• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Topological Lifshitz transition and novel edge states induced by non-Abelian SU(2)gauge field on bilayer honeycomb lattice

    2022-05-16 07:11:28WenXiangGuo郭文祥andWuMingLiu劉伍明
    Chinese Physics B 2022年5期

    Wen-Xiang Guo(郭文祥) and Wu-Ming Liu(劉伍明)

    1Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    2School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100190,China

    3Songshan Lake Materials Laboratory,Dongguan 523808,China

    Keywords: topological Lifshitz transition,SU(2)gauge field,bilayer honeycomb lattice

    1. Introduction

    In recent decades,the discovery of topological insulators has extended our understanding of topological states of matter tremendously.[1–3]In Landau theory of phase transitions,different states of matter are classified by spontaneous symmetry breaking. However, topological states cannot be distinguished from topological trivial states by symmetry, and thus topological phase transitions can not be characterized by a local order parameter.[1–3]Consequently, various topological invariants are introduced to identify the topological phase transitions.[1–3]Different from usual topological transitions,topological Lifshitz transitions[4–6]are determined by topologies of Fermi surfaces in momentum space. They are accompanied by the change of topology of Dirac points,[7]Weyl points,[8,9]nodal lines,[10,11]and so on.[5]

    Since the first preparation of graphene,[12]twodimensional materials have been investigated widely due to their various exotic properties and prospective applications. For instance, the charge carriers in graphene are massless Dirac fermions described by Dirac’s relativistic equation,[13–15]which allows for the investigation of quantum electrodynamic phenomena. Furthermore, the Fermi surface of several Dirac points also makes graphene an excellent platform to study topological Lifshitz transitions.[4,5]However,owing to the inevitable disorder,defects,and impurities in materials,it is difficult for us to manipulate the materials arbitrarily. Fortunately, ultra-cold atoms in optical lattices[16,17]provide a flexible and controllable playground to stimulate the phenomena in condensed matter and particle physics, such as Mott transition[18–20]and gauge invariance.[21]Artificial gauge fields on neutral atoms have been created by atom–laser interaction,[22–27]which makes it possible to investigate the topological phase transitions in optical lattices.[28–42]

    The SU(2) gauge effects on the honeycomb lattice have been investigated thoroughly.[30,31]The non-Abelian gauge potential induces an annihilation and creation of massless Dirac points. Different from the massless Dirac fermions in graphene,the charge carriers of bilayer graphene are massive chiral quasiparticles.[43,44]What’s more, a tunable band gap has been realized by applying a biased electric field on bilayer graphene.[45–49]Accordingly,bilayer honeycomb lattice(BHL)has been studied widely and various exotic phenomena have been discovered.[50–59]Thus how the SU(2) gauge field will act on the BHL deserves to be investigated.

    In this work, we investigate the SU(2) gauge effects on BHL.Based on the tight-binding model,we obtain the model with SU(2) gauge potential by Peierls substitution.[30,60,61]Then we discover a topological Lifshitz transition induced by the non-Abelian gauge potential by calculating the Fermi surfaces. The phase diagram of the gauge fluxes is also obtained by solving the secular equation. In addition,edge states of biased bilayer ribbons are studied under the influence of gauge potential.

    The paper is organized as follows. In Section 2, we introduce the model. Then we analyze the topological Lifshitz transition induced by the non-Abelian SU(2) gauge potential in Section 3 and obtain the phase diagram of the transition in Section 4. Next in Section 5,the edge states of biased bilayer ribbon with gauge fluxes are studied. Finally, we summarize our results briefly in Section 6.

    2. Tight-binding model with SU(2)gauge potential

    Fig. 1. (a) The illustration of the AB-Bernal stacking bilayer honeycomb lattice(BHL).(b)Top view of the BHL lattice. The cell consists of four sites,including A1(B1)in the lower layer and A2(B2)in the upper layer. The lattice primitive vectors a1 =(,-),a2 =(,).(c)The frist Brillouin zone(FBZ)and the reciprocal lattice vector b1= (1,-, b2 = (1,. K = 23π (1,) and K′ = (1,-)are two inequivalent corners of the FBZ.(d)The energy band structure for the Hamiltonian(2)along the loop Γ →K →M →Γ in the FBZ.One conduction band and one valence band touch parabolically at the K point no matter what t⊥equals to.

    The AB-Bernal stacking BHL,as shown in Figs.1(a)and 1(b), is commonly described by a tight-binding Hamiltonian with the nearest-neighbor intra-layer hopping and the interlayer hopping betweenA1andA2sites,[13–15,62–65]which is symmetric around the zero energy due to the electron–hole symmetry. We also find thatf(k) = 0 for two inequivalent corners of the first Brillouin zone (FBZ)[Fig.1(c)],such that the lower conduction band and upper valence band touch at zero energy at the cornersKandK′. We definek=K+qnear theKpoint and expand the spectrum to investigate the low-energy properties. The low-energy band spectrum is approximately

    Fig. 2. (a) The illustration for the BHL subjected to the SU(2) gauge field. The odd(even)indices denote A(B)sites of the BHL.Subjected to SU(2)gauge field, the hopping integrals are dressed by T1 = eiατx,T2 = 1, T3 = eiβτy. (b) The magnitude |W| of the Wilson loop as a function of α and β in [0,π] range. The Abelian regimes include the four edges of α–β square and the center point (π/2,π/2), where|W(α,β)|=2.

    3. Topological Lifshitz transition

    For the graphene point (α,β) = (0,0), the Hamiltonian (9) is reduced to the Hamiltonian (2) with color degeneracy,

    Therefore, the band structure at graphene point is the same with spectrum (3), except for the double degeneracy of each band[see Fig.3(a)].Consequently,the number of Dirac points increases fromN=2 toN=4. Then we consider the entire Abelian regimes.

    Fig.3. Band structure of the BHL with SU(2)gauge potential for different fluxes (α,β). (a) Graphene point α =β =0. (b) π-flux pointα =β =π/2.

    Comparing SU(2) gauge Hamiltonian (8) with Hamiltonian (1), we can easily find that the electron–hole symmetry persists against the gauge field. Thus, the spectrum modified by gauge potential is also symmetric around zero energy. Under these circumstances, all Dirac points can be identified by the zero energy modes of the uppermost valence band,which could be utilized to demonstrate the topologies of Fermi surfaces. Patterns of zero modes for different gauge fluxes(α,β)along the Abelian path(0,0)→(0,π)→(π,π)are shown in Fig. 4. The number of Dirac points is invariant in the trivial Abelian regimes and only their positions are transported in the momentum space by the Abelian gauge field. The positions of Dirac pointsP1andP2in the trivial Abelian regimes are determined by the following expressions:P3andP4are the space inversion ofP1andP2,respectively. If their coordinates exceed FBZ,these points must be translated into FBZ along reciprocal vectors.

    To illustrate the topological Lifshitz transition, a topological argument must be attached. The universality class of gapless excitations is determined by a topological winding number.[5,30,66]If the Hamiltonian satisfy a particle–hole symmetry{Γ,H(k)}=0,whereΓ=diag{12,-12,12,-12},we can define a local winding number

    whereCis a loop surrounding the singularity in the momentum space.[30,66]For the honeycomb lattice with SU(2)gauge potential,the topological charges of massless Dirac points areν=±1.[30]For trivial Abelian regimes on BHL,there are two negative topological chargesν(P1) =ν(P2) =-2, and two positive onesν(P3)=ν(P4)= +2. Forπ-flux point, there are four positive topological chargesν(K′,Q2,Q3,Q6)=+2 and four negative topological chargesν(K,Q1,Q4,Q5)=-2.In this way,the universality classes of trivial Abelian regimes andπ-flux point are different, indicating a topological Lifshitz transition connecting these two phases driven by the non-Abelian gauge fluxes.[5]

    Fig.4. Topologies of Fermi surfaces for different gauge fluxes(α,β)along the Abelian path(0,0)→(0,π)→(π,π). In the trivial Abelian regimes,the number of Dirac points is invariant. The Abelian gauge field only changes the positions of these zero modes in momentum space.The position change of Dirac point P1 with fluxes(α,β)is shown in detail.

    Fig.5. Topology of Fermi surfaces for different gauge fluxes(α,β)along the non-Abelian path(0,π)→(π,0),where β =π-α. There are four Dirac points in(a)–(b)and(h)–(i),which are the same with trivial Abelian regimes. Panels(c)–(g)belong to the N=8 phase.

    4. Phase diagram

    To investigate the topological Lifshitz transition thoroughly,we tune the gauge fluxes(α,β)along the non-Abelian path (0,π)→(π,0) and obtain the topologies of respective Fermi surfaces in Fig.5. We find that the region aroundπ-flux point is in theN=8 phase [Figs. 5(c)–5(g)]. It is necessary to obtain the phase boundary of the topological Lifshitz transition.

    As we know, the energy bands can be obtained by solving the secular equation det[H(k)-E]=0. If zero modes exist,the equation det[H(k)]=0 will have roots,the number of which will equal the number of zero modes.Since the number of zero modes differs in the topological Lifshitz transition induced by non-Abelian SU(2)gauge potential,we can obtain the phase boundary by solving the equation det[H(k)]=0. It is easy to find that

    which is independent oft′. Thus the value oft′does not affect the phase transition. Therefore,the problem is reduced to solving the equation det[F(k)]=0.

    Fig.6. The α–β phase diagram. The phase boundary of the topological Lifshitz transition is the red line, which corresponds to Δ =0. There are N=4 Dirac points outside the boundary.

    When the discriminantΔ=0,the corresponding equation has multiple roots. Consequently,we obtain the phase diagram of gauge fluxes(α,β)in Fig.6. The phase boundary of the topological Lifshitz transition is the red line,which corresponds toΔ=0. TheN=4 phase is outside the phase boundary,whileN=8 phase inside the boundary. The phase diagram can also be confirmed by calculating the Fermi surfaces.

    5. Novel edge states

    Different from honeycomb lattice,there are some unique phenomena on the BHL, which also exhibit exotic changes under the influence of SU(2) gauge field. Localized edge states have been reported to exist at the zigzag edges of bilayer graphene.[67]Now we begin to investigate the effects of the SU(2)gauge potential on the localized edge states. A tunable band gap has been realized by applying a biased electric field on bilayer graphene.[45–49]Hence we consider the biased BHL nanoribbon with zigzag edges [see Fig. 1(b)]. When a gated voltage is applied to BHL,the Hamiltonian(9)should be modified by adding a termHV=Vdiag{14,-14},where 2Vis the voltage difference between the two layers. A two-photon dressing field can be used to produce an effective gauge potential for neutral atoms. Through the time dependence of the effective potential,we can generate synthetic electric field on neutral atoms.[25]A generalization of Bragg spectroscopy can be used to detect edge states in optical lattices.[68]

    Fig. 7. Energy spectrum for a bilayer ribbon of NL =80 cells with zigzag edges. (a) V =0,α =β =0. (b) V =0,α =β =π/10. (c)V =0,α =β =π/2. (d)V =0.1,α =β =0. (e)V =0.1,α =β =2π/5. (f)V =0.1,α =β =π/2.

    WhenV= 0, we tune the gauge fluxes (α,β) along(0,0)→(π/2,π/2). Four partly flat bands at Fermi level locate in the range of[2π/3,4π/3][Fig.7(a)],which correspond to four edge states.[67]As we know,these bands are doubly degenerate and the increasing flux will result in a nondegeneracy.We can find that four additional dispersive bands appear away from the flat bands in Fig.7(b). The nondegenerate flat bands are also transported by gauge fluxes in momentum space and thus their range is also enlarged. When the fluxes continue to increase, the nondegenerate flat bands will separate into two parts.Finally,forα=β=π/2,the nondegeneracy disappears again,but the two parts of flat bands remain in Fig.7(c).

    Considering biased voltageV= 0.1, we show the energy spectrum of a bilayer ribbon for different gauge fluxes in Figs.7(d)–7(f). The bias will move two flat bands from Fermi level toE=±V, and the other two edge states become two dispersive bands crossing the opened gap[Fig.7(d)]. Similar to the unbiased case, the SU(2) gauge potential will destroy the color degeneracy and transport the bands. As a result,we can see eight band crossing in the gap whenα=β=2π/5 in Fig.7(e). Atπ-flux point,both the flat and crossing bands separate into two parts[Fig.7(f)].

    6. Summary

    In this work,we systematically study the SU(2)gauge effects on BHL. Based on the tight-binding model of graphene bilayer,we deduce the model by Peierls substitution. A topological Lifshitz transition induced by the non-Abelian gauge potential is discovered. Topological Lifshitz transitions are identified by the topologies of Fermi surfaces. The Fermi surface atπ-flux point consists ofN=8 Dirac points,instead ofN=4 in the trivial Abelian regimes. We also define a local winding number to classify the universality class of different topological phases. Then the phase diagram of gauge fluxes is demonstrated. The influence of gauge potential on edge states of biased bilayer ribbon is investigated. At the end,we would like to emphasize that the gauge potentials of different layers are independent in the present work,and the interlayer gauge fields cannot be considered. If we consider the interlayer gauge fields,the problem would become much more sophisticated and interesting,which will be studied in the future.In conclusion,our work will contribute to the research of topological Lifshitz transition and SU(2) gauge effects on bilayer honeycomb lattice. And the comprehension will be helpful for the electronic applications of bilayer graphene.

    Acknowledgements

    We are grateful to X.D.Zhang,F.Sun,D.Y.Jing,and J.K.Wang for helpful discussions.

    This work was supported by the National Key R&D Program of China (Grant Nos. 2021YFA1400900,2021YFA0718300, and 2021YFA1400243) and the National Natural Science Foundation of China(Grant No.61835013).

    99热全是精品| 国产片特级美女逼逼视频| 免费看av在线观看网站| 欧美高清成人免费视频www| av在线蜜桃| 国产一区二区在线观看日韩| a级毛片a级免费在线| 欧美成人一区二区免费高清观看| 午夜福利成人在线免费观看| h日本视频在线播放| 国产精品无大码| 噜噜噜噜噜久久久久久91| 高清毛片免费观看视频网站| 老女人水多毛片| 特级一级黄色大片| 99国产极品粉嫩在线观看| 亚洲精品粉嫩美女一区| 好男人在线观看高清免费视频| 国产在视频线在精品| 国产毛片a区久久久久| 欧美日韩在线观看h| 国产精品爽爽va在线观看网站| 99在线视频只有这里精品首页| 国产又黄又爽又无遮挡在线| 亚洲第一区二区三区不卡| eeuss影院久久| 一级毛片久久久久久久久女| 欧美3d第一页| 日韩,欧美,国产一区二区三区 | 亚洲av男天堂| 久久韩国三级中文字幕| 午夜久久久久精精品| 国产白丝娇喘喷水9色精品| 深夜a级毛片| 中国国产av一级| 欧美xxxx性猛交bbbb| 大又大粗又爽又黄少妇毛片口| 高清午夜精品一区二区三区 | 久久这里有精品视频免费| 变态另类成人亚洲欧美熟女| 91av网一区二区| 欧美一区二区亚洲| 久久精品国产99精品国产亚洲性色| 18+在线观看网站| 国产乱人视频| 久久人人爽人人爽人人片va| 一本久久中文字幕| 国产探花在线观看一区二区| 国产精品久久久久久亚洲av鲁大| 亚洲av一区综合| 国产亚洲欧美98| 日韩成人伦理影院| 2022亚洲国产成人精品| 综合色av麻豆| 国产视频内射| 国产成人一区二区在线| 18禁黄网站禁片免费观看直播| 国产黄色小视频在线观看| 日本黄色片子视频| 欧美不卡视频在线免费观看| 日日撸夜夜添| 国产精品一区www在线观看| 99久久精品一区二区三区| 91久久精品电影网| 美女xxoo啪啪120秒动态图| 秋霞在线观看毛片| 国产精品99久久久久久久久| 精品国产三级普通话版| 男插女下体视频免费在线播放| 天堂影院成人在线观看| 悠悠久久av| 国产av不卡久久| 精品一区二区三区视频在线| 亚洲性久久影院| 中文欧美无线码| 精品免费久久久久久久清纯| 99热这里只有精品一区| 亚洲电影在线观看av| 国产一区亚洲一区在线观看| 午夜激情欧美在线| 日本熟妇午夜| 久久精品国产亚洲av香蕉五月| 六月丁香七月| 99热精品在线国产| 欧美又色又爽又黄视频| 日本av手机在线免费观看| 国产v大片淫在线免费观看| 国产探花极品一区二区| 在线观看一区二区三区| 欧美在线一区亚洲| 精品久久久久久久久久免费视频| 蜜臀久久99精品久久宅男| 成人漫画全彩无遮挡| 亚洲成a人片在线一区二区| 伦精品一区二区三区| 91av网一区二区| 免费人成视频x8x8入口观看| 99久久成人亚洲精品观看| 99视频精品全部免费 在线| 日日撸夜夜添| 秋霞在线观看毛片| 婷婷精品国产亚洲av| 国产精品,欧美在线| 免费观看的影片在线观看| 亚洲在线观看片| 国产精品综合久久久久久久免费| 精品免费久久久久久久清纯| 国产亚洲av片在线观看秒播厂 | 国产精品久久久久久久久免| www.av在线官网国产| 草草在线视频免费看| 最后的刺客免费高清国语| 亚洲av成人精品一区久久| 一进一出抽搐gif免费好疼| 亚洲国产欧美人成| 嘟嘟电影网在线观看| 国产毛片a区久久久久| 精品一区二区免费观看| 久久午夜亚洲精品久久| 亚洲无线观看免费| 日日撸夜夜添| 国产人妻一区二区三区在| 人人妻人人看人人澡| 国产精品无大码| 亚洲精品影视一区二区三区av| 午夜久久久久精精品| 国内精品美女久久久久久| 精品久久国产蜜桃| 婷婷色av中文字幕| 全区人妻精品视频| 嫩草影院精品99| 嘟嘟电影网在线观看| .国产精品久久| 国产一区亚洲一区在线观看| 日本黄色片子视频| 全区人妻精品视频| 免费看美女性在线毛片视频| 一本精品99久久精品77| 久久热精品热| 免费观看人在逋| 国产精品永久免费网站| 国产爱豆传媒在线观看| av视频在线观看入口| 亚洲天堂国产精品一区在线| 我的老师免费观看完整版| a级毛片a级免费在线| 欧美成人精品欧美一级黄| 国产黄片美女视频| 亚洲熟妇中文字幕五十中出| 婷婷色av中文字幕| 欧美三级亚洲精品| 国产一区二区三区在线臀色熟女| 乱码一卡2卡4卡精品| 又粗又爽又猛毛片免费看| 国产黄色小视频在线观看| 国产乱人偷精品视频| 三级国产精品欧美在线观看| a级毛片a级免费在线| 中出人妻视频一区二区| 午夜福利在线观看免费完整高清在 | 18禁在线播放成人免费| 午夜久久久久精精品| 在线a可以看的网站| 男人舔女人下体高潮全视频| 麻豆av噜噜一区二区三区| 舔av片在线| 国产精品久久久久久av不卡| 三级毛片av免费| 内地一区二区视频在线| 又黄又爽又刺激的免费视频.| 久久久久久久久久成人| 女同久久另类99精品国产91| 91午夜精品亚洲一区二区三区| 99国产极品粉嫩在线观看| 久久精品久久久久久噜噜老黄 | ponron亚洲| 色噜噜av男人的天堂激情| 国产亚洲91精品色在线| 最近手机中文字幕大全| 国产精品久久久久久精品电影小说 | 亚洲电影在线观看av| 国产一区二区三区av在线 | 天堂网av新在线| 99视频精品全部免费 在线| 少妇人妻一区二区三区视频| 久久久久网色| 日韩国内少妇激情av| 日日撸夜夜添| 国产视频内射| 国产女主播在线喷水免费视频网站 | 国产精品久久久久久亚洲av鲁大| 毛片女人毛片| 亚洲国产精品合色在线| a级毛片a级免费在线| 久久精品国产亚洲av天美| 麻豆久久精品国产亚洲av| 久久综合国产亚洲精品| 青春草视频在线免费观看| 91av网一区二区| 一本一本综合久久| 免费无遮挡裸体视频| АⅤ资源中文在线天堂| 高清在线视频一区二区三区 | 五月伊人婷婷丁香| 亚洲成人久久爱视频| 免费无遮挡裸体视频| 男女边吃奶边做爰视频| 级片在线观看| 18禁黄网站禁片免费观看直播| 久久午夜亚洲精品久久| 日韩,欧美,国产一区二区三区 | 国产片特级美女逼逼视频| 国产成人freesex在线| 国产成人精品婷婷| 国内久久婷婷六月综合欲色啪| 亚洲激情五月婷婷啪啪| 给我免费播放毛片高清在线观看| 婷婷精品国产亚洲av| 欧美性猛交黑人性爽| 国内久久婷婷六月综合欲色啪| 91午夜精品亚洲一区二区三区| 亚洲精品影视一区二区三区av| 午夜免费男女啪啪视频观看| 国产精品一区二区三区四区久久| 99久久成人亚洲精品观看| 日产精品乱码卡一卡2卡三| 国产成人影院久久av| 在线播放无遮挡| 高清日韩中文字幕在线| 成熟少妇高潮喷水视频| 久久99精品国语久久久| 午夜爱爱视频在线播放| 国产熟女欧美一区二区| 舔av片在线| 国产在线精品亚洲第一网站| 日韩精品青青久久久久久| 日韩欧美精品免费久久| 国产亚洲精品av在线| 日日撸夜夜添| 欧美高清性xxxxhd video| 亚洲av中文av极速乱| 高清毛片免费观看视频网站| 国产探花极品一区二区| or卡值多少钱| 国产伦精品一区二区三区四那| 男女下面进入的视频免费午夜| 可以在线观看的亚洲视频| 三级经典国产精品| 欧美日韩乱码在线| 亚洲av中文字字幕乱码综合| av又黄又爽大尺度在线免费看 | 99国产精品一区二区蜜桃av| 少妇人妻精品综合一区二区 | 亚洲中文字幕一区二区三区有码在线看| 免费观看a级毛片全部| 免费电影在线观看免费观看| 亚洲国产欧洲综合997久久,| 九色成人免费人妻av| 精品免费久久久久久久清纯| 精品欧美国产一区二区三| 麻豆av噜噜一区二区三区| av在线老鸭窝| av.在线天堂| 久久久久久伊人网av| 亚洲aⅴ乱码一区二区在线播放| 国产精品伦人一区二区| 尾随美女入室| 2021天堂中文幕一二区在线观| 又粗又硬又长又爽又黄的视频 | 男女那种视频在线观看| 熟女电影av网| 热99在线观看视频| 能在线免费看毛片的网站| 秋霞在线观看毛片| 99精品在免费线老司机午夜| 搞女人的毛片| 欧美日韩精品成人综合77777| 国产人妻一区二区三区在| 国产老妇女一区| 综合色丁香网| 久久久久免费精品人妻一区二区| 亚洲精品国产成人久久av| 亚洲在线自拍视频| 久久久久久久久久黄片| 色尼玛亚洲综合影院| av在线观看视频网站免费| 久久午夜亚洲精品久久| 亚洲电影在线观看av| 日本av手机在线免费观看| 亚洲人成网站在线观看播放| 国产精品日韩av在线免费观看| 一本精品99久久精品77| 免费av毛片视频| 极品教师在线视频| 18禁黄网站禁片免费观看直播| 久久人人爽人人片av| 国内精品美女久久久久久| 亚洲欧美日韩卡通动漫| 久久久久国产网址| 国产黄片视频在线免费观看| 免费看光身美女| 我要看日韩黄色一级片| 赤兔流量卡办理| 又粗又硬又长又爽又黄的视频 | 看非洲黑人一级黄片| 麻豆精品久久久久久蜜桃| 欧美精品一区二区大全| 国产真实乱freesex| 美女脱内裤让男人舔精品视频 | 成人永久免费在线观看视频| 激情 狠狠 欧美| 国产av麻豆久久久久久久| 亚洲av免费在线观看| 亚洲国产精品久久男人天堂| 亚洲美女视频黄频| 别揉我奶头 嗯啊视频| 亚洲自拍偷在线| 亚洲人与动物交配视频| 日本免费一区二区三区高清不卡| 国产精品美女特级片免费视频播放器| 欧美+日韩+精品| 国产黄a三级三级三级人| 久久人妻av系列| 欧美bdsm另类| 免费看av在线观看网站| 91av网一区二区| 桃色一区二区三区在线观看| 日韩一本色道免费dvd| 精品欧美国产一区二区三| 亚洲中文字幕日韩| 亚洲最大成人手机在线| 永久网站在线| 最后的刺客免费高清国语| 亚洲av二区三区四区| 亚洲av第一区精品v没综合| 日韩成人伦理影院| 在线观看美女被高潮喷水网站| 在线国产一区二区在线| 淫秽高清视频在线观看| 午夜免费男女啪啪视频观看| 中国国产av一级| 国产精品人妻久久久久久| 国产精品三级大全| 小蜜桃在线观看免费完整版高清| 久久精品综合一区二区三区| 久久这里有精品视频免费| 久久人人爽人人爽人人片va| 美女被艹到高潮喷水动态| 亚洲18禁久久av| 日本一本二区三区精品| 国产高清视频在线观看网站| 一级毛片aaaaaa免费看小| 又粗又硬又长又爽又黄的视频 | 男女做爰动态图高潮gif福利片| 婷婷色av中文字幕| 少妇被粗大猛烈的视频| 国产91av在线免费观看| 搡女人真爽免费视频火全软件| 女的被弄到高潮叫床怎么办| www日本黄色视频网| 免费看av在线观看网站| 91aial.com中文字幕在线观看| 亚洲成a人片在线一区二区| 91午夜精品亚洲一区二区三区| 国产成人aa在线观看| 久久热精品热| 欧美色欧美亚洲另类二区| 亚洲精品自拍成人| 日本撒尿小便嘘嘘汇集6| ponron亚洲| 亚洲欧美中文字幕日韩二区| 国产精品一区二区性色av| 老司机影院成人| 欧美区成人在线视频| 国模一区二区三区四区视频| 成年女人看的毛片在线观看| 人妻少妇偷人精品九色| av天堂在线播放| 韩国av在线不卡| 久久99精品国语久久久| 如何舔出高潮| 日韩精品有码人妻一区| 在线播放国产精品三级| 久久久久久久久久黄片| 亚洲丝袜综合中文字幕| 欧美一区二区国产精品久久精品| 日日摸夜夜添夜夜添av毛片| 青青草视频在线视频观看| 国产精品99久久久久久久久| 久久6这里有精品| 国产探花极品一区二区| 男女视频在线观看网站免费| 精品不卡国产一区二区三区| 99久久精品国产国产毛片| 久久精品91蜜桃| 插阴视频在线观看视频| 亚洲一区二区三区色噜噜| 插阴视频在线观看视频| 国产精品一区二区性色av| 国产片特级美女逼逼视频| 在线观看66精品国产| 免费大片18禁| 老女人水多毛片| 亚洲人成网站在线播放欧美日韩| or卡值多少钱| 欧美一级a爱片免费观看看| 国产精品久久久久久久电影| 嫩草影院精品99| 国产视频内射| 国语自产精品视频在线第100页| 欧美一区二区国产精品久久精品| 中文字幕人妻熟人妻熟丝袜美| 草草在线视频免费看| 久久精品国产99精品国产亚洲性色| 又粗又爽又猛毛片免费看| 一区二区三区四区激情视频 | www日本黄色视频网| 在线免费观看不下载黄p国产| 三级国产精品欧美在线观看| 天美传媒精品一区二区| 又爽又黄a免费视频| 国内少妇人妻偷人精品xxx网站| 欧美一区二区亚洲| 男女那种视频在线观看| 一区二区三区高清视频在线| 一级二级三级毛片免费看| 午夜福利成人在线免费观看| 国产一级毛片七仙女欲春2| 一夜夜www| 少妇的逼水好多| 天堂√8在线中文| 亚洲欧美中文字幕日韩二区| 国产亚洲精品久久久com| 国产精品国产高清国产av| 久久久久久大精品| 国产高清三级在线| 亚洲成人中文字幕在线播放| 午夜福利视频1000在线观看| 久久这里有精品视频免费| 人人妻人人澡欧美一区二区| 麻豆av噜噜一区二区三区| 熟女电影av网| 夜夜爽天天搞| 大又大粗又爽又黄少妇毛片口| 久久精品国产自在天天线| 久久九九热精品免费| 欧美变态另类bdsm刘玥| 久久精品国产亚洲av香蕉五月| 午夜激情欧美在线| 全区人妻精品视频| 国产成人a∨麻豆精品| 久久精品国产亚洲av涩爱 | 国产精品久久电影中文字幕| 男的添女的下面高潮视频| 免费在线观看成人毛片| 日韩精品有码人妻一区| 黄色欧美视频在线观看| 国产精品女同一区二区软件| 国产黄片美女视频| 精品一区二区三区视频在线| 91aial.com中文字幕在线观看| 内地一区二区视频在线| 久久精品影院6| 久久亚洲国产成人精品v| 99国产精品一区二区蜜桃av| 国产成人精品久久久久久| 午夜激情欧美在线| 久久精品夜夜夜夜夜久久蜜豆| 一本精品99久久精品77| 欧美性猛交黑人性爽| 亚洲最大成人中文| 一本久久中文字幕| 午夜福利在线在线| 九九爱精品视频在线观看| 国产高清视频在线观看网站| 国产伦一二天堂av在线观看| 能在线免费看毛片的网站| ponron亚洲| 一级av片app| 久久99热这里只有精品18| 啦啦啦观看免费观看视频高清| 欧美性猛交╳xxx乱大交人| 三级经典国产精品| 欧美色视频一区免费| 神马国产精品三级电影在线观看| 麻豆av噜噜一区二区三区| 热99在线观看视频| 可以在线观看毛片的网站| 激情 狠狠 欧美| 久久久久久久久久久免费av| 男插女下体视频免费在线播放| 此物有八面人人有两片| 蜜桃亚洲精品一区二区三区| 国产精品,欧美在线| 国产成人午夜福利电影在线观看| 毛片一级片免费看久久久久| 国产一区二区在线观看日韩| 国产又黄又爽又无遮挡在线| 中文字幕熟女人妻在线| av天堂中文字幕网| 美女 人体艺术 gogo| av免费观看日本| 久久人妻av系列| 乱人视频在线观看| 99视频精品全部免费 在线| 午夜激情福利司机影院| 男女做爰动态图高潮gif福利片| 免费人成在线观看视频色| 亚洲av第一区精品v没综合| 亚洲国产高清在线一区二区三| 久久精品国产亚洲网站| 男女做爰动态图高潮gif福利片| 九九爱精品视频在线观看| 午夜a级毛片| 欧洲精品卡2卡3卡4卡5卡区| 国产精品av视频在线免费观看| 欧美高清性xxxxhd video| 国产蜜桃级精品一区二区三区| 乱码一卡2卡4卡精品| 国产一区二区三区在线臀色熟女| 一级黄色大片毛片| 日韩一区二区三区影片| av免费在线看不卡| 91狼人影院| 最近手机中文字幕大全| 熟女人妻精品中文字幕| 男女下面进入的视频免费午夜| 精品国内亚洲2022精品成人| 日日干狠狠操夜夜爽| 麻豆久久精品国产亚洲av| 99久国产av精品| 久久精品国产清高在天天线| 亚洲成av人片在线播放无| 嫩草影院入口| 男人舔奶头视频| 久久精品国产鲁丝片午夜精品| 久久精品综合一区二区三区| 免费av不卡在线播放| 99热6这里只有精品| 搡女人真爽免费视频火全软件| 成人午夜精彩视频在线观看| 免费人成视频x8x8入口观看| 日韩av不卡免费在线播放| 日本三级黄在线观看| 欧美一区二区国产精品久久精品| 免费av不卡在线播放| 99热全是精品| 国产精品免费一区二区三区在线| 成人永久免费在线观看视频| 日本欧美国产在线视频| 五月伊人婷婷丁香| 国产伦精品一区二区三区四那| 夜夜爽天天搞| 久久久午夜欧美精品| 国产大屁股一区二区在线视频| 嫩草影院精品99| 在线天堂最新版资源| 日本黄色片子视频| 国产高清视频在线观看网站| 日韩,欧美,国产一区二区三区 | 免费观看精品视频网站| 91久久精品国产一区二区成人| 日韩一本色道免费dvd| 在线播放国产精品三级| 18禁在线播放成人免费| 国产成人精品久久久久久| 老司机福利观看| 欧美一区二区国产精品久久精品| 小说图片视频综合网站| 99热这里只有是精品在线观看| 美女黄网站色视频| 不卡视频在线观看欧美| 国产真实乱freesex| 九九久久精品国产亚洲av麻豆| 欧美日本视频| 毛片女人毛片| 国产不卡一卡二| 麻豆一二三区av精品| 欧美成人一区二区免费高清观看| 村上凉子中文字幕在线| 联通29元200g的流量卡| 性插视频无遮挡在线免费观看| 男人舔奶头视频| 国产亚洲av片在线观看秒播厂 | 午夜福利在线在线| 国产精品麻豆人妻色哟哟久久 | av在线天堂中文字幕| 亚洲中文字幕日韩| 女的被弄到高潮叫床怎么办| 色综合站精品国产| 国产高清不卡午夜福利| 成人二区视频| 有码 亚洲区| 精品不卡国产一区二区三区| 一级av片app| 国产精品日韩av在线免费观看| 人体艺术视频欧美日本| 如何舔出高潮| a级毛片a级免费在线| 成年女人看的毛片在线观看| 欧美另类亚洲清纯唯美| 青春草亚洲视频在线观看| av在线蜜桃| 在线播放国产精品三级| 校园人妻丝袜中文字幕| 又粗又爽又猛毛片免费看| 久久久久久久亚洲中文字幕| 成人午夜高清在线视频| 国产极品天堂在线| 成人综合一区亚洲| 夜夜爽天天搞| 91aial.com中文字幕在线观看| 国产av麻豆久久久久久久| 久久久久九九精品影院| av国产免费在线观看|