品久久国产蜜桃| 成人国产av品久久久| 欧美丝袜亚洲另类| 男人和女人高潮做爰伦理| 最近手机中文字幕大全| 99久久精品国产国产毛片| 日韩 亚洲 欧美在线| 在线观看www视频免费| 国产成人aa在线观看| 99久久精品国产国产毛片| 亚洲欧美日韩卡通动漫| 综合色丁香网| 国产亚洲91精品色在线| 一区二区三区精品91| 美女大奶头黄色视频| 亚洲欧美一区二区三区黑人 | 人妻 亚洲 视频| 亚洲av成人精品一区久久| 国产乱人偷精品视频| 亚洲av综合色区一区| 亚洲一级一片aⅴ在线观看| 精品国产一区二区久久| 亚洲精品日韩av片在线观看| 国产亚洲5aaaaa淫片| 美女主播在线视频| 亚洲av.av天堂| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲成人一二三区av| 日本黄色片子视频| 国产日韩欧美视频二区| 内地一区二区视频在线| 丁香六月天网| 十八禁高潮呻吟视频 | 国产探花极品一区二区| 91精品一卡2卡3卡4卡| 欧美97在线视频| 亚洲性久久影院| 国产日韩欧美在线精品| 99热这里只有是精品50| 在线观看一区二区三区激情| 国产日韩欧美在线精品| 91精品一卡2卡3卡4卡| 日韩,欧美,国产一区二区三区| 熟女av电影| 蜜桃在线观看..| 人妻 亚洲 视频| 国产又色又爽无遮挡免| 美女中出高潮动态图| 成人美女网站在线观看视频| 久久久欧美国产精品| 国产淫语在线视频| 日本欧美视频一区| 日本91视频免费播放| 伊人久久国产一区二区| 久久久久久久国产电影| 亚洲国产欧美日韩在线播放 | 永久免费av网站大全| 日韩一本色道免费dvd| 自拍偷自拍亚洲精品老妇| a级毛片在线看网站| 两个人的视频大全免费| 亚洲欧美一区二区三区黑人 | 成人亚洲欧美一区二区av| 免费av不卡在线播放| 日韩熟女老妇一区二区性免费视频| 91精品一卡2卡3卡4卡| 精品国产露脸久久av麻豆| 高清黄色对白视频在线免费看 | 乱人伦中国视频| 嫩草影院入口| 99九九在线精品视频 | 久久久久国产网址| 少妇高潮的动态图| 国产黄片美女视频| 永久网站在线| 中文欧美无线码| 日韩不卡一区二区三区视频在线| 又大又黄又爽视频免费| 国产精品人妻久久久影院| 久久ye,这里只有精品| 偷拍熟女少妇极品色| 亚洲欧美日韩卡通动漫| 精品卡一卡二卡四卡免费| 插阴视频在线观看视频| av女优亚洲男人天堂| 在线 av 中文字幕| 欧美 亚洲 国产 日韩一| 日韩亚洲欧美综合| 热99国产精品久久久久久7| 国产淫片久久久久久久久| 婷婷色av中文字幕| 久久久久久久久久久丰满| 久久精品熟女亚洲av麻豆精品| 亚洲人成网站在线观看播放| 精品酒店卫生间| 天堂中文最新版在线下载| 亚洲精品aⅴ在线观看| 黄色一级大片看看| av.在线天堂| 国产亚洲5aaaaa淫片| 3wmmmm亚洲av在线观看| 中国三级夫妇交换| 日韩成人av中文字幕在线观看| 热re99久久国产66热| 最近手机中文字幕大全| 少妇 在线观看| 久久久国产欧美日韩av| 99久久精品一区二区三区| 久久人妻熟女aⅴ| 在线看a的网站| 久久99精品国语久久久| 99热国产这里只有精品6| 少妇丰满av| 国产真实伦视频高清在线观看| 91久久精品电影网| www.av在线官网国产| 99re6热这里在线精品视频| 黄色配什么色好看| 欧美区成人在线视频| 我的老师免费观看完整版| 天天操日日干夜夜撸| 男女边摸边吃奶| 国产精品无大码| 精品一区二区免费观看| 一级片'在线观看视频| 搡老乐熟女国产| 在线观看美女被高潮喷水网站| 中文字幕av电影在线播放| 国产免费一区二区三区四区乱码| 国产精品久久久久成人av| 国产精品一区www在线观看| 午夜激情福利司机影院| 久久精品久久久久久久性| 亚洲av不卡在线观看| 国产高清三级在线| 内射极品少妇av片p| 欧美区成人在线视频| 伊人亚洲综合成人网| 亚洲美女黄色视频免费看| av福利片在线| 一级毛片 在线播放| 久久久精品94久久精品| 国产综合精华液| 六月丁香七月| 51国产日韩欧美| 欧美人与善性xxx| 一区二区av电影网| 啦啦啦中文免费视频观看日本| 人妻人人澡人人爽人人| a 毛片基地| 亚洲精品国产av蜜桃| 免费少妇av软件| 不卡视频在线观看欧美| 亚洲电影在线观看av| 国产真实伦视频高清在线观看| 一边亲一边摸免费视频| 精品少妇久久久久久888优播| 亚洲欧美中文字幕日韩二区| 成年av动漫网址| 看免费成人av毛片| 欧美日韩视频精品一区| 日韩三级伦理在线观看| 亚洲,一卡二卡三卡| 在线 av 中文字幕| 婷婷色av中文字幕| h视频一区二区三区| 日韩熟女老妇一区二区性免费视频| 在线看a的网站| 如日韩欧美国产精品一区二区三区 | 色吧在线观看| 午夜91福利影院| 午夜精品国产一区二区电影| www.av在线官网国产| 国产精品国产三级国产av玫瑰| 乱人伦中国视频| 国产免费av片在线观看野外av| 精品福利永久在线观看| 久久综合国产亚洲精品| 日韩欧美国产一区二区入口| 日韩视频一区二区在线观看| 欧美一级毛片孕妇| 一二三四在线观看免费中文在| 男女床上黄色一级片免费看| 波多野结衣一区麻豆| 一区二区三区乱码不卡18| 精品一品国产午夜福利视频| 亚洲一区二区三区欧美精品| 黄片播放在线免费| 狠狠精品人妻久久久久久综合| 免费观看av网站的网址| 国产男人的电影天堂91| www日本在线高清视频| 国产精品麻豆人妻色哟哟久久| 俄罗斯特黄特色一大片| 国产精品亚洲av一区麻豆| 亚洲一区中文字幕在线| 国产野战对白在线观看| 99国产精品免费福利视频| 色精品久久人妻99蜜桃| 亚洲avbb在线观看| 一区二区三区乱码不卡18| 日韩欧美国产一区二区入口| 午夜福利一区二区在线看| 日韩视频一区二区在线观看| 亚洲美女黄色视频免费看| 欧美国产精品一级二级三级| 欧美人与性动交α欧美软件| 黑人巨大精品欧美一区二区蜜桃| 91成年电影在线观看| 亚洲熟女精品中文字幕| 老司机福利观看| 精品久久久精品久久久| 日韩一区二区三区影片| 久久久国产欧美日韩av| 国产一区二区三区在线臀色熟女 | 香蕉丝袜av| 十八禁人妻一区二区| 婷婷丁香在线五月| 久久青草综合色| 亚洲欧美精品综合一区二区三区| 欧美+亚洲+日韩+国产| 他把我摸到了高潮在线观看 | 亚洲精品一二三| 亚洲av日韩在线播放| 国产成人av教育| 国产免费视频播放在线视频| 啦啦啦啦在线视频资源| 国产真人三级小视频在线观看| 岛国毛片在线播放| 成人手机av| 搡老乐熟女国产| 侵犯人妻中文字幕一二三四区| 考比视频在线观看| 汤姆久久久久久久影院中文字幕| 日日爽夜夜爽网站| 波多野结衣av一区二区av| 亚洲av国产av综合av卡| 亚洲情色 制服丝袜| 18禁观看日本| 美女大奶头黄色视频| 欧美国产精品一级二级三级| 亚洲专区字幕在线| 国产日韩欧美亚洲二区| 成年美女黄网站色视频大全免费| 精品一区在线观看国产| 动漫黄色视频在线观看| kizo精华| tocl精华| 色播在线永久视频| 亚洲国产毛片av蜜桃av| 国产黄色免费在线视频| 中文字幕高清在线视频| 欧美在线黄色| 一区二区三区精品91| 大片免费播放器 马上看| 国产精品影院久久| 亚洲男人天堂网一区| 99香蕉大伊视频| 一本久久精品| 考比视频在线观看| 欧美日韩一级在线毛片| 女人爽到高潮嗷嗷叫在线视频| 1024香蕉在线观看| 成人黄色视频免费在线看| 精品高清国产在线一区| 欧美+亚洲+日韩+国产| 久久久国产精品麻豆| 欧美国产精品一级二级三级| 亚洲精品在线美女| 精品国产一区二区三区久久久樱花| 欧美久久黑人一区二区| 久久久久久久大尺度免费视频| 少妇裸体淫交视频免费看高清 | 久久天堂一区二区三区四区| 亚洲一卡2卡3卡4卡5卡精品中文| 精品卡一卡二卡四卡免费| 久久精品国产a三级三级三级| 伊人亚洲综合成人网| 黄色a级毛片大全视频| 人人妻,人人澡人人爽秒播| 最近最新免费中文字幕在线| 黄色毛片三级朝国网站| 国产淫语在线视频| 精品熟女少妇八av免费久了| 亚洲国产精品成人久久小说| 在线天堂中文资源库| 中文精品一卡2卡3卡4更新| 啦啦啦啦在线视频资源| 天堂中文最新版在线下载| xxxhd国产人妻xxx| 国产精品麻豆人妻色哟哟久久| 亚洲美女黄色视频免费看| 欧美性长视频在线观看| 亚洲第一青青草原| 亚洲免费av在线视频| 麻豆乱淫一区二区| 99精国产麻豆久久婷婷| 亚洲情色 制服丝袜| 日韩 欧美 亚洲 中文字幕| 国产欧美日韩综合在线一区二区| 狂野欧美激情性bbbbbb| 俄罗斯特黄特色一大片| 久久热在线av| 精品一区二区三卡| 一本一本久久a久久精品综合妖精| 国产黄色免费在线视频| 国产亚洲精品一区二区www | 成年人黄色毛片网站| 国产成+人综合+亚洲专区| 他把我摸到了高潮在线观看 | 老司机福利观看| 亚洲全国av大片| 亚洲精品久久久久久婷婷小说| 亚洲精品国产av成人精品| 91精品三级在线观看| 18禁裸乳无遮挡动漫免费视频| 999久久久精品免费观看国产| 国产一级毛片在线| 久久精品人人爽人人爽视色| 男女国产视频网站| 精品视频人人做人人爽| 少妇的丰满在线观看| 午夜精品国产一区二区电影| 亚洲国产欧美一区二区综合| 一区二区三区乱码不卡18| 在线天堂中文资源库| 欧美少妇被猛烈插入视频| 天天躁狠狠躁夜夜躁狠狠躁| 少妇人妻久久综合中文| 自线自在国产av| 制服诱惑二区| 亚洲欧美日韩另类电影网站| 亚洲国产精品一区二区三区在线| 久久国产精品人妻蜜桃| 搡老岳熟女国产| 久久精品久久久久久噜噜老黄| 精品少妇一区二区三区视频日本电影| 国内毛片毛片毛片毛片毛片| 一级毛片精品| 亚洲国产精品999| 欧美精品av麻豆av| 国产精品香港三级国产av潘金莲| 亚洲伊人久久精品综合| 天天躁夜夜躁狠狠躁躁| 国产熟女午夜一区二区三区| 一级a爱视频在线免费观看| 久久天堂一区二区三区四区| av又黄又爽大尺度在线免费看| 涩涩av久久男人的天堂| 一区二区av电影网| 国产成人欧美| 91国产中文字幕| 男人爽女人下面视频在线观看| 亚洲av日韩精品久久久久久密| 久久久久久久久免费视频了| 另类亚洲欧美激情| 亚洲国产欧美在线一区| 亚洲av成人不卡在线观看播放网 | 午夜91福利影院| 亚洲久久久国产精品| 老司机福利观看| 久久精品国产a三级三级三级| 久久精品亚洲av国产电影网| 美女国产高潮福利片在线看| 老司机影院毛片| 久久久久久久精品精品| 黄片小视频在线播放| 午夜成年电影在线免费观看| 国产一区有黄有色的免费视频| 免费在线观看黄色视频的| 亚洲三区欧美一区| 亚洲av欧美aⅴ国产| 无限看片的www在线观看| 90打野战视频偷拍视频| 脱女人内裤的视频| 欧美激情 高清一区二区三区| 免费久久久久久久精品成人欧美视频| 女人高潮潮喷娇喘18禁视频| 美女主播在线视频| 动漫黄色视频在线观看| 这个男人来自地球电影免费观看| 欧美日韩av久久| 国产福利在线免费观看视频| 日韩免费高清中文字幕av| 日韩视频一区二区在线观看| 久久 成人 亚洲| 亚洲精品一二三| 中文字幕最新亚洲高清| 成年人免费黄色播放视频| 91九色精品人成在线观看| 永久免费av网站大全| 精品少妇一区二区三区视频日本电影| 欧美日韩福利视频一区二区| 国产在线观看jvid| 丰满迷人的少妇在线观看| 亚洲中文av在线| 免费在线观看视频国产中文字幕亚洲 | 男女下面插进去视频免费观看| cao死你这个sao货| 不卡av一区二区三区| 午夜福利免费观看在线| 高潮久久久久久久久久久不卡| 日韩欧美一区视频在线观看| 丝袜人妻中文字幕| 黄色毛片三级朝国网站| 91精品三级在线观看| 搡老乐熟女国产| 国产亚洲av片在线观看秒播厂| 久久99一区二区三区| 久久 成人 亚洲| 男女床上黄色一级片免费看| 中文精品一卡2卡3卡4更新| 韩国精品一区二区三区| 免费人妻精品一区二区三区视频| 亚洲专区字幕在线| 香蕉丝袜av| 91精品国产国语对白视频| 十八禁网站网址无遮挡| 国产精品 欧美亚洲| 日本五十路高清| 亚洲熟女精品中文字幕| 欧美精品啪啪一区二区三区 | 亚洲av日韩精品久久久久久密| 精品一区在线观看国产| 无遮挡黄片免费观看| 欧美人与性动交α欧美精品济南到| 美女国产高潮福利片在线看| av有码第一页| 久久青草综合色| 国产精品二区激情视频| 精品一区在线观看国产| 日韩电影二区| 人妻久久中文字幕网| 免费少妇av软件| 国产麻豆69| 国产在线一区二区三区精| 亚洲欧美成人综合另类久久久| 成年av动漫网址| 欧美精品一区二区免费开放| 国产精品一区二区精品视频观看| 大型av网站在线播放| 99九九在线精品视频| 十八禁网站免费在线| 免费av中文字幕在线| 男女午夜视频在线观看| 99热国产这里只有精品6| 久久久精品区二区三区| 伊人亚洲综合成人网| 国产在视频线精品| 国产精品一区二区在线观看99| 色视频在线一区二区三区| av视频免费观看在线观看| 亚洲avbb在线观看| 久久精品aⅴ一区二区三区四区| 国产97色在线日韩免费| 午夜免费成人在线视频| 日本欧美视频一区| 日韩有码中文字幕| 在线亚洲精品国产二区图片欧美| 国产精品成人在线| 国产精品99久久99久久久不卡| 高清黄色对白视频在线免费看| 精品久久久精品久久久| 人人妻人人澡人人爽人人夜夜| 免费在线观看日本一区| 亚洲国产日韩一区二区| 午夜免费鲁丝| 老汉色av国产亚洲站长工具| 大片电影免费在线观看免费| 亚洲欧美色中文字幕在线| 99久久国产精品久久久| 国产精品一二三区在线看| 亚洲九九香蕉| 日日爽夜夜爽网站| 一本一本久久a久久精品综合妖精| 男女国产视频网站| 欧美老熟妇乱子伦牲交| 国产日韩一区二区三区精品不卡| 美女高潮喷水抽搐中文字幕| 夫妻午夜视频| 不卡av一区二区三区| 性色av乱码一区二区三区2| 欧美激情久久久久久爽电影 | 精品人妻1区二区| 最新在线观看一区二区三区| 亚洲欧美色中文字幕在线| 亚洲综合色网址| 成年动漫av网址| 高清黄色对白视频在线免费看| 夜夜夜夜夜久久久久| 国产野战对白在线观看| 成人国产av品久久久| 国产高清videossex| 亚洲精品久久成人aⅴ小说| 免费久久久久久久精品成人欧美视频| 精品一品国产午夜福利视频| 一级片'在线观看视频| 欧美在线黄色| 亚洲成国产人片在线观看| 国产亚洲av片在线观看秒播厂| e午夜精品久久久久久久| 乱人伦中国视频| 免费在线观看黄色视频的| 午夜视频精品福利| 成人手机av| 欧美日韩黄片免| 日韩有码中文字幕| 免费在线观看影片大全网站| 欧美人与性动交α欧美精品济南到| 老汉色∧v一级毛片| 中文欧美无线码| 久久久精品区二区三区| 欧美日韩成人在线一区二区| 亚洲成人免费电影在线观看| a级毛片在线看网站| 丝袜脚勾引网站| 狠狠狠狠99中文字幕| 久久精品亚洲熟妇少妇任你| 男女之事视频高清在线观看| av不卡在线播放| 欧美xxⅹ黑人| 老司机影院成人| 纵有疾风起免费观看全集完整版| 欧美精品啪啪一区二区三区 | 亚洲熟女精品中文字幕| 久久久精品区二区三区| 国产欧美日韩一区二区精品| 午夜精品国产一区二区电影| 国产成人av教育| 欧美+亚洲+日韩+国产| 国产麻豆69| 免费黄频网站在线观看国产| 亚洲国产欧美在线一区| 在线观看免费视频网站a站| 欧美国产精品一级二级三级| 国产精品国产av在线观看| 成人影院久久| 深夜精品福利| 啦啦啦在线免费观看视频4| 91成年电影在线观看| 一本综合久久免费| 人成视频在线观看免费观看| 黑人巨大精品欧美一区二区mp4| 亚洲人成电影观看| 超碰97精品在线观看| tocl精华| 成年av动漫网址| 欧美黄色淫秽网站| 日韩电影二区| 亚洲欧洲精品一区二区精品久久久| av视频免费观看在线观看| 国产高清国产精品国产三级| 热99久久久久精品小说推荐| 亚洲国产精品一区三区| 男女床上黄色一级片免费看|