• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material

    2022-05-16 07:12:06BoShenZhou周博深HaoRanGao高浩然YuChenLiu劉雨辰ZiMuLi李子木YangYangHuang黃陽陽FuChunLiu劉福春andXiaoChunWang王曉春
    Chinese Physics B 2022年5期
    關(guān)鍵詞:陽陽李子

    Bo-Shen Zhou(周博深) Hao-Ran Gao(高浩然) Yu-Chen Liu(劉雨辰) Zi-Mu Li(李子木)Yang-Yang Huang(黃陽陽) Fu-Chun Liu(劉福春) and Xiao-Chun Wang(王曉春)

    1Institute of Atomic and Molecular Physics,Jilin University,Changchun 130012,China

    2College of Physics,Jilin University,Changchun 130012,China

    Keywords: density functional theory,electronic structure,near-infrared radiation shielding material

    1. Introduction

    With higher demands for living quality,the expenditure of energy to maintain a comfortable indoor environment is everincreasing. To control the indoor temperature within an appropriate interval, over 10% of total electricity consumption is consumed on air conditions and fans, and a corresponding amount of global greenhouse gas has been released.[1]Much good research has been performed on clean energy materials to decrease the greenhouse-gas emissions.[2—9]Thermal losses and solar irradiation through glass window account for 60% of the total energy expenditure of air-conditioned and heating systems.[10]Furthermore, solar radiation consists of roughly 5%ultraviolet radiation(UV,10—400 nm),43%visible radiation (400—780 nm), and 52% near-infrared radiation(NIR, 780—2500 nm),[11]which implies that the NIR spectrum accounts for the bulk source of thermal energy from the Sun. Therefore,with the expectation to reduce the emission of greenhouse gas,the utilization of new NIR-shielding material in green building areas is indispensable.

    Some corresponding materials have attracted a lot of attention such as vanadium dioxide (VO2),[12,13]rare-earth hexaboride nanoparticles (RB6),[14,15]tin-doped indium oxide(ITO),[16,17]and hexagonal tungsten bronze(HTB).[18—25]However,VO2shows poor transmittance(30%)[13]in the visible light range. RB6(transmittance over 50% in the 2000—2500 nm range)[15]and ITO (near 0 absorption coefficient in 780—1000 nm)[16,17]shields only part of NIR which indicates that the NIR-shielding ability is limited. Although the CsxWO3[26]exhibits a wide NIR shielding range and acceptable transmittance in the visible light range, it also exhibits chromatic instabilities when heated in a humid environment or being exposed to strong ultraviolet (UV) light,which renders detrimental effects on its long-life commercial application. Recently SnxWO3was reported as a nontoxic theranostic agent for imaging-guided cancer therapy,because of its absorption ability of NIR.[25]However,compared with the CsxWO3, the NIR-shielding ability of SnxWO3is not so satisfying(transmittance over 20%in the near-infrared range). Therefore,there is a necessity to find a less toxic,and chromatic stable material simultaneously with a wide NIRshielding range and acceptable visible transmittance.

    Among these materials, HTB exhibits high visible light transmissivity and a wide NIR-shielding range (780—2500 nm). Recent studies have revealed the changing mechanism of the optical properties of HTB,which is highly correlated with the band structures and concentration of free carriers. In more detail,when photons in the NIR spectrum irradiate these materials,the photons could be absorbed to complete the transition of electrons in the valence bands (VBs) to the conductor bands(CBs).[19,27]On the other hand,the localized surface plasma resonance (LSPR) can be induced by the aggregated free electrons in the CBs to shield the near-infrared ray.[27—29]In recent research,it was found that the empty trigonal cavity could be occupied by light metallic elements,e.g.,Li.[19,30]Therefore,there is a possibility to improve the NIRshielding ability of materials by inserting Li and Sn atoms at trigonal and hexagonal cavities of HTB, respectively, which renders the rise of free carrier concentration in materials. As far as I know,rare studies have reported LixSnyWO3as one of the promising materials for the future energy-saving window.

    In this work,the LixSnyWO3was investigated using density functional theory(DFT).First and foremost,the geometry structures of LixSnyWO3with six different doping concentrations had been constructed. Thereafter, binding energy was calculated for comparing the chemical stability of these structures. To further illustrate the thermal stability, the molecular dynamics study of Sn0.33WO3was performed. And then,the electronic properties of structures were investigated for a better understanding of the changing of optical properties.Finally, the optical properties of LixSnyWO3were calculated considering local field effects based on the random-phase approximation(RPA).[31]The results show that wheny=0 the NIR shielding ability increased with thexincrease,and wheny=0.33 the NIR shielding ability first increases and then decreases with thexincrease. Whenx=0 andy=0.33,the material exhibits the strongest NIR-shielding ability,is less toxic,has satisfying chemical stability, wide NIR-shielding range(780—2500 nm),and an acceptable visible transmittance which means it can be applied on the future energy-saving smart window.

    2. Calculational method

    In this paper, all calculation results were obtained via the Viennaab initiosimulation package (VASP).[32]We employed the generalized gradient approximation (GGA) with the Perdew—Burke—Ernzerh(PBE).[33]and used the projector augmented wave (PAW)[34]method. The influence of spin—orbit coupling effect (SOC) on electronic and optical properties was concerned. The valence electrons configurations for O, W, Li, Sn atoms were 2s22p4, 5d46s2, 2s1and 5s25p2, respectively. We adopted a Brillouin zone of 9×9×15 with aΓcentered Monkhorst—Packk-point mesh with cut-off energy of 500 eV during geometry optimization. And all of the structures were relaxed until the force on each atom was less than 0.02 eV/°A. And molecular dynamics simulations were performed at the time step of 2 fs,canonical ensemble(NVT),on the 2×2×2 supercell at the temperature of 300 K. Selfconsistent computations were performed with a convergence criterion of 10-8eV in energy.And the optical properties were concerned with approximation including local field effects in the RPA.[31]When calculating optical properties, nearly 100 bands were set to ensure that the empty bands were included in the calculations.

    3. Results and discussion

    3.1. Geometry structures and thermal stability

    Table 1 shows the lattice parameters of optimized h-WO3,which were in accord with previous experimental results (xray diffraction data of h-WO3with a space group ofP6/mmm(No.191)).[35]

    Table 1. Calculated and experimental crystal structure parameters ofh-WO3.

    In this research,six structures of LixSnyWO3(withx=0,0.33 or 0.66;y=0 or 0.33)were concerned. For each structure, all spatial arrangements for Sn and Li atoms were considered,and only the most stable one was singled out as representative of every structure. Then,the binding energy of those six structures was calculated as below:

    whereEtotalis the total energy of the system,EWO3is the energy of the pure h-WO3,nLiis the number of the Li atoms,ELiis the energy of the isolated Li atom,nSnis the number of the Sn atoms, andESnis the energy of the isolated Sn atom. In Fig.2,it was found that the binding energy declines while thexandyincrease. As is well known,this indicates the increase of stability. The energy evolution of the 10 ps MD simulation of Sn0.33WO3under the room temperature was exhibited in Fig.3. And the average energy of each atom was nearly a constant. This means Sn0.33WO3is stable at room temperature.

    Fig.1. The top view and side view of Li0.66Sn0.33WO3.

    Fig.2. The binding energy of LixSnyWO3 (x=0,0.33,0.66;y=0,0.33).

    Fig. 3. (a) The energy evolution of Sn0.33WO3 during 10 ps MD simulations at room temperature,(b)and(c)are the structures before and after MD simulations.

    3.2. Electronic structure

    In Fig.4,it was found that h-WO3is an indirect bandgap semiconductor since whose valence band maximum (VBM)and conduction band minimum (CBM) do not at the same point,which occurs atApoint andΓpoint,respectively. The calculated bandgap of h-WO3is 0.44 eV, which approaches the previous result,[37]as results obtained through DFT theory are always underestimated. The band structure after doping is very similar to the pure h-WO3. Besides, it is found that the Fermi energy has been upshifted into the conduction bands(CBs) and the electrons occupied the bands that were empty before.

    The density of states of LixSnyWO3is shown in Fig. 5.The DOS of pure h-WO3is in line with Liu’s result.[18]For pure h-WO3, the valence bands (VBs) mainly consist of the O-2p states,and the conduction bands(CBs)are mainly composed of the W-5d states,which are consistent with the experimental characterizations.[38]Since one W atom is surrounded by six O atoms forming an octahedral structure, W-5d states are split into t2g(low energy)and eg(high energy)states,[39,40]which could be observed through several peaks shown on PDOS curves of h-WO3, contributed from W-5d states. And the strong hybridization between O-2p states and W-5d states also indicates a strong covalency of the bonding. On the one hand, when Sn is doped in the h-WO3, the Fermi energy is upshifted in the conduction band,and the material exhibits the metal-like behavior,while electrons in Sn-5p mainly act as the free electrons. As the result, the materials display the n-type electronic conductivity. On the other hand,albeit Li-2s states are nearly zero, once Li is doped into h-WO3, the Fermi energy was upshifted, which improves the free carrier concentration of the material. In more detail, as shown in Table 2,it was found that the more ions are doped,the higher the free carrier concentration of the material will be. Compared with other structures,the free carrier concentration of Li0.33WO3is rather low, which is the reason why its NIR-shielding ability is almost zero.phase approximation(RPA).[31]And the real part of the dielectric function was calculated through the Kramer—Kronig relation. The reflectivityR, absorption coefficientα, and transmittanceTcould be derived from the dielectric function by the following formula:[18,42,43]

    Fig.4. The band structures of(a)Li0.66Sn0.33WO3,(b)Li0.33Sn0.33WO3,(c)Sn0.33WO3,(d)Li0.66WO3,(e)Li0.33WO3 and(f)WO3.

    Fig. 5. The total density of states (TDOS) and project density of states (PDOS) of (a) Li0.66Sn0.33WO3, (b) Li0.33Sn0.33WO3, (c) Sn0.33WO3,(d)Li0.66WO3,(e)Li0.33WO3 and(f)WO3. The Fermi energy level is indicated by the vertical dashed lines at energy equal to zero.

    Table 2. Free carrier concentration and binding energy of five structures.

    Besides,the codes behind the effects of doping Sn and Li atoms on the enhancement of free carrier concentration have been trying to decipher, which are crucial to understanding the changes in the NIR-shielding ability of various structures of LixSnyWO3. The number of free carriers (N) is given by Eq.(2),wheref(E)is the Fermi—Dirac distribution andg(E)is the density of states. At 0 K, the Fermi—Dirac distribution for electrons would simplify to either 0 (E >Ef) or 1(E <Ef). Although this assumption is only completely accurate at 0 K,the total concentration should relatively remain unchanged when temperature build-up. Therefore Eq.(2)can be simplified to Eq. (3), where theVis the unit cell volume and theEcis the bottom of the conduction band.[41]

    wheredis the thickness of the film, which is 50 nm in this calculation, andε1andε2are real part and imaginary part of the dielectric function,respectively. For simplicity,only conditions concerning optical properties along with thex-axis of LixSnyWO3are shown below.

    To understand the change of optical properties,two models were introduced.The first model is the interband transition.In this module, the electrons can move or jump from a filled band to the higher empty band. The second is the intraband transition, which can describe the contribution of free carriers and always be concerned as the source of plasmonic resonances. And it always leads to a large of optical losses at low frequency.[44—46]In this model, the free carrier concentration plays a very important role. The dielectric function of intra-

    3.3. Optical properties

    In this investigation, the imaginary part of the dielectric function was concerned with the local field in the randomband transition can be described by the Drude model[44,47,48]

    whereγis the Drude relaxation rate,which is inverse with the mean free path of electrons,[49]andωpis the plasma frequency which is scales with the free carrier concentration.[14]

    As shown in Fig. 6(b), the imaginary part of the dielectric function of h-WO3goes to zero when the energy approaches 0 eV,which is in line with the previous result.[19,50]The plasma energy where the intersection points between the gray line where the real part equals zero, is corresponding to a fast abatement of the reflectivity as shown in Fig.7,respectively. In Fig. 6, when energy is less than 1, it can be found that with the increase of free carrier concentration,the imaginary part of the dielectric function increases first and then decreases, and the situation is quite reversed for the real part.This change is caused by the increase of free carrier concentrations and the decrease of the mean free path of electrons.The mean free path of electrons describes the average distance traveled by the electron. When the inserted atoms increase,the possibility of the electron being stopped by inserted ions increases. Therefore, the mean free path of electrons would decrease with the increase of doping concentration. And the Drude relaxation rate is inversed with the mean free path of electrons Therefore, when Li and Sn are codoped in the h-WO3, although the free carrier concentration would increase with the doping concentration increasing,the Drude relaxation rate would also increase. This explains the decline of the NIR shielding ability with excessive doping concentration.

    Fig. 6. The dielectric function of LixSnyWO3 (x=0,0.33,0.66 and y=0,0.33)at approximation including local field effects in the RPA.

    In Fig. 7, the h-WO3shows nearly no NIR-shielding ability, which corresponds with the previous result.[30]The absorption coefficient and reflectivity of Sn0.33WO3sharply changed in the visible light range,which is also in good agreement with the experiment.[25]The peak of the absorption coefficient of h-WO3at 700 nm is originated due to the transition of electrons, which is in accordance with the transition between two bands in Fig.4(f). For other structures, the Fermi energy upshifted, and the electron occupied the bands that were empty before. That is why the absorption peaks of other structures disappeared. Compared with ITO,[16,17]which shows nearly zero absorption coefficient in the range from 780—1000 nm, the absorption coefficient of Sn0.33WO3is over 3×105at 1000 nm. In Fig. 8, except the Li0.33WO3is nearly the same as the h-WO3, other structures show pronounced improvement of reflectivity.

    Figure 9 shows the transmittance of LixSnyWO3in the NIR and visible light range. The valley of transmittance of pure h-WO3can be found at 700 nm, which is according to the absorption coefficient and interband transition.The Sn0.33WO3shows the strongest NIR shielding ability and acceptable transmittance at the visible light range. For Sn0.33WO3, the maximum visible transmittance is over 60%at 562 nm which is larger than the VO2(36.2%)and the minimum NIR transmittance is nearly 10%over 1000 nm which is very close to the VO2.[13]The results show that the Sn0.33WO3can be applied as excellent NIR-shielding material with acceptable visible transmittance.

    Fig. 7. The absorption coefficient of LixSnyWO3 (x=0,0.33,0.66 and y=0,0.33)at approximation including local field effects in the RPA.

    Fig.8. The reflectivity of LixSnyWO3 (x=0,0.33,0.66 and y=0,0.33)at approximation including local field effects in the RPA.

    Fig.9. Comparing the transmittance of LixSnyWO3. The grey and light gray areas indicate the global tilt and extraterrestrial reference solar spectrum(ISO 9845-1,1992).

    4. Conclusions

    In summary, the binding energy, electric structure, and optical properties of LixSnyWO3were studied using the DFT calculation. After doping, the Fermi energy level entered into the conductor band and the electrons occupied the bands that were empty before doping,which indicates the metal-like characteristics of the doped material. The density of states shows that the Sn-5p electrons act as the free electrons in the conductor and Li-ions provide nearly no electron. Therefore,except the Li0.33WO3,other doped structures show metal-like characteristics. The optical properties show that except the Li0.33WO3exhibiting poor NIR shielding ability, other materials show excellent visible transmittance and NIR-shielding.Our results show that Sn0.33WO3is the material with satisfying chemical stability,excellent NIR-shielding ability,wide NIR-shielding range (780—2500 nm), and acceptable visible transmittance. It can be expected that our rational theoretical prediction should serve as an impetus for the pursuit of experimental realization of these(Li,Sn)codoped hexagonal tungsten bronze as NIR-shielding materials for the energy-saving smart window made in buildings.

    Acknowledgment

    Thanks to the Beijing Super Cloud Computing Center for assistance with calculation.

    猜你喜歡
    陽陽李子
    程陽陽繪畫作品
    睡蓮
    一次難忘的生日
    秋天
    淺談公開不充分的判斷與審查實踐
    李子有多少
    奔跑吧!李子柒
    海峽姐妹(2020年1期)2020-03-03 13:35:52
    交換秘密
    我的糊涂媽媽
    李子核
    快樂語文(2016年29期)2016-02-28 09:03:24
    国产成年人精品一区二区| 亚洲熟妇中文字幕五十中出| 国产蜜桃级精品一区二区三区| avwww免费| 精品久久国产蜜桃| 我要看日韩黄色一级片| 一区二区三区免费毛片| 亚洲四区av| 亚洲精品国产av成人精品| 99热这里只有是精品在线观看| av黄色大香蕉| 免费av观看视频| 国内精品美女久久久久久| 国内少妇人妻偷人精品xxx网站| 91av网一区二区| 亚洲av男天堂| 免费观看人在逋| 好男人在线观看高清免费视频| 午夜爱爱视频在线播放| 精品99又大又爽又粗少妇毛片| 天堂网av新在线| 伦精品一区二区三区| 不卡一级毛片| 哪个播放器可以免费观看大片| 爱豆传媒免费全集在线观看| 嫩草影院精品99| 18禁裸乳无遮挡免费网站照片| 久久人人爽人人片av| 精品人妻一区二区三区麻豆| 色5月婷婷丁香| 搞女人的毛片| 国产成人午夜福利电影在线观看| 亚洲精品456在线播放app| 在现免费观看毛片| 国产精品爽爽va在线观看网站| 国产极品天堂在线| 成人高潮视频无遮挡免费网站| 久久人人爽人人片av| 亚洲无线在线观看| 五月伊人婷婷丁香| 亚洲国产高清在线一区二区三| 国产伦精品一区二区三区四那| 欧美色视频一区免费| 欧美一区二区亚洲| 日韩欧美一区二区三区在线观看| 97人妻精品一区二区三区麻豆| 永久网站在线| 国产精品野战在线观看| 午夜精品国产一区二区电影 | 色噜噜av男人的天堂激情| 寂寞人妻少妇视频99o| 亚洲色图av天堂| 婷婷亚洲欧美| 91狼人影院| 伊人久久精品亚洲午夜| 亚洲性久久影院| 99视频精品全部免费 在线| 国产精品久久久久久亚洲av鲁大| 久久中文看片网| 国产精品日韩av在线免费观看| 国模一区二区三区四区视频| 国产色爽女视频免费观看| 成年女人看的毛片在线观看| 99久久中文字幕三级久久日本| 最近手机中文字幕大全| 夜夜看夜夜爽夜夜摸| av免费在线看不卡| 最近2019中文字幕mv第一页| 可以在线观看毛片的网站| 22中文网久久字幕| 日本av手机在线免费观看| 成人二区视频| 在线观看免费视频日本深夜| 国产精品三级大全| 久久精品夜色国产| 91狼人影院| 久久国产乱子免费精品| 嫩草影院入口| 国产成人a区在线观看| 永久网站在线| 狂野欧美激情性xxxx在线观看| 免费在线观看成人毛片| 成年版毛片免费区| 亚洲18禁久久av| 色播亚洲综合网| 亚洲av熟女| 亚洲第一区二区三区不卡| 网址你懂的国产日韩在线| 欧美激情久久久久久爽电影| 国产精品一区二区在线观看99 | 亚洲成av人片在线播放无| 99热全是精品| 国产成人a∨麻豆精品| 色播亚洲综合网| 九色成人免费人妻av| 综合色av麻豆| 日日干狠狠操夜夜爽| 欧美xxxx性猛交bbbb| 国产91av在线免费观看| 波多野结衣巨乳人妻| 此物有八面人人有两片| 91久久精品国产一区二区成人| 亚洲图色成人| 在线观看av片永久免费下载| 青春草亚洲视频在线观看| 婷婷色av中文字幕| 夫妻性生交免费视频一级片| 国产一区二区激情短视频| 日韩一区二区三区影片| 国产精品国产高清国产av| 日韩欧美一区二区三区在线观看| 亚洲av第一区精品v没综合| 最近手机中文字幕大全| 久久99热6这里只有精品| 日本av手机在线免费观看| 男人舔女人下体高潮全视频| 免费av不卡在线播放| 久久人妻av系列| 国产片特级美女逼逼视频| 久久99热6这里只有精品| 非洲黑人性xxxx精品又粗又长| 国产精品伦人一区二区| 免费观看精品视频网站| av天堂中文字幕网| 亚洲国产精品sss在线观看| 久久精品综合一区二区三区| 欧美丝袜亚洲另类| 白带黄色成豆腐渣| 精品久久国产蜜桃| 亚洲欧美精品综合久久99| h日本视频在线播放| 久久久久久久久久黄片| 亚洲一区高清亚洲精品| 美女脱内裤让男人舔精品视频 | 国产v大片淫在线免费观看| 黄色日韩在线| 九九热线精品视视频播放| 婷婷色av中文字幕| 国内精品美女久久久久久| 日韩强制内射视频| 成人亚洲精品av一区二区| 亚洲人成网站在线播放欧美日韩| 99九九线精品视频在线观看视频| 久久人人爽人人片av| 国产精品麻豆人妻色哟哟久久 | 国产成人一区二区在线| 久久精品国产鲁丝片午夜精品| 女人被狂操c到高潮| 好男人视频免费观看在线| 亚洲aⅴ乱码一区二区在线播放| 国产高清有码在线观看视频| 午夜福利视频1000在线观看| 欧美xxxx性猛交bbbb| 亚洲人成网站高清观看| 亚洲欧美日韩东京热| 亚洲真实伦在线观看| 长腿黑丝高跟| 一本一本综合久久| 午夜福利成人在线免费观看| 男女下面进入的视频免费午夜| 一级二级三级毛片免费看| 美女高潮的动态| 亚洲欧美成人精品一区二区| 久久99精品国语久久久| 亚洲精品国产成人久久av| 国产亚洲av嫩草精品影院| 国产综合懂色| 亚洲电影在线观看av| 日本五十路高清| 欧美一区二区精品小视频在线| 国产男人的电影天堂91| 免费观看的影片在线观看| 亚洲国产精品久久男人天堂| av福利片在线观看| 亚洲精品成人久久久久久| 欧美性感艳星| 久久6这里有精品| 搡女人真爽免费视频火全软件| 91av网一区二区| 国产私拍福利视频在线观看| 亚洲精华国产精华液的使用体验 | 日本爱情动作片www.在线观看| 久久精品久久久久久久性| 国产在线男女| 波多野结衣高清无吗| 亚洲无线在线观看| 午夜激情福利司机影院| 国产成人午夜福利电影在线观看| 午夜视频国产福利| 国产 一区 欧美 日韩| 国产成人精品一,二区 | 婷婷六月久久综合丁香| 亚洲18禁久久av| 超碰av人人做人人爽久久| 禁无遮挡网站| 国产在视频线在精品| .国产精品久久| 热99在线观看视频| 欧美激情在线99| 精品日产1卡2卡| 人妻制服诱惑在线中文字幕| 国产精品无大码| 精品久久久久久久久av| 天堂√8在线中文| 国产精品爽爽va在线观看网站| АⅤ资源中文在线天堂| 成年女人永久免费观看视频| 床上黄色一级片| 国产成人精品婷婷| 欧美激情在线99| 国产成人影院久久av| 中文字幕制服av| 亚洲欧美成人精品一区二区| 又粗又爽又猛毛片免费看| av又黄又爽大尺度在线免费看 | 欧美zozozo另类| 中文字幕久久专区| 九九久久精品国产亚洲av麻豆| 午夜激情欧美在线| 人妻夜夜爽99麻豆av| av在线播放精品| 黄色欧美视频在线观看| 国产成人91sexporn| 中文字幕精品亚洲无线码一区| av福利片在线观看| 日日干狠狠操夜夜爽| 国产色婷婷99| 99久久中文字幕三级久久日本| 桃色一区二区三区在线观看| 在线观看av片永久免费下载| 99久国产av精品国产电影| 国产探花极品一区二区| 国产一区二区三区在线臀色熟女| 成人一区二区视频在线观看| 久久中文看片网| 一级av片app| av在线蜜桃| 卡戴珊不雅视频在线播放| av专区在线播放| 久久精品国产亚洲av香蕉五月| 一级黄片播放器| 欧美日韩一区二区视频在线观看视频在线 | 好男人在线观看高清免费视频| 亚洲在久久综合| 床上黄色一级片| 久久精品国产鲁丝片午夜精品| av在线观看视频网站免费| 男插女下体视频免费在线播放| 一个人看视频在线观看www免费| 亚洲内射少妇av| 免费黄网站久久成人精品| 日韩精品青青久久久久久| 性色avwww在线观看| 色5月婷婷丁香| 久久精品影院6| 日本三级黄在线观看| 国产精品福利在线免费观看| 狂野欧美白嫩少妇大欣赏| 国产熟女欧美一区二区| 男女视频在线观看网站免费| 欧美日韩国产亚洲二区| 欧美精品国产亚洲| 国产高清三级在线| 99热网站在线观看| 日本三级黄在线观看| 欧美日本亚洲视频在线播放| 51国产日韩欧美| 亚洲国产高清在线一区二区三| 亚洲av熟女| 免费av观看视频| 波多野结衣高清作品| 成人亚洲精品av一区二区| 午夜福利在线在线| 国产精品久久久久久精品电影小说 | 天堂中文最新版在线下载 | 欧美人与善性xxx| 床上黄色一级片| 中文字幕人妻熟人妻熟丝袜美| 美女大奶头视频| 能在线免费观看的黄片| 国内精品美女久久久久久| av卡一久久| 成人永久免费在线观看视频| 成人漫画全彩无遮挡| 可以在线观看毛片的网站| av免费在线看不卡| 日韩欧美国产在线观看| 国产成人91sexporn| 极品教师在线视频| 国产午夜精品久久久久久一区二区三区| 午夜爱爱视频在线播放| 悠悠久久av| 午夜老司机福利剧场| 亚洲国产精品合色在线| 91在线精品国自产拍蜜月| 亚洲欧美成人精品一区二区| 狂野欧美激情性xxxx在线观看| 国内精品久久久久精免费| 免费av毛片视频| 中文字幕免费在线视频6| 亚洲乱码一区二区免费版| 国产精品美女特级片免费视频播放器| 99久久久亚洲精品蜜臀av| 一级毛片我不卡| 色综合色国产| av视频在线观看入口| 日日摸夜夜添夜夜添av毛片| 国产精品精品国产色婷婷| 青春草视频在线免费观看| 久久久久久伊人网av| 亚洲久久久久久中文字幕| 亚洲成人精品中文字幕电影| 欧美3d第一页| 亚洲欧美日韩无卡精品| 婷婷色av中文字幕| 91av网一区二区| 日本黄色片子视频| 蜜臀久久99精品久久宅男| 国产精品久久久久久精品电影小说 | 91久久精品电影网| 给我免费播放毛片高清在线观看| 亚洲第一区二区三区不卡| 国产精品人妻久久久影院| 日本在线视频免费播放| 久久久成人免费电影| 精品久久久久久成人av| 草草在线视频免费看| 亚洲av电影不卡..在线观看| 午夜a级毛片| 91精品国产九色| 久久人人精品亚洲av| 韩国av在线不卡| 日韩av不卡免费在线播放| 老司机影院成人| 国产亚洲精品久久久久久毛片| 亚洲五月天丁香| 少妇熟女aⅴ在线视频| 一级毛片久久久久久久久女| 亚洲性久久影院| 青春草亚洲视频在线观看| 看黄色毛片网站| 色哟哟·www| 啦啦啦韩国在线观看视频| 深夜精品福利| 99热精品在线国产| 国产精品日韩av在线免费观看| 99精品在免费线老司机午夜| 男女边吃奶边做爰视频| 看黄色毛片网站| 久久久久久久午夜电影| 免费人成在线观看视频色| 亚洲国产欧洲综合997久久,| 免费人成在线观看视频色| 中文精品一卡2卡3卡4更新| 十八禁国产超污无遮挡网站| 亚洲av成人av| 精品久久久久久久人妻蜜臀av| 色哟哟·www| 亚洲丝袜综合中文字幕| 综合色av麻豆| 欧美日韩国产亚洲二区| 91在线精品国自产拍蜜月| 日韩国内少妇激情av| 一个人免费在线观看电影| 成人永久免费在线观看视频| 狠狠狠狠99中文字幕| 不卡视频在线观看欧美| 免费搜索国产男女视频| 国产老妇女一区| 99riav亚洲国产免费| 插逼视频在线观看| 亚洲欧美日韩高清专用| 中文字幕av成人在线电影| 最近的中文字幕免费完整| 亚洲精品乱码久久久久久按摩| 最近的中文字幕免费完整| 中文字幕av成人在线电影| 狂野欧美白嫩少妇大欣赏| 国产三级中文精品| a级毛色黄片| 自拍偷自拍亚洲精品老妇| 色视频www国产| 国产一区二区三区av在线 | 99久久中文字幕三级久久日本| 老女人水多毛片| 黑人高潮一二区| 亚洲在线观看片| 久久精品影院6| 成人一区二区视频在线观看| 亚洲最大成人av| 日韩成人伦理影院| 日日干狠狠操夜夜爽| 少妇高潮的动态图| 一本久久精品| 成人毛片a级毛片在线播放| 久久久国产成人免费| 亚洲成人久久性| 可以在线观看的亚洲视频| 日韩av不卡免费在线播放| 99热全是精品| 18禁黄网站禁片免费观看直播| 女的被弄到高潮叫床怎么办| 免费av毛片视频| 又黄又爽又刺激的免费视频.| 国产精品一区二区三区四区久久| 精品久久久久久久人妻蜜臀av| 国产精品爽爽va在线观看网站| 久久久久免费精品人妻一区二区| av在线播放精品| 亚洲色图av天堂| 一边摸一边抽搐一进一小说| 国产免费一级a男人的天堂| 国产成人aa在线观看| 欧美又色又爽又黄视频| 亚洲欧美精品综合久久99| 热99在线观看视频| 亚洲在线自拍视频| 国产视频首页在线观看| 国产探花极品一区二区| 国模一区二区三区四区视频| 悠悠久久av| 美女 人体艺术 gogo| 亚洲欧美精品专区久久| 成年av动漫网址| 国产私拍福利视频在线观看| 国产欧美日韩精品一区二区| 欧美性感艳星| h日本视频在线播放| 一本久久精品| 日韩一本色道免费dvd| 色视频www国产| 少妇丰满av| 天堂影院成人在线观看| 有码 亚洲区| 日日摸夜夜添夜夜添av毛片| 少妇猛男粗大的猛烈进出视频 | 99热全是精品| 国产一区二区在线观看日韩| 观看免费一级毛片| 国产黄a三级三级三级人| 看黄色毛片网站| 天美传媒精品一区二区| 国产老妇女一区| 久久久国产成人免费| 99国产极品粉嫩在线观看| 晚上一个人看的免费电影| 99久久精品热视频| 免费人成在线观看视频色| 青春草亚洲视频在线观看| 亚洲国产精品合色在线| 99久久精品国产国产毛片| 22中文网久久字幕| 91精品国产九色| 丰满的人妻完整版| 国产伦精品一区二区三区四那| 久久综合国产亚洲精品| 变态另类成人亚洲欧美熟女| 在线免费十八禁| 国产三级在线视频| 久久久久久久久久久丰满| 精品午夜福利在线看| 赤兔流量卡办理| 我要搜黄色片| 精品不卡国产一区二区三区| 最近2019中文字幕mv第一页| www日本黄色视频网| 国产大屁股一区二区在线视频| 国产一区二区在线av高清观看| 精品久久久久久久久久久久久| 久久中文看片网| 国产欧美日韩精品一区二区| 最近中文字幕高清免费大全6| 精品不卡国产一区二区三区| 狂野欧美白嫩少妇大欣赏| av国产免费在线观看| 国产亚洲av片在线观看秒播厂 | 男人舔奶头视频| 亚洲av不卡在线观看| 亚洲一级一片aⅴ在线观看| 国产在线男女| 免费搜索国产男女视频| 悠悠久久av| 免费看av在线观看网站| 免费电影在线观看免费观看| 麻豆一二三区av精品| 岛国在线免费视频观看| 日本黄大片高清| 日本黄色片子视频| av免费在线看不卡| 在线播放无遮挡| 欧美成人a在线观看| 成人毛片60女人毛片免费| 亚洲一区高清亚洲精品| 国产精品一及| 午夜免费男女啪啪视频观看| 嫩草影院入口| 男女啪啪激烈高潮av片| 成年av动漫网址| 长腿黑丝高跟| 日韩,欧美,国产一区二区三区 | 国产色婷婷99| 嫩草影院新地址| 欧美三级亚洲精品| 成人鲁丝片一二三区免费| 深夜a级毛片| 国产一级毛片在线| 婷婷六月久久综合丁香| 精品久久久久久久人妻蜜臀av| 欧美性感艳星| 国产成人freesex在线| 国产高清有码在线观看视频| 永久网站在线| 免费看日本二区| 99热只有精品国产| 亚洲,欧美,日韩| 最近手机中文字幕大全| 日本与韩国留学比较| 亚洲天堂国产精品一区在线| 国产精品精品国产色婷婷| 欧美日韩综合久久久久久| 国产麻豆成人av免费视频| 国内揄拍国产精品人妻在线| a级一级毛片免费在线观看| 亚洲aⅴ乱码一区二区在线播放| av在线蜜桃| 国产精品蜜桃在线观看 | 久久精品国产鲁丝片午夜精品| 97在线视频观看| 网址你懂的国产日韩在线| 可以在线观看的亚洲视频| 狂野欧美白嫩少妇大欣赏| 热99在线观看视频| 看黄色毛片网站| 18禁在线无遮挡免费观看视频| 日韩一本色道免费dvd| 欧美高清性xxxxhd video| 97在线视频观看| 亚洲av二区三区四区| 最近2019中文字幕mv第一页| 99久久精品热视频| 国产精品不卡视频一区二区| 性色avwww在线观看| 最好的美女福利视频网| 国产色爽女视频免费观看| 一级毛片久久久久久久久女| 午夜福利在线观看免费完整高清在 | 日本黄大片高清| 极品教师在线视频| 亚洲精品粉嫩美女一区| 伦理电影大哥的女人| 国产黄色视频一区二区在线观看 | 欧美成人一区二区免费高清观看| 99国产极品粉嫩在线观看| 午夜久久久久精精品| 偷拍熟女少妇极品色| 久久精品91蜜桃| 国产单亲对白刺激| 一边亲一边摸免费视频| 免费无遮挡裸体视频| 美女 人体艺术 gogo| 久久精品国产清高在天天线| 久久久久免费精品人妻一区二区| 毛片女人毛片| 国产一区二区在线观看日韩| 精品久久久久久久人妻蜜臀av| videossex国产| 国产三级在线视频| 亚洲欧美日韩高清在线视频| 丝袜美腿在线中文| 男人舔奶头视频| 观看免费一级毛片| 69人妻影院| 欧美一区二区精品小视频在线| 欧洲精品卡2卡3卡4卡5卡区| 久久久精品欧美日韩精品| 久久精品91蜜桃| 精品日产1卡2卡| 久久久精品94久久精品| 成人亚洲欧美一区二区av| 人妻少妇偷人精品九色| 国产精品无大码| 国产av一区在线观看免费| 少妇的逼好多水| 内射极品少妇av片p| 国模一区二区三区四区视频| 亚洲成人久久性| 麻豆乱淫一区二区| 日韩中字成人| 久久人妻av系列| 成年女人永久免费观看视频| 熟妇人妻久久中文字幕3abv| 亚洲五月天丁香| 成人特级黄色片久久久久久久| 亚洲欧美日韩高清专用| 久久99精品国语久久久| 欧美成人免费av一区二区三区| 国产精品一及| 免费人成在线观看视频色| 欧美性感艳星| 看十八女毛片水多多多| 一本一本综合久久| 人人妻人人澡欧美一区二区| 欧美高清性xxxxhd video| 亚洲国产欧美在线一区| 欧美日本视频| 欧美在线一区亚洲| 日本黄色视频三级网站网址| 久99久视频精品免费| 国产 一区精品| 中文在线观看免费www的网站| 色综合站精品国产| www.av在线官网国产| 亚洲av免费高清在线观看| 欧美一区二区精品小视频在线| 男人狂女人下面高潮的视频|