• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    DC and analog/RF performance of C-shaped pocket TFET(CSP-TFET)with fully overlapping gate

    2022-05-16 07:12:12ZiXinChen陳子馨WeiJingLiu劉偉景JiangNanLiu劉江南QiuHuiWang王秋蕙XuGuoZhang章徐國JieXu許潔QingHuaLi李清華WeiBai白偉andXiaoDongTang唐曉東
    Chinese Physics B 2022年5期
    關鍵詞:徐國江南

    Zi-Xin Chen(陳子馨) Wei-Jing Liu(劉偉景) Jiang-Nan Liu(劉江南) Qiu-Hui Wang(王秋蕙)Xu-Guo Zhang(章徐國) Jie Xu(許潔) Qing-Hua Li(李清華) Wei Bai(白偉) and Xiao-Dong Tang(唐曉東)

    1College of Electronics and Information Engineering,Shanghai University of Electric Power,Shanghai 200090,China 2GTA Semiconductor Corporation Limited,Shanghai 200123,China

    3Key Laboratory of Polar Materials and Devices,East China Normal University,Shanghai 200041,China

    Keywords: tunnel field effect transistor,double gate,pocket

    1. Introduction

    As the feature size of metal oxide semiconductor field effect transistors (MOSFETs) continues to decrease, the supply voltage (VDD) scaling of MOSFETs will be quite slow.With the increasing reduction of technology nodes, the lack ofVDDscaling has recently led to power consumption problems because MOSFETs are approaching to their minimumVDDdetermined by the operating mechanism. Thus, higher device power consumption will become a major constraint on the transistor performance. To meet the demand for lowpower circuits in the era of big data, many researchers have proposed a variety of ultra-steep subthreshold swing devices based on novel operating mechanisms, including piezoelectric field-effect transistors(piezo-FETs),negative capacitance field-effect transistors (NC-FETs), and tunneling field-effect transistors(TFETs). TFETs are emerging as a promising candidate for ultra-low power applications due to their advantages of low leakage currents, low temperature dependence,and low sub-threshold swings,which can be achieved beyond the 60 mV/dec limit of MOSFETs at room temperature.[2–9]However, the drawbacks of TFETs are low on-state current and the occurrence of ambipolar current. Many researchers addressed these problems by means of modifying the device structure,such as the use of dual-gate TFETs,[2,10]gate-all-around TFETs,[11,12]L-shaped gate TFETs[13,14]and gate–source/drain overlapping,[15,16]or adopting different kinds of materials such as hetero-gate dielectric,[17–19]III–IV materials[20–22]and hetero-material gate.[23,24]The low on-current of the silicon-based TFETs are an inherent difficulty in Si due to the indirect bandgap and low tunneling effective mass.[25]In order to achieve a higher on-state current of the silicon-based TFETs, the source-pocket TFET(PNPN-TFET)[26–30]has recently been proposed, which features a heavily doped N pocket added on the source side,leading to enhanced on-state currents,[26]improved on/off current ratios and steep subthreshold swings compared with the conventional PIN-TFETs. Different structures and materials of pocket in PNPN-TFETs have been explored: (1) vertical pocket inserted between the source and channel based on the fully depleted pocket region,which results in reducing the tunneling width and then enhancing the lateral electric field at the tunneling junction;[26,27,30](2)horizontal pocket added on the source side based on the line tunneling-based structures;[29,31](3)the use of SiGe pocket materials[32,35]due to its VLSI compatibility and tunable bandgap. In addition, a gate-to-pocket overlapping structure has been demonstrated as a new way to enhance the BTBT generation rate and thus to improve the tunneling current.[33]However, the silicon-based TFETs still require further improvements in terms ofIonand subthreshold swing(SS)for ultra-low power applications.

    In this work, the silicon-based double-gate PNPN-TFET with symmetrical horizontal pocket and gate-to-pocket overlapping structure — silicon-based C-shaped pocket TFET(CSP-TFET) has been proposed to further improve the onstate current and subthreshold swing. The effect of the physical dimensional parameters and the doping concentration of the pocket on the DC and analog/RF performance of the CSPTFET device are analyzed in detail. The experimental details will be explored in the following sections. Section 2 describes the basic structure, parameters, simulation models, and calibration experiments of the proposed device. Section 3 discusses the characteristics of the structure and the optimization process, and then Section 4 summarizes the article with relevant notes.

    2. Device structures,parameters,simulation details and calibration

    The simulated CSP-TFET is schematically presented in Fig. 1, and the specific parameters of the device are shown in Table 1. The doping concentrations of the source, channel, and drain are 1×1020cm-3(for p-type), 1×1017cm-3(for p-type), and 5×1018cm-3(for n-type), respectively.All regions are assumed to be uniformly doped. The PNPNTFETs are characteristically based on the conventional structure of silicon-based double-gate TFETs with a heavily Ndoped pocket incorporated between the source and channel.The principle of the PNPN-TFET is to make the pocket region fully depleted under the applied voltage, increasing the electric field and thus enhancing the band-to-band tunneling rate between the source and channel, which leads to an increase in the on-state current. The proposed CSP-TFET device is based on the N-doped pocket region(region name: pocket 2)between the source and channel, with another pocket region(region name: pocket 1)added to the source. The pocket 1 is connected to the pocket 2. The N-doped pocket 1 and pocket 2 are collectively called the “pocket”, and the entire pocket(including pocket 1 and pocket 2) looks like a “C” shape, as shown in Fig.1. It is assumed that pocket 1 and pocket 2 are consistent in doping concentration. SiO2is used as the gate oxide layer with a thickness of 2 nm. The simulation parameters,such as the length of pocket 1(Lp1),the length of pocket 2(Lp2)and the pocket doping concentration(Np),will be used as variables. Assuming that the pocket is fully covered by the gate. The work functionφ(of the gate) is set to be 4.5 eV.In addition to studying the effect of pocket length and doping concentration on the DC and analog/RF properties of the CSP-TFET device, the influence of the gate position of the CSP-TFET device is also investigated.

    Fig.1. The 2-D schematic view of CSP-TFET.

    Table 1. Device parameters.

    The CSP-TFET is investigated by using Synopsys Sentaurus TCAD. The meshes need to be carefully defined to accurately extract data, especially for the interface between source and pocket and the interface between pocket and gate oxide layer. Since the source and drain of TFET are heavily doped,the Fermi–Dirac model and the bandgap narrowing model are employed. The doping-dependent mobility model,the carrier Shockley–Read–Hall(SRH)model,and the Auger model are also adopted. Since the silicon thickness (Tsi) is 20 nm (larger than 7 nm), quantum effects are not considered in this simulation. The common band-to-band tunneling models include Schenk, Hurkx, the simple band-to-band tunneling model and the dynamic nonlocal path band-to-band tunneling (BTBT) model. The electric field and the carrier distribution at each point of the actual tunneling path are not constant. This paper employs the dynamic non-local BTBT model,which is the most versatile model and becomes a more flexible and convenient way to deal with arbitrarily shaped potential barriers. When using a nonlocal dynamic band-toband tunneling model,the default values of the model parameters are inaccurate and need to be calibrated based on experimental results. The nonlocal BTBT model used in this paper is calibrated by using the work by Boucart and Ionescu.[1]The phonon-assisted factors(Apath1=4.0×1016cm-3·s-1andBpath1=1.9×107MV·cm-1)are chosen for silicon materials to achieve the best fitting results. The tunneling model used has been calibrated with the reported results.[1]The calibration of transfer characteristics is depicted in Fig.2.

    Fig.2.Calibration of the TCAD model parameters obtained by comparing the simulated and experimental Ids–Vgs characteristics of Ref.[1].

    3. Results and discussion

    Pocket length, pocket doping concentration and gate position are discussed for better DC and analog/RF performance.TheIon,Ioff,Ion/Ioff,andSSavgare used as important indicators of the DC characteristics, and subsequently, thegm,fT, and GBP are used as those of the analog/RF characteristics. The drain voltageVdis set to be 1 V. The gate voltageVgvaries from 0 to 2 V.The on-state current(Ion)and the off-state current(Ioff)are defined by the drain currents(Id)underVd=1 V withVg=2 V andVg=0 V.

    3.1. Effect of Lp2 and Np

    Figure 3(a)shows the transfer characteristics with different value ofLp2of the proposed CSP-TFET at a fixed pocket1 length (Lp1) of 2 nm and a pocket doping concentration (Np)of 1×1020cm-3. Note that in this work,the energy band diagrams are obtained at the location of 1 nm below the interface of silicon and gate oxide layer along the channel direction. As shown in Fig. 3(b) along the lineA–A′in Fig. 1, there is a local minimum in the conduction bandEcof this device depicted in the locally enlarged picture due to the addition of pocket 2 between the source and channel,where the pocket 2 is either fully or partially depleted under the gate voltage.[17]It is observed from Fig.3(a)that the drain currents of the device increase sharply and approach saturation atLp2>2 nm,and the on-state currents atLp2>2 nm are approximately 1.5 times higher than those atLp2≤2 nm. This may be because the local minimum of the conduction band (Ec) in pocket 2 atLp2>2 nm has more energy band overlapping region with the valence band(Ev)in the source,resulting in more electron tunneling from the source into the channel as seen in Fig.3(b).Moreover, Fig. 3(a) shows, without the gate voltage applied,the significant leakage currents were observed in the off state,which degrades severely to about 10-6A/μm atLp2>2 nm,while the drain current atLp2≤2 nm is less than 10-15A/μm.The behavior of the drain currents of the CSP-TFET device in the off-state condition is illustrated by Fig.3(c),where the conduction band in pocket 2 atLp2≤2 nm lies above the valence band in the source in the absence of the gate voltage.The BTBT is suppressed, resulting in the device being in the off state. WhenLp2is greater than 2 nm,the conduction band of pocket 2 region is below the valence band of the source.

    Fig.3. (a)Effect of Lp2 on the transfer characteristics of the CSPTFET device at Lp1=2 nm and Np=1×1020 cm-3(@Vd=1 V,@Vg=2 V),where the left Y-axis is the logarithmic curve and the right Y-axis is the linear curve.(b)Energy band diagram for Lp2 varying from 1 nm to 10 nm in the on-state at Lp1 =2 nm and Np =1×1020 cm-3 (@Vd =1 V, @Vg =2 V), where the box checked by the red dashed line is an enlarged picture between the source and the channel. (c)Energy band diagram for Lp2 varying from 1 nm to 10 nm in the off-state at Lp1=2 nm and Np=1×1020 cm-3 (@Vd=1 V,@Vg=0 V).

    Therefore, the conduction band in the pocket 2 and the valence band in the source overlap, and electrons from the source can enter the channel with no gate voltage applied,and thus band-to-band tunneling occurs,as shown in Fig.3(c)along the lineA–A′in Fig. 1. Therefore, for a fixedLp1of 2 nm and a pocket doping concentration of 1×1020cm-3,the device has an on-state current>10-4A/μm, an off-state current<10-15A/μm, andIon/Ioffof approximately 1011atLp2≤2 nm. To further optimizeLp2,the DC and analog characteristics of the device for bothLp2of 1 nm and 2 nm are compared and analyzed.

    The calculated DC characteristics (e.g.,Ion,Ioff,SSavg,Ion/Ioff) are shown in Table 2.SSis defined as the change in gate voltage which must be applied in order to create a one decade increase in the output current,[1]defined by (d logId/dVgs)-1in units of mV/decade.[25]In this work, the average subthreshold swing and point subthreshold swing performance metrics are adopted.SSpointis measured around the voltage corresponding to a drain current of 10-7A/μm. Several methods of defining subthreshold swing have been proposed for TFETs.[1,34]Bhuwalka[34]and Boucart and Ionescu[1]have proposed definitions for calculating theSSavg,[25]defined as

    whereVTHis the threshold voltage whose value is the voltage corresponding to a drain currentITHof 10-7A/μm. Since the minimum tunneling current varies in different cases,theVOFFin this work is the voltage corresponding to a drain currentIoffof 10-14A/μm.

    Table 2 shows different DC and analog parameters extracted from the transfer characteristics betweenLp2=1 nm and 2 nm. It is obvious that the numerical results forIonandSSavgatLp2=1 nm are similar to those atLp2=2 nm,while the latter(Ioff=9.509×10-16A/μm forLp2=2 nm)has an off-state current approximately 3.42 times higher than the former(Ioff=2.779×10-16A/μm forLp2=1 nm). Hence,theIon/Ioffof the former(Ion/Ioff=7.247×1011forLp2=1 nm)is three times more than that of the latter(Ion/Ioff=2.166×1011forLp2=2 nm). It is important to add that a critical indicator of the analog characteristics of the device is thegm,which represents the gate controllability over the drain current, i.e.,the relative change in drain current with the change in gate voltage,as shown below:

    It can also be found thatgmatLp2=1 nm(3.39×10-4S)is slightly higher than that atLp2=2 nm (2.68×10-4S) from Eq. (2) and Table 2. Based on the factors mentioned above,the optimumLp2is found to be 1 nm forLp1= 2 nm andNp=1×1020cm-3.

    The pocket doping concentration(Np)also has an impact on the electrical properties of the CSP-TFET device fixingLp1andLp2. From Figs. 4 and 5(a), it can be seen that the on-state current of the device increases by 30.8% when the pocket doping concentration increases from 2×1019cm-3to 1×1020cm-3,and reaches a peak value of 2.01×10-4A/μm when the pocket doping concentration reaches 1×1020cm-3atLp1=2 nm andLp2=1 nm. This is possibly because in pocket 2, the pocket doping concentration becomes higher,making the pocket region fully depleted, thus leading to an increase in the electric field between the source and channel,and therefore increasing the BTBT current.It is observed from Figs. 4, 5(a) and 5(b) that the off-state currents of the CSPTFET devices increase with the pocket doping concentration butIoff<10-14A/μm, andIon/Ioff>1010. TheSSavgof the device in Fig. 5(b) continue to decrease with increasingNp,decreasing by~18 mV/dec, which can be reflected in the transfer characteristics in Fig. 4. It can be clearly seen that the higher theNpis, the steeper the slope of the curve in the subthreshold region becomes,which leads to the faster switching speed of the CSP-TFET device. Thus,there exists an optimum pocket doping concentration (Np) of 1×1020cm-3atLp1=2 nm andLp2=1 nm for better DC characteristics.

    Fig.4. Effect of pocket doping concentration variation on transfer characteristics at Lp1 =2 nm and Lp2 =1 nm (@Vd =1 V, @Vg =2 V),where the left Y-axis is the logarithmic curve and the right Y-axis is the linear curve.

    Fig.5. Impact of pocket doping concentration variation on(a)Ion and Ioff;(b)Ion/Ioff and SSavg at Lp1=2 nm and Lp2=1 nm.

    3.2. Effect of Lp1

    The effect ofLp1on the DC and analog/RF characteristics of the CSP-TFET device is investigated for a fixed optimum value ofNp=1×1020cm-3andLp2=1 nm.

    3.2.1. DC characteristics

    The effect ofLp1on the transfer characteristics of the device is shown in Fig. 6. The linear curves in Figs. 6 and 8 reveal that asLp1increases from 2 nm to 30 nm,the curve in the subthreshold region of the transfer characteristics becomes steeper. TheSSavgdecreases by approximately 16 mV/dec,while the on-state current increases by about 8.0×10-4A/μm.The off-state current also becomes larger with an increase ofLp1, with an upper limitation of 10-14A/μm. Hence,Ion/Ioffis still greater than 107.

    The experiment begins with a default gate position that completely covers the pocket and the channel. The effect of the gate position on the CSP-TFET device will be discussed later in Subsection 3.2. Figure 7 shows the comparison of the physical electric field diagrams and electron BTBT tunneling rate diagrams withLp1of 2 nm and 30 nm, respectively, for a given gate bias. Figures 7(b)and 7(d)show that the longer theLp1is,the more the gate and pocket regions overlap,which leads to in the electric field extending towards the source,i.e.,tunneling electrons are generated vertically and horizontally along pocket 2,which leads to more electrons being collected by the drain. Thus, the optimized DC characteristics of the device is found atLp1= 30 nm. In this case, the average subthreshold swing is 12.19 mV/dec, the transconductance is 1.268×10-3S, the on-state current is 9.98×10-4A/μm, the off-state current is 3.681×10-15A/μm, and theIon/Ioffis 2.71×1011.

    Fig.6. Effect of Lp1 variation on transfer characteristics of the device at Lp2=1 nm and Np=1×1020 cm-3 (@Vd=1 V,@Vg=2 V),where the left Y-axis is the logarithmic curve and the right Y-axis is the linear curve.

    Fig. 8. Impact of Lp1 variation on (a) SSavg and gm; (b) Ion and Ioff at Lp2=1 nm and Np=1×1020 cm-3.

    3.2.2. Analog/RF characteristics

    Having investigated the DC characteristics, this section evaluates the analog/RF characteristics of the CSP-TFET device. The simulated performance parameters are analyzed by using an AC analytical method, and the capacitance parameters are extracted at an operating frequency of 1 MHz frequency conditions. Thegmis an important indicator to measure the analog characteristics of devices,[35]and a highergmmakes the device beneficial for analog applications. Analysis of the analog parametergmplays a critical role in obtaining higherfTand GBP.[36]The transconductance is defined as Eq. (2). Figure 9(a) shows the transconductance of the CSP-TFET device with differentLp1and it is shown that the maximumgm(gm,max) of the CSP-TFET device is 1.268×10-3S atLp1=30 nm. Furthermore,gmis increased withVgs, forVgsbelow 1 V, beyond whichgmstarts to decrease atLp1=30 nm.The decrease ingmaftergmreaches thegm,maxis probably caused by carrier velocity saturation at high electric fields,leading to the degradation of the carrier mobility. Figures 9(b)–9(d)show the variation of the gate-to-source capacitance(Cgs), the gate-to-drain capacitance(Cgd) and the gate capacitance (Cgg=Cgs+Cgd) withVgsforLp1ranging from 2 nm to 30 nm. The capacitance parameters also have influence on thefTand GBP,which will be discussed later. The cut-off frequency,which is the frequency at which the current gain becomes unity,plays a significant role in deciding the device performance at high frequency,[37]as shown below:

    Fig.10. Variation of(a) fT and(b)GBP with different Lp1 from 2 nm to 30 nm.

    Figure 10(a) shows the variation offTwithVgsasLp1ranges from 2 nm to 30 nm. It is observed from Eq. (3)thatfTis proportional togmand inversely proportional toCgg. Note thatCggremains at a small value for all curves whenVgs<0.9 V and then increases rapidly withVgs, whenVgs>0.9 V in Fig.9(b). The cut-off frequency variation withVgswhenVgs>0.9 V,as shown in Fig.10(a),decreases sharply after reaching the maximum cut-off frequency(fTmax)becausegmdecreases withVgsandCggincreases withVgs,which leads to a faster rate offTdecline. Figure 10(a) shows that asLp1increases to 30 nm, the CSP-TFET device shows the highest cut-off frequency of 1.0316×1011Hz whenVgs=0.9 V.GBP is another significant parameter,which represents the product of gain and bandwidth of the active device or circuit.The value of GBP is expressed as follows:

    From Eq. (4), GBP is still proportional togmand inversely proportional toCgd. Figure 10(b)shows the variation of GBP withVgsasLp1ranges from 2 nm to 30 nm and the trend of GBP is basically the same as Fig. 10(a). Thus, the GBP achieves a maximum value of 4.266×1010Hz whenLp1=30 nm.

    3.3. Effect of the location of the gate

    Based on the discussion above, the optimalLp1,Lp2andNpof the proposed CSP-TFET device are selected as 30 nm,1 nm and 1×1020cm-3, respectively. In order to investigate the effect of gate-to-pocket overlapping structures on the electrical properties of the device, we simulate 6GSoves: 3 nm,6 nm,12 nm,18 nm,24 nm,and 30 nm(in this work,we defineGSoveasL×Lp1and simulate 6Ls: 0.1,0.2,0.4,0.6,0.8,and 1.0 for a fixed optimumLp1value of 30 nm),which represent the length of the overlapping region between the gate and pocket 1.Lis the gate-to-pocket overlapping factor.

    Fig.11. Structure diagrams of the variation of L ranging from 0.1 to 1.0.

    Figure 11 shows the structure diagram of the CSP-TFETs with the change ofL(1.0,0.6,and 0.1). For 0<L ≤1,L=1 represents the gate fully overlapping the pocket region(including pocket 1 and pocket 2) and 0<L <1 denotes the gate partially overlapping of the pocket region.

    Fig. 12. Effect of L (the change in position of the gate) on the transfer characteristics of the CSP-TFET at Lp1 = 30 nm, Lp2 = 1 nm,Np=1×1020 cm-3 (@Vd=1 V,@Vg=2 V),where the sitting Y-axis is a logarithmic curve and the right Y-axis is a linear curve.

    Fig. 13. Impact of L variation on (a) SSavg and SSpoint; (b) gm and Ion/Ioff;(c)Ion and Ioff.

    Figure 12 shows the effect ofLon the transfer characteristics of the CSP-TFET device. Figures 13(a)–13(c) illustrate the DC and transconductance parameters extracted from Fig.12. Figure 13(a)showsSSavgandSSpointas a function ofL. It can be seen that bothSSavgandSSpointdecrease asLincreases, withSSavgimproving by 10.342 mV/dec andSSpointdecreasing by 53.7 mV/dec. Figure 13(b)shows the variation ofgmandIon/IoffasLranges from 0.1 to 1.0. ForL=1.0,the device has the maximum value in terms ofgmandIon/Ioffand shows better gate controllability and switching capability. Moreover, Fig.13(c)showsIonandIoffvary withL. It is clear that the on-state current improves by 7.834×10-4A/μm whenLincreases from 0.1 to 1.0. According to Figs. 12 and 13, forL=1.0, i.e., fully gate-to-pocket overlapping structure,the CSP-TFET device has the smallestSSavgandSSpoint,the largestIon,Ion/Ioff, andgm, which has the optimized DC and analog characteristics.

    4. Conclusion and perspectives

    In this paper,a C-shaped pocket TFET with the gate covering the pocket based on the double-gate TFET is proposed and analyzed. The pocket is C-shaped which is incorporated between source and channel to enhance device performance.The pocket length and pocket doping concentration affect the DC and analog/RF performance of the C-shaped pocket TFET.The use of fully gate-to-pocket overlapping structure results in the improvements of gate controllability and current driving capability. Our results demonstrate that high pocket doping concentration (Np) and narrow pocket 2 length (Lp2) can achieve better electrical properties. The increase in pocket 1 length(Lp1)results in a larger overlapping region between the gate and pocket, which increases the electric field, and then increases the BTBT rate of the electrons. The silicon-based double-gate CSP-TFET demonstrated superior DC and analog/RF performance withIon=9.98×10-4A/μm,SSavg=12.19 mV/dec,SSpoint=52.81 mV/dec,gm=1.268×10-3S,Ion/Ioff= 2.71×1011,fT= 1.0316×1011Hz and GBP =4.266×1010Hz atLp1= 30 nm,Lp2= 1 nm andNp=1×1020cm-3. The results of this work indicates that the CSP-TFET device is suitable for high speed and low power applications.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos. 52177185 and 62174055) and Open Fund of Shanghai Key Laboratory of Multidimensional Information Processing,East China Normal University(Grant No.2019MIP002).

    猜你喜歡
    徐國江南
    最美江南
    First principles study on geometric and electronic properties of two-dimensional Nb2CTx MXenes
    Fast-sweeping Langmuir probes:what happens to the I-V trace when sweeping frequency is higher than the ion plasma frequency?
    Automated electron temperature fitting of Langmuir probe I-V trace in plasmas with multiple Maxwellian EEDFs
    小編有話說①
    小編有話說②
    小編有話說①
    追本溯源提升素養(yǎng)
    Study on parameters optimization in resistance spot welding of stainless steel with rectangular electrodes*
    China Welding(2015年3期)2015-10-31 10:57:38
    讀《牡丹亭》
    午夜福利在线观看吧| 又大又爽又粗| 国产精品免费视频内射| 精品第一国产精品| 免费在线观看黄色视频的| 亚洲视频免费观看视频| 日韩免费av在线播放| 精品久久久精品久久久| 50天的宝宝边吃奶边哭怎么回事| 十分钟在线观看高清视频www| 91成年电影在线观看| 精品国产美女av久久久久小说| 亚洲电影在线观看av| 国产精品国产高清国产av| 国产精品一区二区免费欧美| svipshipincom国产片| 操美女的视频在线观看| 如日韩欧美国产精品一区二区三区| 黄频高清免费视频| 美女午夜性视频免费| 亚洲国产精品999在线| 国产99白浆流出| 一级黄色大片毛片| 精品熟女少妇八av免费久了| 一级片免费观看大全| 搡老妇女老女人老熟妇| 日韩三级视频一区二区三区| 国产一区在线观看成人免费| 久久人人精品亚洲av| 好看av亚洲va欧美ⅴa在| 91大片在线观看| 中文字幕色久视频| 18禁黄网站禁片午夜丰满| 久久久久国内视频| 一个人免费在线观看的高清视频| 欧美在线黄色| www.自偷自拍.com| 久久香蕉精品热| 热re99久久国产66热| 黄色丝袜av网址大全| 热99re8久久精品国产| 大型av网站在线播放| 亚洲一码二码三码区别大吗| 一二三四社区在线视频社区8| 啦啦啦免费观看视频1| 最好的美女福利视频网| 999久久久精品免费观看国产| 97人妻天天添夜夜摸| 亚洲色图综合在线观看| 麻豆一二三区av精品| 精品一区二区三区av网在线观看| 欧美日韩亚洲国产一区二区在线观看| 日本撒尿小便嘘嘘汇集6| 一区二区三区精品91| 啪啪无遮挡十八禁网站| 国产三级黄色录像| 亚洲第一青青草原| 成人av一区二区三区在线看| 少妇 在线观看| 日韩国内少妇激情av| 久久影院123| www.精华液| 成熟少妇高潮喷水视频| aaaaa片日本免费| 久久久久国内视频| a在线观看视频网站| 桃红色精品国产亚洲av| a级毛片在线看网站| 成在线人永久免费视频| 国产亚洲欧美在线一区二区| 亚洲男人天堂网一区| 国产精品,欧美在线| 男女做爰动态图高潮gif福利片 | 麻豆成人av在线观看| 亚洲中文字幕日韩| 久久精品亚洲熟妇少妇任你| 黄色a级毛片大全视频| 18禁黄网站禁片午夜丰满| 十八禁人妻一区二区| 51午夜福利影视在线观看| 久久中文字幕人妻熟女| 亚洲人成77777在线视频| 一二三四社区在线视频社区8| 国产一区二区三区综合在线观看| 在线天堂中文资源库| 国产一区二区激情短视频| 久久久久久久午夜电影| 观看美女的网站| 久久亚洲真实| av在线天堂中文字幕| 免费不卡的大黄色大毛片视频在线观看 | 国产精品亚洲一级av第二区| 免费无遮挡裸体视频| 亚洲,欧美,日韩| 免费看光身美女| 国产黄片美女视频| 九九在线视频观看精品| 亚洲成人免费电影在线观看| 亚洲精品一卡2卡三卡4卡5卡| 欧美日韩综合久久久久久 | 日韩精品有码人妻一区| 精品国产三级普通话版| 在线观看一区二区三区| 97人妻精品一区二区三区麻豆| 久久精品久久久久久噜噜老黄 | 成人三级黄色视频| 亚洲 国产 在线| 日韩精品青青久久久久久| 国内少妇人妻偷人精品xxx网站| 国产女主播在线喷水免费视频网站 | 亚洲性夜色夜夜综合| 听说在线观看完整版免费高清| 99九九线精品视频在线观看视频| 久久久精品欧美日韩精品| 国产一区二区亚洲精品在线观看| 18禁在线播放成人免费| 免费大片18禁| 日本 欧美在线| 岛国在线免费视频观看| 欧美成人a在线观看| 99在线视频只有这里精品首页| 精品人妻熟女av久视频| 国产精品美女特级片免费视频播放器| 人妻少妇偷人精品九色| 在线免费观看不下载黄p国产 | av在线亚洲专区| 免费观看精品视频网站| 美女高潮的动态| 欧美高清性xxxxhd video| 成人美女网站在线观看视频| 人人妻人人看人人澡| 亚洲最大成人中文| 成年女人看的毛片在线观看| 久久久午夜欧美精品| 国产一区二区在线观看日韩| 免费电影在线观看免费观看| 天堂√8在线中文| 国产一区二区亚洲精品在线观看| 黄色视频,在线免费观看| 国产亚洲精品久久久com| 久久99热6这里只有精品| 免费看日本二区| 国产av一区在线观看免费| 日韩一区二区视频免费看| 国产探花极品一区二区| 日本成人三级电影网站| 国内精品美女久久久久久| 国产av在哪里看| 亚洲乱码一区二区免费版| 丰满的人妻完整版| 国产精品日韩av在线免费观看| 欧美日韩乱码在线| 午夜免费激情av| 久99久视频精品免费| 成人亚洲精品av一区二区| 中文字幕人妻熟人妻熟丝袜美| 欧美潮喷喷水| 久久久久国产精品人妻aⅴ院| 两个人的视频大全免费| 日本色播在线视频| 国产精品一区二区三区四区久久| 男女之事视频高清在线观看| a在线观看视频网站| 国产日本99.免费观看| 91麻豆av在线| 中文字幕久久专区| 免费看光身美女| 国产精品一区二区性色av| 国产一级毛片七仙女欲春2| 亚洲精品日韩av片在线观看| 美女黄网站色视频| 狂野欧美激情性xxxx在线观看| 两个人视频免费观看高清| 日本欧美国产在线视频| 麻豆av噜噜一区二区三区| 久久精品国产鲁丝片午夜精品 | 国产伦精品一区二区三区视频9| 舔av片在线| 最近最新免费中文字幕在线| 一级黄片播放器| 欧美另类亚洲清纯唯美| 99热这里只有是精品50| 伦精品一区二区三区| 白带黄色成豆腐渣| 自拍偷自拍亚洲精品老妇| 久久99热这里只有精品18| 极品教师在线免费播放| 99在线视频只有这里精品首页| 亚洲av不卡在线观看| 男女那种视频在线观看| 亚洲午夜理论影院| 国产乱人伦免费视频| 波多野结衣高清无吗| 久久精品国产自在天天线| 精品久久国产蜜桃| 成年人黄色毛片网站| 蜜桃久久精品国产亚洲av| 亚洲精华国产精华液的使用体验 | 国产黄色小视频在线观看| 欧美色视频一区免费| 亚洲美女搞黄在线观看 | 赤兔流量卡办理| 在线观看舔阴道视频| 久久精品91蜜桃| 精华霜和精华液先用哪个| 97超视频在线观看视频| 亚洲七黄色美女视频| 久9热在线精品视频| 日本三级黄在线观看| 亚洲成av人片在线播放无| 国产精品亚洲一级av第二区| 久久人人精品亚洲av| 欧美黑人欧美精品刺激| 色5月婷婷丁香| 国产午夜精品论理片| 国产免费一级a男人的天堂| 最好的美女福利视频网| 琪琪午夜伦伦电影理论片6080| 日本一二三区视频观看| 麻豆av噜噜一区二区三区| 乱码一卡2卡4卡精品| 欧美精品啪啪一区二区三区| 久久欧美精品欧美久久欧美| 日本精品一区二区三区蜜桃| а√天堂www在线а√下载| 国产精品美女特级片免费视频播放器| 国产在视频线在精品| 天天一区二区日本电影三级| 人人妻人人澡欧美一区二区| 亚洲熟妇熟女久久| 桃红色精品国产亚洲av| 亚洲国产精品久久男人天堂| 国产免费男女视频| 麻豆久久精品国产亚洲av| 精品一区二区免费观看| 国产精品爽爽va在线观看网站| 久久久精品欧美日韩精品| 一本一本综合久久| 麻豆成人午夜福利视频| 日韩欧美在线二视频| 国产毛片a区久久久久| 自拍偷自拍亚洲精品老妇| 九色成人免费人妻av| 精品欧美国产一区二区三| av黄色大香蕉| 亚洲精品一卡2卡三卡4卡5卡| 欧美bdsm另类| 亚洲av一区综合| 两人在一起打扑克的视频| 日日夜夜操网爽| 亚洲国产高清在线一区二区三| 婷婷六月久久综合丁香| 日本爱情动作片www.在线观看 | 国产精品嫩草影院av在线观看 | 亚洲精华国产精华液的使用体验 | x7x7x7水蜜桃| 尤物成人国产欧美一区二区三区| 91狼人影院| 国产一区二区三区视频了| 欧美日韩精品成人综合77777| 国产成人福利小说| 亚洲av第一区精品v没综合| 午夜激情欧美在线| 日日夜夜操网爽| 天天一区二区日本电影三级| 国内少妇人妻偷人精品xxx网站| 久久精品国产亚洲av香蕉五月| 亚洲欧美日韩卡通动漫| 男人狂女人下面高潮的视频| 成人精品一区二区免费| 亚洲国产高清在线一区二区三| 一区福利在线观看| 成人午夜高清在线视频| 很黄的视频免费| 99久久精品一区二区三区| 亚洲一区二区三区色噜噜| 我的女老师完整版在线观看| 嫩草影院入口| 中文字幕人妻熟人妻熟丝袜美| 又紧又爽又黄一区二区| 久久婷婷人人爽人人干人人爱| 久久久久久久久大av| 欧美成人性av电影在线观看| 成年女人毛片免费观看观看9| 欧美日本视频| 22中文网久久字幕| 免费电影在线观看免费观看| 男人的好看免费观看在线视频| 又爽又黄a免费视频| 亚洲精品一卡2卡三卡4卡5卡| 精品国产三级普通话版| 我要搜黄色片| 国产v大片淫在线免费观看| 久久精品国产亚洲av涩爱 | 欧美色欧美亚洲另类二区| 看片在线看免费视频| 1000部很黄的大片| 深夜精品福利| 99久久精品国产国产毛片| 人妻丰满熟妇av一区二区三区| 日本-黄色视频高清免费观看| 色吧在线观看| 99久久精品国产国产毛片| 午夜久久久久精精品| 变态另类成人亚洲欧美熟女| 男人舔女人下体高潮全视频| 国产高清有码在线观看视频| 成人亚洲精品av一区二区| 国产乱人伦免费视频| 久久精品国产清高在天天线| 极品教师在线免费播放| 成人特级av手机在线观看| 午夜免费成人在线视频| 亚洲男人的天堂狠狠| 欧美黑人巨大hd| 99国产极品粉嫩在线观看| 99视频精品全部免费 在线| 日本色播在线视频| 91在线精品国自产拍蜜月| 蜜桃久久精品国产亚洲av| 亚洲人成网站在线播放欧美日韩| 亚洲熟妇中文字幕五十中出| 51国产日韩欧美| 尾随美女入室| 少妇丰满av| 国产成人影院久久av| 啦啦啦观看免费观看视频高清| 大型黄色视频在线免费观看| 成人特级av手机在线观看| 99热6这里只有精品| 成人永久免费在线观看视频| 亚洲aⅴ乱码一区二区在线播放| 亚洲四区av| 欧美潮喷喷水| 村上凉子中文字幕在线| а√天堂www在线а√下载| 亚洲不卡免费看| 欧美日韩黄片免| 亚洲最大成人av| 特大巨黑吊av在线直播| 黄色一级大片看看| 免费不卡的大黄色大毛片视频在线观看 | 乱码一卡2卡4卡精品| 国产一区二区三区视频了| 最近视频中文字幕2019在线8| 91麻豆av在线| .国产精品久久| 国产精品人妻久久久影院| 亚洲人与动物交配视频| 国产精品亚洲美女久久久| 日韩精品有码人妻一区| 一本久久中文字幕| 国产伦精品一区二区三区四那| 国产精品综合久久久久久久免费| 久久久久久久午夜电影| 91麻豆av在线| 欧美区成人在线视频| 国产一区二区激情短视频| 欧美3d第一页| av天堂中文字幕网| 少妇的逼好多水| 干丝袜人妻中文字幕| 又紧又爽又黄一区二区| 亚洲精品粉嫩美女一区| 国产69精品久久久久777片| 波野结衣二区三区在线| 少妇的逼好多水| 女人被狂操c到高潮| .国产精品久久| 丰满乱子伦码专区| 欧美极品一区二区三区四区| 熟女电影av网| 嫩草影院精品99| 99久久成人亚洲精品观看| 久久热精品热| 啪啪无遮挡十八禁网站| 亚洲在线观看片| 欧美+亚洲+日韩+国产| 日韩av在线大香蕉| 亚洲三级黄色毛片| 国产av在哪里看| 高清毛片免费观看视频网站| 91在线观看av| 一区福利在线观看| 精品人妻熟女av久视频| 少妇高潮的动态图| 国产男人的电影天堂91| 中出人妻视频一区二区| 日本-黄色视频高清免费观看| 国产精品爽爽va在线观看网站| 亚洲avbb在线观看| 成年女人看的毛片在线观看| 99九九线精品视频在线观看视频| 亚洲第一电影网av| 中文字幕av成人在线电影| 69av精品久久久久久| 免费在线观看日本一区| 亚洲精品日韩av片在线观看| 亚洲欧美清纯卡通| 在线播放无遮挡| 亚洲一级一片aⅴ在线观看| 99热这里只有是精品在线观看| 亚洲中文字幕日韩| 午夜亚洲福利在线播放| 亚洲欧美日韩高清在线视频| 18禁黄网站禁片免费观看直播| 国产精品嫩草影院av在线观看 | 久久国产乱子免费精品| 日韩高清综合在线| 午夜免费男女啪啪视频观看 | 美女大奶头视频| 欧美xxxx黑人xx丫x性爽| 成人精品一区二区免费| 91麻豆精品激情在线观看国产| 在线免费观看不下载黄p国产 | 久久久久久久精品吃奶| 亚洲欧美日韩高清在线视频| 精品久久久久久,| 一本一本综合久久| 欧美激情国产日韩精品一区| 久久中文看片网| 国产单亲对白刺激| 精品一区二区三区人妻视频| 岛国在线免费视频观看| 赤兔流量卡办理| 国产主播在线观看一区二区| 可以在线观看的亚洲视频| 黄色一级大片看看| 长腿黑丝高跟| 午夜福利成人在线免费观看| 久久久久久九九精品二区国产| 午夜福利在线观看吧| 少妇的逼水好多| avwww免费| 美女 人体艺术 gogo| 日本成人三级电影网站| 搡老妇女老女人老熟妇| 啦啦啦观看免费观看视频高清| 少妇丰满av| xxxwww97欧美| 亚洲一区二区三区色噜噜| 一个人观看的视频www高清免费观看| 欧美高清成人免费视频www| 国产69精品久久久久777片| 色尼玛亚洲综合影院| 又粗又爽又猛毛片免费看| 国模一区二区三区四区视频| 在线观看舔阴道视频| 亚洲av成人av| 直男gayav资源| 国产精品福利在线免费观看| 国产精品嫩草影院av在线观看 | av中文乱码字幕在线| 18禁裸乳无遮挡免费网站照片| 内射极品少妇av片p| 变态另类丝袜制服| 国产久久久一区二区三区| 亚洲精品一区av在线观看| 99在线视频只有这里精品首页| 国产精品亚洲一级av第二区| 日本爱情动作片www.在线观看 | 日本成人三级电影网站| 国产精品自产拍在线观看55亚洲| 中文字幕久久专区| 国产蜜桃级精品一区二区三区| 人妻久久中文字幕网| 亚洲精品亚洲一区二区| 国产成人影院久久av| 国内精品一区二区在线观看| 久久精品综合一区二区三区| 国产高清三级在线| 最好的美女福利视频网| 给我免费播放毛片高清在线观看| 成年版毛片免费区| 免费大片18禁| 欧美最黄视频在线播放免费| 搡女人真爽免费视频火全软件 | 日本爱情动作片www.在线观看 | netflix在线观看网站| 天堂√8在线中文| 欧美高清性xxxxhd video| 97人妻精品一区二区三区麻豆| 精品无人区乱码1区二区| 国产精品综合久久久久久久免费| 俺也久久电影网| 成年版毛片免费区| 免费大片18禁| 赤兔流量卡办理| 国产国拍精品亚洲av在线观看| 国产综合懂色| 国产不卡一卡二| 国产麻豆成人av免费视频| 欧美三级亚洲精品| 中亚洲国语对白在线视频| 国产成人一区二区在线| 国产一区二区激情短视频| 国产成人a区在线观看| 国产免费av片在线观看野外av| 91精品国产九色| 国产精品福利在线免费观看| 能在线免费观看的黄片| 麻豆久久精品国产亚洲av| 日韩欧美精品免费久久| 亚洲经典国产精华液单| 最近中文字幕高清免费大全6 | 99久久久亚洲精品蜜臀av| 日本一二三区视频观看| av福利片在线观看| 欧美激情在线99| 熟妇人妻久久中文字幕3abv| 一级毛片久久久久久久久女| 在线国产一区二区在线| 男女边吃奶边做爰视频| 国产探花在线观看一区二区| 美女高潮喷水抽搐中文字幕| 在线播放国产精品三级| 热99在线观看视频| 午夜福利成人在线免费观看| 五月伊人婷婷丁香| 亚洲精品456在线播放app | 色视频www国产| av中文乱码字幕在线| 久久久久性生活片| 亚洲精品在线观看二区| 国产成人av教育| 男女啪啪激烈高潮av片| 亚洲成人久久爱视频| 男女啪啪激烈高潮av片| 精品无人区乱码1区二区| 91午夜精品亚洲一区二区三区 | 在线观看av片永久免费下载| 在线免费十八禁| 国内少妇人妻偷人精品xxx网站| 国产成人aa在线观看| 久久精品人妻少妇| 欧美xxxx性猛交bbbb| 97碰自拍视频| 亚洲欧美激情综合另类| 日本与韩国留学比较| 又爽又黄无遮挡网站| 亚洲成人精品中文字幕电影| 久久99热6这里只有精品| 自拍偷自拍亚洲精品老妇| 免费看av在线观看网站| 精华霜和精华液先用哪个| 久久久国产成人精品二区| 无遮挡黄片免费观看| 极品教师在线视频| 午夜福利欧美成人| 国内久久婷婷六月综合欲色啪| 九九久久精品国产亚洲av麻豆| 九九爱精品视频在线观看| 国产伦精品一区二区三区视频9| 99久久成人亚洲精品观看| 亚洲一级一片aⅴ在线观看| 国产成人a区在线观看| 免费高清视频大片| 啦啦啦观看免费观看视频高清| 亚洲内射少妇av| 国产伦精品一区二区三区四那| 亚洲精品色激情综合| 精品久久久噜噜| 国产亚洲91精品色在线| 亚洲av中文字字幕乱码综合| 最近视频中文字幕2019在线8| 国产伦在线观看视频一区| 校园人妻丝袜中文字幕| 免费无遮挡裸体视频| 最后的刺客免费高清国语| 精品一区二区三区视频在线观看免费| 久久久国产成人免费| 中文字幕av成人在线电影| 国内精品久久久久久久电影| 午夜福利18| 欧美极品一区二区三区四区| 久久精品国产亚洲av香蕉五月| 中文在线观看免费www的网站| 亚洲18禁久久av| 国产在线男女| 18禁在线播放成人免费| 看免费成人av毛片| 精品久久久久久久末码| av.在线天堂| 国产人妻一区二区三区在| 久久欧美精品欧美久久欧美| 欧美中文日本在线观看视频| 午夜a级毛片| 最近最新中文字幕大全电影3| 国产高清视频在线观看网站| 啦啦啦观看免费观看视频高清| 久久久久久久午夜电影| 中国美白少妇内射xxxbb| 狠狠狠狠99中文字幕| av天堂中文字幕网| 男人和女人高潮做爰伦理| 精品人妻偷拍中文字幕| 一级黄片播放器| 五月伊人婷婷丁香| 国产精品永久免费网站| 国产精品免费一区二区三区在线| 人妻丰满熟妇av一区二区三区| 床上黄色一级片| 在线播放无遮挡| а√天堂www在线а√下载| .国产精品久久| 亚洲四区av| 神马国产精品三级电影在线观看| 中出人妻视频一区二区| 久久婷婷人人爽人人干人人爱| 亚洲人成网站高清观看| 欧美一区二区国产精品久久精品| 欧美人与善性xxx| 性插视频无遮挡在线免费观看| 小说图片视频综合网站| 真人一进一出gif抽搐免费|