• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method

    2022-05-16 07:12:02GhfoorMuhammadImranMurtazaRehanAbidandNaeemAhmad
    Chinese Physics B 2022年5期

    Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad

    Department of Physics,International Islamic University,Islamabad 44000,Pakistan

    Keywords: nanostructures, vapor-liquid-solid growth mode, photoluminescence spectra, fluorescence microscopy

    1. Introduction

    In the last few years, one-dimensional (1-D) nanostructures have gained tremendous interest due to the rising demands of innovative devices that are productive, powerful,and smaller with superior performance.[1—4]The quantum confinement effect is responsible for the peculiar properties of 1-D nanostructures, which have contributed to the bandgap engineering.[5—8]Owing to the high demand for optical materials for different applications such as solid-state lighting,display devices,and cathode ray tube,a lot of attention has been focused on the synthesis techniques and optical properties of various oxide-based phosphors for future innovations. Among the oxide-based phosphors, zinc silicate (Zn2SiO4) has been recognized as an ideal host-matrix material for many rare earth and transition metal dopant ions and presents excellent luminescent properties (e.g., high color purity) as a result of the inner shell electronic transitions between the 3d5energy levels keeping intact its high chemical stability.[9—11]

    Zn2SiO4also known as Willemite, is one of the naturally occurring minerals that have a very bright future in advanced materials or devices because on doping with different guest ions, different colors are obtained due to its wide bandgap. Manganese (Mn) doped zinc silicate (Zn2SiO4:Mn+2) is being used since 1930 in fluorescent lamps, oscilloscopes and televisions.[12—15]Zinc silicate emits blue,green and red colors by doping with Eu3+, Mn2+,and Ce3+ions,respectively. It was found that changing the concentration of guest ions significantly influences the luminescence properties of Zn2SiO4. Moreover,the intrinsic defects in Zn2SiO4result in the formation of shallow defect states due to the presence of silicon and oxygen vacancies that serve as charge carrier traps,and this can be depleted at elevated temperatures.[16—22]The growth rate can be controlled by regulating the catalyst and therefore the properties can also be controlled. Hence,it may be a promising material for devices with high luminescence efficiency. Therefore, it is of great interest to explore the photoluminescence properties of Zn2SiO4nanostructures(Zn2SiO4:Sn,Zn2SiO4:Ag and Zn2SiO4:Mn)by varying growth parameters,i.e.,catalysts,temperature of the substrate and flow rate of the gas.

    The synthesis of Zn2SiO4nanostructures can be performed in several ways including sol-gel, chemical coprecipitation, hydrothermal, supercritical water process and the vapor-phase process (also known as vapor-liquid-solid(VLS)process). However,the vapor phase process is the easiest method for producing high-quality crystalline Zn2SiO4nanostructures.This approach also has the advantage of allowing the assembly of the nanostructures to be altered by altering the growth temperature and precursors.[23—29]

    In this paper, we report a novel work that explores the photoluminescence properties of Zn2SiO4nanostructures by varying the growth parameters, such as catalysts(Sn, Ag and Mn), temperature of the substrate and flow rate of the gas.VLS technique is used to synthesize zinc silicate nanostructures and different catalysts(Mg,Ag and Sn)are used to initiate and affect the growth rate,which modifies the assembly of the nanostructures and hence their photoluminescence properties. The structure, lattice parameters and phase of the prepared zinc silicate nanostructures have been studied by using x-ray diffraction (XRD). Raman spectroscopy is used for the chemical analysis of the prepared samples of Zn2SiO4nanostructures,i.e.,chemical composition(molecular vibration,rotational and phononic modes). Optical properties are observed by using photoluminescence (PL) spectroscopy and fluorescence microscopy.

    2. Experimental details

    2.1. Materials

    All the chemicals used in this study were of analytical and high purity grade purchased from M/s Merck and Sigma-Aldrich. The precursor materials were zinc sulphide, tin(II) chloride, silver (I) chloride, and manganese (II) chloride used to synthesize zinc silicate nanostructures (Zn2SiO4:Sn,Zn2SiO4:Ag and Zn2SiO4:Mn) in which the zinc sulphide powder played a role as source material and all chlorides acted as catalysts. Si (100) substrates were used for the growth of zinc silicate nanostructures and acetone(C3H6O)was used to clean the substrates.

    2.1.1. Synthesis

    Zinc silicate nanostructures were grown on Si(100)substrates possessing inhabitant oxide layers. At the start, an ultrasonic bath was used for 20 min to clean the substrates placed in acetone.After cleaning,the substrates were loaded in a horizontal tube furnace and the source materials ZnS powder and a catalyst(SnCl2,AgCl2or MnCl2)were individually and simultaneously evaporated in the tube. During the evaporation,the ZnS and a catalyst powder weighted 1 g and 0.5 g,respectively, were put in two separate alumina boats placed 20 cm away from each other,while the ZnS was placed at the center of the furnace tube as presented in Fig. 1. The temperature of the substrates, placed 20 cm away from the center, was in the range of 550—900°C. We placed the source materials in the upstream zone and substrates in the downstream zone. We could achieve the furnace temperature of 1120°C with a rate of 10°C/min. The carrier gas(95%N2+5%H2)for 2 hours was also used with a 20 sccm flow rate. In the end,we cooled down the prepared Zn2SiO4nanostructures in the presence of flow gas. The prepared nanostructures were characterized by XRD by using a Siemens D5000 diffractometer with CuKαradiation in a 2θrange of 20°to 60°. PL emission spectra of samples were measured with the help of He—Cd laser(325 nm)as an excitation source.

    Fig.1. Schematic design of tube furnace used during synthesis.

    3. Results and discussion

    3.1. Structural,chemical,and optical analysis

    3.1.1. XRD analysis

    Figures 2(a)—2(f)depict the XRD patterns of zinc silicate nanostructures atTg=600°C and 660°C, through 20 sccm flow rate by using different catalysts (Sn, Ag, and Mn). The diffraction analyses reveal intense and well-defined diffraction peaks, which demonstrate that pure zinc silicate nanostructures have been successfully doped with Sn,Ag and Mn ions.The peak positions correspond to the zinc silicate(Willemite)with the orthorhombic and rhombohedral crystal structure,matched with JCPDS Nos.00-014-0653 and 00-008-0492,respectively. All essential diffraction peaks(215),(023),(226),(0017) and (0215) are visible in the zinc silicate nanostructures,which show the high purity of the crystal structures.

    Table 1. Crystallographic parameters of ortho-rhombic zinc silicate nanostructures at a growth temperature of 600 °C.

    Table 2. Crystallographic parameters of ortho-rhombic zinc silicate nanostructures at a growth temperature of 660 °C.

    Fig.2. (a)—(f)XRD patterns of Zn2SiO4 nanostructures at Tg=600 °C and 660 °C through 20 sccm flow rate using different catalysts(Sn,Ag,Mn).

    Tables 1 and 2 show crystallographic parameters of orthorhombic zinc silicate nanostructures at growth temperatures of 600°C and 660°C. The crystallite size can be calculated by Debye Scherer’s equation, which shows that crystallite size decreases in zinc silicate nanostructures(Zn2SiO4:Sn,Zn2SiO4:Ag and Zn2SiO4:Mn) with the increase in growth temperature.This happens due to the presence of lattice strains in the prepared samples that were estimated by calculating shift in the inter planer spacing of reflection plane with the help of the following formula:

    whereεis lattice strain,dis the sample inter planer spacing at various temperatures andd0is the inter planner spacing,taken from the corresponding JCPDS card. In Zn2SiO4:Sn,lattice parameteraslightly increases while lattice parameterbremains unchanged,but lattice parametercalso increases with the increase in growth temperature. This is the indication of tensile stress ona—bplane while tensile strain alongc-axis.Although,in Zn2SiO4:Ag,lattice parametersaandbdecrease while lattice parametercincreases whenTg=600°C.This is the indication of compressive stress ona—bplane while tensile strain alongc-axis. Whereas,atTg=600°C,lattice parameteradecreases while other lattice parameters,bandc, increase.This is the indication of compressive stress alonga-axis and tensile stress alongb—cplanes.So,it is found that lattice is expanded at lower temperature 600°C while it shrunk at higher temperature 660°C.Similarly,in Zn2SiO4:Mn,lattice parameteraslightly decreases while other lattice parameters,bandc, slightly increase atTg=600°C andTg=600°C. This is the indication of compressive stress along a-axis while tensile strain alongb—cplane. So, it is found that overall lattice expanded with the decrease in temperature.

    Also the volume of unit cells is increased in zinc silicate nanostructures(Zn2SiO4:Sn,Zn2SiO4:Ag,Zn2SiO4:Mn)as shown in Tables 1 and 2 because dopant ions go to the interstitial sites present in the unit cell. Thus, interstitial incorporation of dopant ions in the unit cell may lead to tensile strain at the residing site while nearby planes have compressional stress that might be the reason for expansion in the unit cell of the zinc silicate crystal structure. Moreover, it is observed that lattice symmetry changes with assembly of zinc silicate nanostructures that can be modified by varying growth temperature. This is indicated by axial ratio(c/a)for the prepared samples in Tables 1 and 2.

    From all these, it is observed that growth parameters affect the diffraction peak intensity along the plane direction which significantly influences the crystallite size. The lattice symmetry in zinc silicate changes as indicated by the axial ratio (c/a) with different dopant ions (Sn, Ag, Mn) in the unit cell due to the deficiency of oxygen stoichiometry leading to defects and as a result, the diverse photoluminescent properties of the prepared nanostructures are obtained.

    3.1.2. Raman spectroscopy

    The zinc silicate nanostructures have been investigated by Raman spectroscopy to obtain chemical analysis of the crystal structures. Zinc silicate indicates trigonal symmetry that has a rhombohedral unit cell,linked with the space groupR-ˉ3.However,the orthorhombic unit cell hasβ-phase and the corresponding Raman spectra generally indicate a shift towards greater values that are strongly dependent on the dopant types in the lattice. Figures 3(a)—3(f) show the Raman spectra of Zn2SiO4nanostructures grown atTg=600°C and 660°C by using different catalysts (Sn, Ag, Mn). In undoped-Zn2SiO4Raman active modes reported experimentally in the range of 800—1100 cm-1are found around 864 cm-1, 908 cm-1and 940 cm-1,[30,31]ascribing the stretching and bending vibrations of the tetrahedral silicate ion.

    Fig.3. (a)—(f)Raman spectra of Zn2SiO4 nanostructures grown at Tg=600 °C and 660 °C using different catalysts(Sn,Ag,Mn).

    Nevertheless, in the doped-Zn2SiO4nanostructures(Zn2SiO4:Sn, Zn2SiO4:Ag, and Zn2SiO4:Mn), Raman active modes are found to be shifted towards the greater values,i.e.,893 cm-1, 1030 cm-1, 865 cm-1, 965 cm-1, and 970 cm-1,representing compressional stress in the material. The vibrational bands are also shifted toward the higher values, i.e.,635 cm-1,672 cm-1,675 cm-1,and 630 cm-1,due to Zn—O bond vibrations in the tetrahedral ZnO4-ions. The frequency shift exhibits the compressive stress in the synthesized material,which may be due to the substitution of different catalysts(Sn+2, Ag+2, Mn+2ions) into the zinc silicate lattice. Thus,Raman spectroscopic analysis confirms the results obtained by XRD.

    3.1.3. Growth process

    The structural, chemical and optical aspects of different catalysts (Sn, Ag, Mn) doped zinc silicate nanostructure are the focus of this work. However, the phenomenon of the growth of Zn2SiO4:Sn(Ag or Mn)nanowires is also necessary to illustrate. In VLS method, nanowires growth is facilitated by the creation of catalyst liquid droplets. Here, it is considered that disintegration of Cl from SnCl2(AgCl2or MnCl2)interacted with silicon substrate and scratched it randomly,resulting in a permeable or rough silicon surface. The Sn—Zn—Si(Ag—Zn—Si or Mn—Zn—Si)alloy catalyst liquid droplet was generated when Sn (Ag or Mn) and Zn vapors were continually accumulated on the substrate. It is greatly effective for the creation of nucleation points for Zn—Si alloy liquid droplets due to its eutectic temperature of 420°C that generated excellent circumstances for the increased formation of zinc silicate nanowires.[32]So,the scratched Si surface and the development of Sn (Ag or Mn) mixed Zn—Si droplets as catalytic nuclei for growth were assumed to be the cause of arrays of nanowires. Pure Willemite Zn2SiO4has revealed its ability to nucleate in arrays from a structural perspective. Accordingly, small threads were created first, then swiftly gathered into arrays of threads,which were then altered into bigger arrays/bundles. The gathered arrays were then converted into more complicated patterns.

    3.1.4. Photoluminescence spectroscopy

    With the objective to determine the photoluminescence spectra of zinc silicate nanostructures,the nanostructures were excited with the help of He—Cd laser at wavelength of 325 nm at room temperature. Regarding the optical properties,the PL spectra with PL percentage emission intensity were measured and fluorescence microscopy has also been studied. PL investigations have been recognized as one of the most sensitive and extensively employed methods for exploring the physical features of materials, such as optical bandgap and emission colors,due to their high precision and non-destructive nature. In Figs. 4(a)—4(b), the spectra of zinc silicate grown atTg=600°C andTg=600°C in the presence of Tin catalyst were obtained and fitted with the help of three Gaussian functions to determine the entire emissions of PL. The obtained spectra gave an extensive range of features with a slight shift in the position and, conversely, low variation in the intensities. The eminent property of pure Zn2SiO4is that it cannot give radiations in the visible range of the electromagnetic spectrum[33,34]but in Zn2SiO4:Sn nanostructure, it is found that a wide multi-band spectrum of light covers the visible range indicating the successful incorporation of Sn ions creating numerous emission centers in the Zn2SiO4crystal structure. AtTg=600°C,the prepared sample gets a larger crystallite size which shows the less solubility of Sn ions in the host Zn2SiO4lattice confirmed by the XRD graph. The insets of Figs. 4(a) and 4(b) show that those ions contribute to the formation of sub-lattices with specific energy band structures,hence the impurity electrons of Si 3s and Zn 3d in oxygen 2p states develop the lower and upper parts of the conduction and valance bands respectively. Also, Sn cations have dual valency in nature,i.e.,Sn4+and Sn2+,and the host lattice normally holds these cations. However,as a result of the allowed transitions, the transition probability of Sn4+is much lower than that of Sn2+. For instance, Sn2+hasns2-type electronic configuration with the excited state (ns1np1) and the ground states(ns2), the coordination fields strongly affect the behavior. The allowed 5s→5p transitions give a huge cross-section of absorption that generates strong photoluminescence. The higher oxidation state of Sn4+occupied by the Sn ions at the tetrahedral cationic site is mainly due to the low concentration of Sn because of oxygen and zinc vacancies and hence green(523 nm)and blue(481 nm)lights are observed respectively.In the host Zn2SiO4lattice, a higher crystal field causes the yellow (581 nm) emission. The energy level diagrams of the Zn2SiO4:Sn at various growth temperatures are quite similar due to the same defects in the host lattice but the emission intensities of all colors are different indicating that Zn2SiO4:Sn nanostructure has a wide visible range.

    Now the PL spectrum of Zn2SiO4nanostructures in the presence of silver catalyst at different growth temperatures is shown in Figs. 4(c)—4(d) and the obtained PL spectrum has been fitted by using two Gaussian functions that indicate the involvement of the two sources. In Zn2SiO4:Ag nanostructures, a wide multi-band spectrum of light covers the visible range and the energy level diagrams of the Zn2SiO4:Ag at various growth temperatures are quite different due to the different coordination fields of Ag-ions in the host lattice.At 600°C there are cyan (496 nm) and green (562 nm) emissions corresponding to zinc and oxygen vacancies respectively, while at 660°C blue (451 nm) and red (655 nm) emissions are observed corresponding to the zinc and intrinsic zinc vacancies respectively. Figures 4(e)—4(f) show the PL spectrum of Zn2SiO4nanostructures in the presence of manganese catalysts at different growth temperatures. At 600°C, violet(429 nm) and green (501 nm) emissions are observed corresponding to zinc-oxygen bond vibrations and oxygen vacancies respectively, while at 660°C cyan (490 nm) and yellow(572 nm)emissions are observed corresponding to the zinc and oxygen vacancies respectively. On the other hand,by investigating the relationship between the growth temperature and crystallite size, it is found that decreasing the crystallite size in nanostructures with increasing growth temperature leads to the enhancement of photoluminescence property.

    The comparative percentages of different emissions to the PL spectrum of the prepared nanostructures concerning growth temperature are shown in Fig. 5. In Fig. 5(a), it can be seen that the percentage emission intensities are higher at lower temperatures and decrease with an increase in temperature due to an increase indspacing as a result of the decrease in oxygen and intrinsic oxygen vacancies in the grown nanostructures,while zinc vacancies almost remain the same.Figure 5(b)gives the comparative percentages of the different emission intensities of the PL spectra of the prepared samples in the presence of silver at different growth temperatures. It can be observed that at 600°C percentage emission intensities are higher as compared to those at 660°C due to the decrease in the zinc vacancies in the grown nanostructure.Hence indicate that at higher temperatures greater wavelength is obtained due to intrinsic zinc vacancies. The comparative percentage of the different emission intensities of the PL spectra of prepared samples in the presence of manganese catalyst at different growth temperatures is illustrated in Fig.5(c). It can be seen that when the temperature increases the wavelength is shifted towards a higher value.

    Fig. 4. (a) and (b) PL spectra of Zn2SiO4 nanostructures grown in the presence of tin at Tg =600 °C & Tg =600 °C. Insets: Energy band diagrams showing transition of Sn+2 electron to Zn vacancies(VZn),oxygen vacancies(VO),and intrinsic oxygen vacancies(Oi). (c)and(d)PL spectrum of Zn2SiO4 nanostructures in the presence of silver grown at Tg=600 °C&Tg=600 °C.Insets: Energy band diagrams showing transition of Ag+2 electron to zinc vacancies (VZn), intrinsic Zn vacancies (Vzni), and oxygen vacancies (VO). (e) and (f) PL spectrum of Zn2SiO4 nanostructures in the presence of manganese catalyst grown at Tg=600 °C,and Tg=660 °C.Insets: Energy band diagrams showing transition of Mn+2 electron to Zn—O vacancies,zinc vacancies(VZn),intrinsic oxygen vacancies(Oi),and oxygen vacancies(VO).

    Fig.5. (a) The variation in the PL percentage emission intensities in the presence of tin, at different growth temperatures, related to oxygen vacancies (VO), intrinsic oxygen vacancies (Oi), and Zn vacancies (VZn). (b) The variation in the PL percentage emission intensities in the presence of silver,at different growth temperatures,related to oxygen,intrinsic Zn,and Zn vacancies. (c)The variation in the PL percentage emission intensities in the presence of manganese,at different growth temperatures,related to oxygen,intrinsic Zn,and Zn vacancies.

    In brief, incorporation of various catalysts (Sn, Ag, and Mn)at different growth temperatures into the Zn2SiO4lattice provides broad visible spectral range of PL emissions because zinc silicate (Zn2SiO4) has wide-ranging bandgap of 5.5 eV due to its inner shell electronic transitions between the 3d5energy levels. Photoluminescence percentage emission intensity is maximum at lower temperatures and decreases with an increase in temperature due to an increase indspacing.Hence, the oxygen vacancies and intrinsic oxygen vacancies are decreased in the grown nanostructures with an increase in temperature while zinc vacancies almost remain the same.Therefore, at higher temperatures greater wavelength is obtained. This is observed from the energy level diagrams of the Zn2SiO4nanostructures at various growth temperatures due to the different coordination fields of (Sn, Ag, and Mn) ions in the host lattice.

    The allowed transitions of different catalysts in the zinc silicate lattice offer a huge cross-section of absorption that generates strong photoluminescence.

    3.1.5. Fluorescence microscopy

    Zn2SiO4nanostructures are grown by the VLS method at different growth temperatures and silicon is used as a substrate. Luminescence of various samples grown in the presence of Sn, Ag, and Mn was observed. Sn ions are the main cause of the observed emissions that reside at different sites of the synthesized Zn2SiO4lattice structure that may result in different emission centers as observed in Fig. 6. The sample grown atTg=600°C(Fig.6(a))is dense and the green spectral range of the emission is observed. While sample grown atTg=660°C(Fig.6(b))is not very dense in nature representing the spectral emission in the color range of green and blue.When Ag is used as a catalyst then there is no as dense crystal growth as observed in the case of Sn. AtTg=600°C and 660°C,green and blue spectral ranges are detected as shown in Figs. 6(c)—6(d). However, by using Mn as a catalyst, it is observed that sample grown atTg=600°C is very dense in nature and show green and blue spectral emissions while sample grown atTg=660°C is not so dense and it also shows green and blue spectral emissions as shown in Figs.6(e)—6(f).

    Fig. 6. (a) and (b) Fluorescence-microscopy images taken at 10×, (a) Tg =600 °C and (b) Tg =600 °C for Zn2SiO4 nanostructures grown by using tin as a catalyst. (c) and (d) Fluorescence-microscopy images taken at 10×, (c) Tg =600 °C and (d) Tg =660 °C for Zn2SiO4 nanostructures grown by using silver as a catalyst. (e) and (f) Fluorescence-microscopy images taken at 10×, (e) Tg =600 °C and (f) Tg =660 °C for Zn2SiO4 nanostructures grown by using manganese as a catalyst.

    Table 3. Summary of the results.

    From Table 3, it has been observed that the decrease of temperature leads to an increase in diffraction peak intensity which significantly influences the crystallite size that leads to peaks of different widths. With elevating the temperature,the full-width half maxima (FWHM) likewise rises, resulting in a small crystalline size. Therefore, at high temperature of 660°C,we observed lower crystallinity of prepared nanostructures that reveal very strong and shifted emission peak which shows that more defects are generated in Zn2SiO4, hence stronger photoluminescence peak positions with the bandgap of 2.58 eV (480 nm), 2.38 eV (520 nm), 2.12 eV (583 nm),2.74 eV (451 nm), 1.89 eV (655 nm), 2.53 eV (490 nm),2.16 eV (572 nm) corresponding to emission colors of blue,green,yellow,red and cyan,respectively,have been observed.So,the prepared photoluminescent nanostructures are promising candidates for applications in optical emission devices.

    4. Conclusion

    In summary,Zn2SiO4nanostructures by varying catalysts like Mn, Ag and Sn were synthesized via VLS method. The structural, chemical and photoluminescence properties were investigated in detail. XRD reveals that Zn2SiO4lattice symmetry varies due to the deficiency of oxygen stoichiometry leading to defects and with the increase in temperature, the crystallite size decreases. Furthermore, Raman spectroscopic analyses confirmed the results obtained by XRD.The intensity of photoluminescence emission is highest at lower temperatures and decreases as the temperature rises owing to an increase in d spacing.Also,with increasing temperature,oxygen vacancies and intrinsic oxygen vacancies decline in the produced nanostructure, whereas zinc vacancies almost remain constant. As a result, at higher temperatures, a longer wavelength,i.e.,red emission,is obtained. PL analyses show broad multi-band spectra of Zn2SiO4nanostructures in the visible region with PL peak position and optical bandgap of 2.89 eV(429 nm), 2.74 eV (451 nm), 2.53 eV (490 nm), 2.38 eV(520 nm), 2.12 eV (583 nm), 1.89 eV (655 nm) corresponding to emission colors of violet,blue,cyan,green,yellow and red,respectively,due to the presence of different catalysts(Sn,Ag,and Mn)and hence the allowed transitions of different catalysts in the zinc silicate lattice offer a huge cross-section of absorption that generates strong PL.Finally, this is a promising outcome in terms of using transition metal photoluminescent nanostructures for the development of solid-state lighting and display devices applications.

    Acknowledgement

    The authors acknowledge the technical support provided by the COMSATS University and National Centre for Physics,Islamabad Pakistan.

    极品教师在线视频| 一级毛片我不卡| 日本欧美国产在线视频| 十八禁国产超污无遮挡网站| 亚洲成人av在线免费| 精品久久久久久久久亚洲| 综合色av麻豆| 日本黄色片子视频| 免费看光身美女| 人人妻人人澡欧美一区二区| 亚洲最大成人av| 在线 av 中文字幕| 美女被艹到高潮喷水动态| 日本-黄色视频高清免费观看| 亚洲怡红院男人天堂| 日本av手机在线免费观看| 少妇熟女欧美另类| 国产高清三级在线| 久久久久久久久中文| 久久精品综合一区二区三区| 亚洲欧美日韩东京热| 欧美激情国产日韩精品一区| 日韩电影二区| 18+在线观看网站| 国产精品一区二区三区四区免费观看| 大陆偷拍与自拍| 国产女主播在线喷水免费视频网站 | 国产精品麻豆人妻色哟哟久久 | 欧美精品国产亚洲| a级毛片免费高清观看在线播放| 国产精品久久视频播放| 色尼玛亚洲综合影院| 久久鲁丝午夜福利片| 亚洲欧美日韩无卡精品| 欧美zozozo另类| 91精品国产九色| 国产伦一二天堂av在线观看| 久久国产乱子免费精品| 日本免费a在线| 国产乱来视频区| 人人妻人人看人人澡| 国产免费一级a男人的天堂| 亚洲av免费在线观看| 久久久久九九精品影院| 26uuu在线亚洲综合色| 亚洲国产欧美在线一区| a级毛片免费高清观看在线播放| 一夜夜www| 国产熟女欧美一区二区| 免费看a级黄色片| 国产欧美另类精品又又久久亚洲欧美| 啦啦啦中文免费视频观看日本| 能在线免费观看的黄片| 精品久久久久久成人av| 在线播放无遮挡| 在线天堂最新版资源| av播播在线观看一区| 亚洲精品色激情综合| 免费观看性生交大片5| 三级毛片av免费| 男女那种视频在线观看| 久久久久免费精品人妻一区二区| 亚洲欧美一区二区三区黑人 | 少妇的逼水好多| 不卡视频在线观看欧美| av福利片在线观看| 午夜福利在线在线| 久久久久久伊人网av| 综合色av麻豆| 久久午夜福利片| 日本欧美国产在线视频| 女的被弄到高潮叫床怎么办| 大香蕉久久网| 99热这里只有是精品50| 国产乱人视频| 日日干狠狠操夜夜爽| 午夜免费激情av| 男人狂女人下面高潮的视频| 国产大屁股一区二区在线视频| 国产单亲对白刺激| 日日啪夜夜爽| 欧美潮喷喷水| 久久久久久久久久久免费av| 精品人妻偷拍中文字幕| 婷婷六月久久综合丁香| 激情 狠狠 欧美| 能在线免费看毛片的网站| 久久6这里有精品| 国产精品日韩av在线免费观看| 亚洲va在线va天堂va国产| 毛片一级片免费看久久久久| av在线播放精品| 好男人视频免费观看在线| 男女视频在线观看网站免费| videossex国产| 成年人午夜在线观看视频 | 中文在线观看免费www的网站| 黄色欧美视频在线观看| 男人狂女人下面高潮的视频| 建设人人有责人人尽责人人享有的 | 18禁裸乳无遮挡免费网站照片| 亚洲精品中文字幕在线视频 | 国产免费又黄又爽又色| videos熟女内射| 天堂网av新在线| 国产黄片美女视频| 熟女电影av网| 午夜免费男女啪啪视频观看| 成人亚洲精品一区在线观看 | 亚洲婷婷狠狠爱综合网| 亚洲一级一片aⅴ在线观看| 99久久中文字幕三级久久日本| 三级国产精品欧美在线观看| 中文天堂在线官网| 欧美激情国产日韩精品一区| 国产成人精品一,二区| 少妇人妻精品综合一区二区| 精品一区在线观看国产| 久久精品综合一区二区三区| 亚洲最大成人av| 日韩伦理黄色片| 99久久精品热视频| 中文精品一卡2卡3卡4更新| 久久精品久久久久久噜噜老黄| 汤姆久久久久久久影院中文字幕 | 国产伦理片在线播放av一区| 伊人久久精品亚洲午夜| 伦精品一区二区三区| 三级男女做爰猛烈吃奶摸视频| freevideosex欧美| 久久精品夜夜夜夜夜久久蜜豆| 久久精品久久久久久噜噜老黄| 免费不卡的大黄色大毛片视频在线观看 | 国产高潮美女av| 亚洲第一区二区三区不卡| 高清视频免费观看一区二区 | 欧美性猛交╳xxx乱大交人| 亚洲欧美日韩卡通动漫| 69人妻影院| 久久久久精品性色| 国模一区二区三区四区视频| 在线观看免费高清a一片| 美女cb高潮喷水在线观看| 美女高潮的动态| 色综合亚洲欧美另类图片| 中文精品一卡2卡3卡4更新| 欧美性感艳星| 国产黄a三级三级三级人| 国产高清有码在线观看视频| 亚州av有码| 亚洲欧洲日产国产| 国产不卡一卡二| 成年女人看的毛片在线观看| 欧美高清成人免费视频www| 网址你懂的国产日韩在线| 日韩中字成人| 嫩草影院精品99| 少妇人妻精品综合一区二区| 国产91av在线免费观看| 大又大粗又爽又黄少妇毛片口| 美女脱内裤让男人舔精品视频| 国产黄a三级三级三级人| 久久久久性生活片| 久久久欧美国产精品| 男人舔奶头视频| 色综合站精品国产| 三级毛片av免费| 看免费成人av毛片| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲人与动物交配视频| 尾随美女入室| www.色视频.com| 国产精品久久久久久精品电影小说 | 久99久视频精品免费| 久久久久久久久久成人| 亚洲精品色激情综合| 人妻系列 视频| 一个人看的www免费观看视频| 欧美精品国产亚洲| 极品教师在线视频| 你懂的网址亚洲精品在线观看| 国产亚洲午夜精品一区二区久久 | 国产精品99久久久久久久久| 亚洲av.av天堂| 久久精品夜色国产| 熟女电影av网| 一区二区三区四区激情视频| 精品国内亚洲2022精品成人| 国产真实伦视频高清在线观看| 91精品伊人久久大香线蕉| 国产探花在线观看一区二区| 草草在线视频免费看| 国产精品久久久久久精品电影小说 | 国产精品一区www在线观看| 高清视频免费观看一区二区 | 国产欧美日韩精品一区二区| 久久精品久久久久久噜噜老黄| 精品欧美国产一区二区三| 欧美+日韩+精品| 欧美bdsm另类| 久久精品夜色国产| 日本免费在线观看一区| 日本av手机在线免费观看| 观看免费一级毛片| av播播在线观看一区| 久久久久九九精品影院| 亚洲,欧美,日韩| 最近最新中文字幕免费大全7| 久久精品夜色国产| 全区人妻精品视频| 超碰av人人做人人爽久久| av在线老鸭窝| 亚洲精品成人久久久久久| 国产精品嫩草影院av在线观看| 欧美+日韩+精品| 在线免费观看的www视频| 成年免费大片在线观看| 高清午夜精品一区二区三区| 两个人视频免费观看高清| 最近的中文字幕免费完整| 99热6这里只有精品| 成人高潮视频无遮挡免费网站| 插阴视频在线观看视频| 搡老乐熟女国产| 欧美bdsm另类| 国产精品人妻久久久久久| 亚洲国产色片| 麻豆成人午夜福利视频| 免费在线观看成人毛片| 在线 av 中文字幕| 禁无遮挡网站| 国产人妻一区二区三区在| 91在线精品国自产拍蜜月| 一个人观看的视频www高清免费观看| 欧美激情在线99| 丝袜美腿在线中文| 毛片女人毛片| 亚洲精品成人av观看孕妇| 久久久久久久国产电影| 内地一区二区视频在线| 久久这里有精品视频免费| 联通29元200g的流量卡| 欧美激情国产日韩精品一区| 一个人看视频在线观看www免费| 亚洲成色77777| 国产成人精品久久久久久| freevideosex欧美| 婷婷色综合大香蕉| 搡女人真爽免费视频火全软件| 亚洲av男天堂| 一级片'在线观看视频| av在线天堂中文字幕| 丝袜美腿在线中文| 天美传媒精品一区二区| 国产精品精品国产色婷婷| 亚洲av一区综合| 一级二级三级毛片免费看| 国产黄色小视频在线观看| 91在线精品国自产拍蜜月| 国产在视频线精品| 国产精品嫩草影院av在线观看| 国产精品一区www在线观看| 日韩 亚洲 欧美在线| 青春草国产在线视频| 午夜精品国产一区二区电影 | 国产综合精华液| 丝袜美腿在线中文| 午夜免费激情av| 在线 av 中文字幕| 97精品久久久久久久久久精品| 一级黄片播放器| 国产v大片淫在线免费观看| 中文字幕亚洲精品专区| 最近最新中文字幕大全电影3| 成人综合一区亚洲| 赤兔流量卡办理| 搞女人的毛片| 国产有黄有色有爽视频| 国产女主播在线喷水免费视频网站 | 精品久久久久久成人av| 亚洲国产精品国产精品| 欧美97在线视频| 人人妻人人看人人澡| 91狼人影院| 欧美最新免费一区二区三区| 国产熟女欧美一区二区| 精品人妻偷拍中文字幕| 午夜福利在线在线| 久久久久久伊人网av| 成人特级av手机在线观看| 精品久久久精品久久久| 日本欧美国产在线视频| 女人被狂操c到高潮| 亚洲精品一区蜜桃| av专区在线播放| 九九在线视频观看精品| 成人毛片60女人毛片免费| 国产精品福利在线免费观看| 九九久久精品国产亚洲av麻豆| 亚洲av.av天堂| 精品久久国产蜜桃| 日本爱情动作片www.在线观看| 一级二级三级毛片免费看| 97热精品久久久久久| 天堂俺去俺来也www色官网 | av专区在线播放| 美女脱内裤让男人舔精品视频| 国产乱人视频| 99久久精品热视频| 激情五月婷婷亚洲| 搡老妇女老女人老熟妇| 男插女下体视频免费在线播放| 国产精品美女特级片免费视频播放器| 又爽又黄无遮挡网站| 成年女人在线观看亚洲视频 | 在线播放无遮挡| 波野结衣二区三区在线| 午夜福利在线在线| av又黄又爽大尺度在线免费看| 日本av手机在线免费观看| 亚洲欧美中文字幕日韩二区| 免费黄频网站在线观看国产| 国产精品99久久久久久久久| 夫妻午夜视频| 国产精品精品国产色婷婷| 亚洲最大成人手机在线| 久久99热6这里只有精品| 日韩欧美国产在线观看| 秋霞伦理黄片| 免费大片黄手机在线观看| 身体一侧抽搐| 亚洲国产精品sss在线观看| 亚洲自拍偷在线| 国产不卡一卡二| 国产亚洲最大av| 嫩草影院入口| 韩国高清视频一区二区三区| 老女人水多毛片| 欧美人与善性xxx| 久久热精品热| 久久人人爽人人爽人人片va| 两个人视频免费观看高清| 国产淫片久久久久久久久| 亚洲图色成人| 伦精品一区二区三区| 精品一区二区三区人妻视频| 国产一区二区在线观看日韩| 狂野欧美激情性xxxx在线观看| 国产在视频线精品| 久久久久久久国产电影| 熟妇人妻久久中文字幕3abv| 日韩欧美 国产精品| 久久99热这里只有精品18| 搡老妇女老女人老熟妇| 51国产日韩欧美| 又爽又黄a免费视频| 天天一区二区日本电影三级| 久久精品人妻少妇| 国产精品一及| 91精品伊人久久大香线蕉| 国产v大片淫在线免费观看| 午夜视频国产福利| 永久网站在线| 99久久精品热视频| 久久97久久精品| 日本黄色片子视频| 欧美变态另类bdsm刘玥| 国产永久视频网站| 久久久久久伊人网av| 69av精品久久久久久| 国产色婷婷99| 亚洲欧美日韩无卡精品| av国产久精品久网站免费入址| 亚洲av中文字字幕乱码综合| 日本色播在线视频| 一区二区三区乱码不卡18| 国产午夜精品一二区理论片| 26uuu在线亚洲综合色| 日韩亚洲欧美综合| 中国美白少妇内射xxxbb| 九九久久精品国产亚洲av麻豆| 97精品久久久久久久久久精品| 欧美最新免费一区二区三区| 夫妻午夜视频| 亚洲不卡免费看| 日韩av不卡免费在线播放| 国模一区二区三区四区视频| 97超碰精品成人国产| 色综合亚洲欧美另类图片| 日本黄色片子视频| 国产成人精品久久久久久| 搡老妇女老女人老熟妇| 亚洲三级黄色毛片| 亚洲精品成人久久久久久| 亚洲欧美清纯卡通| 国产探花极品一区二区| 日韩三级伦理在线观看| 日本黄色片子视频| 国内精品美女久久久久久| 成人午夜高清在线视频| 国产欧美日韩精品一区二区| 久久99热这里只有精品18| 亚洲人与动物交配视频| 精品国产一区二区三区久久久樱花 | 精品一区在线观看国产| 亚洲美女搞黄在线观看| 亚洲精品亚洲一区二区| 亚洲婷婷狠狠爱综合网| 天堂av国产一区二区熟女人妻| 免费av毛片视频| 国产一级毛片在线| 永久免费av网站大全| 一个人观看的视频www高清免费观看| 18+在线观看网站| 高清日韩中文字幕在线| 在线 av 中文字幕| www.av在线官网国产| 激情五月婷婷亚洲| 老女人水多毛片| 国产精品无大码| 国产人妻一区二区三区在| 人体艺术视频欧美日本| 天美传媒精品一区二区| 国产一区有黄有色的免费视频 | 日本av手机在线免费观看| 久久久精品免费免费高清| 亚洲av中文av极速乱| 久久久久九九精品影院| www.av在线官网国产| 狂野欧美激情性xxxx在线观看| 亚洲美女搞黄在线观看| 自拍偷自拍亚洲精品老妇| 日本欧美国产在线视频| 亚洲色图av天堂| 一级毛片电影观看| 免费少妇av软件| 色综合亚洲欧美另类图片| 国产单亲对白刺激| 日本黄大片高清| 男女视频在线观看网站免费| 中国美白少妇内射xxxbb| 精品久久国产蜜桃| 观看免费一级毛片| 国产伦精品一区二区三区视频9| 成年免费大片在线观看| 亚洲欧美一区二区三区黑人 | 一级片'在线观看视频| 又爽又黄a免费视频| 黄片wwwwww| 欧美xxxx性猛交bbbb| 国产精品久久久久久久电影| 校园人妻丝袜中文字幕| 欧美高清成人免费视频www| 日韩大片免费观看网站| 国产精品蜜桃在线观看| 网址你懂的国产日韩在线| 中文精品一卡2卡3卡4更新| 别揉我奶头 嗯啊视频| 欧美日韩综合久久久久久| 亚洲欧洲日产国产| 日本黄色片子视频| 国内少妇人妻偷人精品xxx网站| 国产成人a∨麻豆精品| 成人毛片60女人毛片免费| 成人漫画全彩无遮挡| 日韩一区二区视频免费看| 日韩制服骚丝袜av| 亚洲av不卡在线观看| 久久久午夜欧美精品| 国产精品一区www在线观看| 亚洲第一区二区三区不卡| 69人妻影院| 赤兔流量卡办理| av又黄又爽大尺度在线免费看| 久久精品国产亚洲av天美| 免费高清在线观看视频在线观看| 亚洲精品日本国产第一区| 老司机影院毛片| 一二三四中文在线观看免费高清| 午夜免费男女啪啪视频观看| 一级片'在线观看视频| 男女那种视频在线观看| 欧美bdsm另类| 男人狂女人下面高潮的视频| 免费看a级黄色片| 国产精品一区www在线观看| 肉色欧美久久久久久久蜜桃 | 久久午夜福利片| 日本熟妇午夜| 国产黄片视频在线免费观看| 人妻一区二区av| 91久久精品国产一区二区三区| 青春草视频在线免费观看| 亚州av有码| 免费少妇av软件| 亚洲精品乱久久久久久| 精品99又大又爽又粗少妇毛片| 欧美日韩精品成人综合77777| 建设人人有责人人尽责人人享有的 | 我的女老师完整版在线观看| 免费黄网站久久成人精品| 美女主播在线视频| 天堂俺去俺来也www色官网 | 舔av片在线| 国产伦精品一区二区三区四那| 有码 亚洲区| 一级毛片aaaaaa免费看小| 少妇的逼好多水| 久久精品熟女亚洲av麻豆精品 | 国产老妇伦熟女老妇高清| 寂寞人妻少妇视频99o| 亚洲欧美清纯卡通| 最近中文字幕2019免费版| 好男人视频免费观看在线| 黄色一级大片看看| 在线 av 中文字幕| 人妻制服诱惑在线中文字幕| av在线播放精品| 黄色配什么色好看| 欧美zozozo另类| 久久鲁丝午夜福利片| 成人午夜高清在线视频| 少妇熟女aⅴ在线视频| 日本爱情动作片www.在线观看| 色5月婷婷丁香| 青青草视频在线视频观看| 尾随美女入室| 亚洲av一区综合| 国产精品99久久久久久久久| 少妇裸体淫交视频免费看高清| 国产伦在线观看视频一区| 欧美日韩视频高清一区二区三区二| 欧美高清成人免费视频www| 国国产精品蜜臀av免费| 精品久久久噜噜| 亚洲av免费在线观看| 国产精品麻豆人妻色哟哟久久 | 99热这里只有精品一区| 日韩精品有码人妻一区| 成人亚洲精品av一区二区| 女人久久www免费人成看片| 男女视频在线观看网站免费| .国产精品久久| 亚洲综合精品二区| 欧美xxⅹ黑人| 在线 av 中文字幕| 日韩人妻高清精品专区| 51国产日韩欧美| 婷婷色麻豆天堂久久| 麻豆av噜噜一区二区三区| 伦理电影大哥的女人| 亚洲国产精品成人综合色| 三级男女做爰猛烈吃奶摸视频| 嫩草影院新地址| 免费看光身美女| 国产成人a∨麻豆精品| 99视频精品全部免费 在线| 一本久久精品| 1000部很黄的大片| 免费黄色在线免费观看| 亚洲精品乱码久久久久久按摩| 韩国av在线不卡| 欧美日韩在线观看h| 欧美 日韩 精品 国产| 99久久精品热视频| 一级爰片在线观看| 一级毛片电影观看| 国产成人一区二区在线| 亚洲国产精品成人综合色| 高清午夜精品一区二区三区| 久久久久网色| 亚洲最大成人av| 日韩国内少妇激情av| 97热精品久久久久久| 麻豆久久精品国产亚洲av| 久久久久精品性色| 亚洲精品,欧美精品| 晚上一个人看的免费电影| 久久精品夜夜夜夜夜久久蜜豆| 国产在线一区二区三区精| 免费不卡的大黄色大毛片视频在线观看 | 亚洲成色77777| 久久国内精品自在自线图片| 两个人的视频大全免费| 建设人人有责人人尽责人人享有的 | 国产精品日韩av在线免费观看| 亚洲国产日韩欧美精品在线观看| 天美传媒精品一区二区| 国产男女超爽视频在线观看| 老司机影院成人| 久久热精品热| 亚洲成人一二三区av| 国产精品av视频在线免费观看| 亚洲av成人精品一区久久| 色综合站精品国产| 日韩成人伦理影院| 男女视频在线观看网站免费| 天堂中文最新版在线下载 | 大片免费播放器 马上看| 亚洲欧美一区二区三区黑人 | 久久人人爽人人片av| 久久精品久久久久久噜噜老黄| 亚洲国产成人一精品久久久| 亚洲国产av新网站| 免费人成在线观看视频色| 免费看美女性在线毛片视频| 日韩国内少妇激情av| 插阴视频在线观看视频| 国内精品美女久久久久久| 97精品久久久久久久久久精品| av免费观看日本| 免费黄频网站在线观看国产| 亚洲av.av天堂| 可以在线观看毛片的网站| 淫秽高清视频在线观看|