• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Chiral splitting of Kondo peak in triangular triple quantum dot

    2022-05-16 07:11:18YiMingLiu劉一銘YuanDongWang王援東andJianHuaWei魏建華
    Chinese Physics B 2022年5期
    關(guān)鍵詞:建華

    Yi-Ming Liu(劉一銘) Yuan-Dong Wang(王援東) and Jian-Hua Wei(魏建華)

    1Department of Physics,Renmin University of China,Beijing 100872,China

    2School of Electronic,Electrical and Communication Engineering,University of Chinese Academy of Sciences,Beijing 100049,China

    Keywords: Kondo effect,quantum dot,chiral splitting

    1. Introduction

    As discussed by Berry,[1]the wave function acquires geometric phase, Berry’s phase, when it is adiabatically moves along a circuit in the Hamiltonian parament space. In metallic magnets, a complex factor occurs when electrons hop along the noncoplanar spin configurations, resulting in spin chirality.[2]The phase is the vector potential generated by electron spins,and corresponds to the Berry phase experienced by hopping electrons. Consider an electron hopping along a loop 1→2→3→1, the total phase acquired by the electron is the solid angle subtended by the three spinsSi(i=1,2,3)and is proportional to the spin chiralityS1·(S2×S3). Such a gauge flux acts as a fictitious magnetic field and affects the charge dynamics as the real magnetic field, which is an important physical phenomenon in strongly correlated electronic systems.[3–6]

    The Kondo effect[7]reflects the low energy many-body correlation of electrons, which describes the local moment screening of an isolated electron by the itinerant electrons via an antiferromagnetic interaction at low temperatures; which has been the core of theoretical and experimental investigations for several decades,[8]especially the experimentally observed Kondo effect in nanostructures[9–11]and theoretical studies in magnetic field.[12]Moreover, quantum dot devices are particularly suitable for studying the Kondo effect owing to the strong operability. Especially the triple quantumdot system, which present various Kondo effects depending on magnetic field,[13,14]electron fillingNtot,[15,16]quantum phase transition,[17–19]and low-energy electronic transport properties.[20–28]

    In a ring-like TTQD structure, spin chirality is induced by the noncoplanar spin configuration. Existing studies show spin chirality has been applied to quantum computation by spin cluster qubits[29,30]in TTQD system. In addition, the spin Berry phase has profound significance in gauge theory of strongly correlated electronic systems. For example, the anomalous Hall effect(AHE)observed in colossal magnetoresistance manganites is a manifestation of the Berry phase effect, which is caused by carrier hopping within a nontrivial spin background;[31]and the one that bias-induced chiral current in TTQD system.[32]This makes a difference by considering spin chirality as a new factor in TTQD system. Therefore,the spin chirality entangling with Kondo effect at low temperature is expected to induce nontrivial physical phenomenona.Insight by the above developments, we investigate the influence of spin charity on Kondo effect in TTQD system.

    The TTQDs structure comprise three triangularly configured and coupled quantum dots with one dot(defined as QD1)connected to one electron reservoir. Three quantum dots are coupled through tunneling strengthtwith single occupation on each dot(Fig.1). The Hamiltonian of TTQD is described by Anderson impurity model. In absence of external field and electron reservoir,the spin alignment is coplanar,so spin chirality is degenerate. The four-fold degenerate chiral states|q〉comprise the ground states of isolated TTQD. At same time,the Kondo screening occurs between QD1 and itinerant electrons of noninteracting electron reservoir via an antiferromagnetic interaction in the equilibrium state at low temperature. A corresponding Kondo peak appears aroundA1(ω=0)(Fig.2(b))in the spectral function of QD1,which is attributed to electrons tunneling between four-fold chiral ground states,one is induced by virtual processes of the excited state. As tunneling strengthtincreases, the Kondo peak splits into bimodal peaks with a split space of 3/2J(J~4t2/U),indicatingt-induced antiferromagnetic interactionJ. Analogous Kondo peak splitting caused by interdot tunnelingtin coupled double quantum dots.[33]Moreover,particle–hole asymmetry appears with increasing tunnelingt. We apply a perpendicular magnetic field to restore particle–hole symmetry of TTQD system.is seldom studied in TTQD system. Such innovation of the Kondo physics motivates us to study a triangular triple quantum dot (TTQD) as the simplest multiple QD system with a closed loop. This work indicates the phase factor under magnetic field introduces new features into low energy quantum transport in strong correlated systems and the numerical results provide a detailed understanding of physical characters for the implementation in experiment.

    Fig. 1. Geometry of TTQD. The electrons circle around TTQD structure,which generates two equivalent directions of chiral ring current. The sign(+)in black denotes the clockwise direction,(-)represents the anticlockwise direction. QD1 is connected to the electron reservoir by coupling strength Δ =0.5 meV and the same tunneling strength t between three dots to hold C3v symmetry. Chiral spin states for (a) |〉, (b) |q〉, (c)

    2. Model and methods

    Under perpendicular magnetic field, the virtual current moving around magnetic flux enclosed TTQD loop induces the Berry phase in real space, that is Aharonov–Bohm phase.[34]Existing results show perpendicular magnetic field splits the degeneracy of left- and right-hand chiral states|q±〉[32,35,36]in TTQD geometry. The chiral interaction induced by the magnetic flux forms a non-coplanar spin texture with spin chirality,leading to chiral splitting of the Kondo peak. The chiral splitting is contributed by the electron hopping between two chiral state pairs|q±〉, which is produced by phase (φ)-dependent chiral interaction coefficientχ. Numerical calculation results show there has a linear relationship between the space of splitting chiral Kondo peak and chiral interaction coefficientχ. Furthermore,when applied Zeeman magnetic fieldBas well as perpendicular magnetic field,chiral Kondo peaks split into four peaks owing toBlifts the degeneracy of spin freedom. Quantum fluctuations between both spin and chiral orbital degrees of freedom cause an exotic SU(4) Kondo effect at low temperatures, which manifests as four-peak splitting. A similar SU(4) Kondo effect has been reported in carbon nanotubes.[37,38]The influence of spin chirality on the Kondo effect indicates a core role of the phase factor in TTQD system. Some studies show the phase is a key factor effect on the bias-induced chiral current[32]as well as chirality-based coded qubit in TTQD,[30]while the spin chirality produced by phase further effect on the Kondo effect

    The HEOM approach investigates the properties of quantum dots in both equilibrium and non-equilibrium states via the reduced density operator, which has a universal formalism for an arbitrary system Hamiltonian; thus, it can be used to accurately solve the three-impurity Anderson model. The detailed derivation for the HEOM approach is shown in Appendix A and Refs.[39,40],and the final form can be reduced to the following compact form:

    The HEOM approach is established based on the Feynman–Vernon influence functional path-integral theory[41]and implemented with Grassmann algebra for fermion dissipations.[42]Basically, the HEOM approach is a nonperturbative method for general quantum systems coupled to reservoir that satisfies Grassmann Gaussian statistics.[42–44]Based on the linear response theory of quantum open systems,it can accurately and efficiently obtain a dynamical observable quantity of strongly correlated quantum impurity systems.[39]In practical calculations,we must minimize the computational expenditure while maintaining the quantitative accuracy. For this purpose, we usually impose a truncationLas the highest tier of the ADOs. This truncation decreases the number of EOMs to match the insufficient calculation capacity, without affecting the nonperturbation characteristic of HEOM. This truncationLis measured by the quantitative convergence atA(ω=0)when the Kondo effect is considered,usuallyL=4 for most physical cases. However, lower temperatures demand a higher truncation tier and more computing resources to achieved numerical convergence. In recent years,HEOM has been widely used to investigate the Kondo effect and transport properties under equilibrium and non-equilibrium conditions in quantum dot systems.[33,45–48]

    3. Results and discussion

    When perpendicular magnetic field applied, magnetic flux threads the TTQD structure,thet–J–χmodel can be derived by treatingtinHdotsperturbatively[32,49]

    In equilibrium state, the Kondo effect in absence of perpendicular magnetic field is similar to the Kondo peak splitting in double quantum dots;[33]which is a process ofJinduced Kondo splitting. Figure 2(a) shows the schematic diagram of the splitting of Kondo peak, which depicts the electron spin flip through virtual state; this is aided by the electron bath, from singlet to triplet. The lateral peaks (denoted as blue dotted line arrow) appear with an increase in tunneling(t)-dependent antiferromagnetic strengthJbetween quantum dots. Theoretically,the difference in eigenvalues between|Q〉and|q〉is 3J/2,J~4t2/U. Electron hopping between four-fold ground states|q〉and excited states|Q〉contributes to lateral peaks in Fig.2(b).The distance between two splitting Kondo peaks are linear with respect toJ[shown in Fig. 2(c)]. And electron hopping between four-fold degenerate states|q〉contributes to the prime Kondo peak, which is shown in Fig.2(b).

    Fig. 2. (a) Schematic diagram of J-induced Kondo peak splitting; electrons in two arbitrary quantum dots participate in the process of Kondo resonance through virtual state;the shadow part is the electron bath and σ =↑or ↓;T denotes the triplet;S is the singlet. (b)Spectral density functions A(ω)of QD1 with an increasing tunneling strength t without any magnetic field. A1(ω)=2A1↑(ω)=2A1↓(ω). The blue dotted line arrow points to lateral peaks,and δ/Δ is the distance between two lateral peaks. (c)The scatter combined with the line shows that the space of the two splitting Kondo peaks is exactly linear with respect to J,which is induced by the antiferromagnetic interaction J.

    Fig.3. (a)Schematic diagram of chiral splitting of Kondo peak. C+ denotes right-hand chiral states|〉/|〉, and C- denotes left-hand chiral states〉/|〉. The sign of clockwise and anticlockwise arrows corresponds to spin circling directions. (b)Spectral density functions A(ω)of QD1 with an increasing phase φ under a perpendicular magnetic field. A1(ω)=2A1↑(ω)=2A1↓(ω). The red dotted line arrow points to two splitting chiral Kondo peaks,the distance between them is ΔE/Δ. (c)The scatter combined with the line shows that the space of chiral Kondo splitting is exactly linear with respect to χ,which is as function of φ. The TTQD parameter is t=0.25 meV.

    When a perpendicular magnetic field is applied,a fluxφthreads the ring like TTQD structure; the correspond phaseφimpact on tunneling strengthtresults a chiral operator^S1·(^S2×^S3).The chiral operator splits the degeneracy of fourfold ground states into two pairs of chiral states,which are leftand right-hand chiral states. Figure 3(a) shows that the fourfold ground state|q〉splits into two chiral state pairs,which are denoted asC+(right-hand chiral states)andC-(left-hand chiral states); but remain the degeneracy of spin freedom. And the transition fromC-toC+through virtual state, attributes to splitting of chiral freedoms, i.e., chiral splitting of Kondo peak,which are denoted asC+(right-hand chiral states) andC-(left-hand chiral states);but remain the degeneracy of spin freedom. And the transition fromC-toC+through virtual state,attributes to splitting of chiral freedom,i.e.,chiral splitting of Kondo peak.

    Fig. 4. Spectral density functions A(ω) of QD1 with increasing Zeeman magnetic field B;A1(ω)=A1↑(ω)+A1↓(ω). We calculated at φ =π/2 under applied perpendicular magnetic field at t =0.25 meV. The black dotted arrows denote the splitting of spin freedom of Kondo peak, which induced by the Zeeman magnetic field B;the red dotted arrows denote chiral splitting of Kondo peak.

    Finally, when transverse magnetic fieldBapplied to the TTQD structure with phaseφ=π/2, the chiral Kondo peak still exists at small magnitudeB, as shown in Fig. 4; with an increase inB, the chiral Kondo peaks split into four peaks,which is shown inB=0.1727 T.Inter peak(denoted as black dotted line)splitting is induced byB,which means the splitting of spin freedoms of two degenerate chiral state pairs. Analogous situation is the SU(4) Kondo effect observed in carbon nanotubes;[37,38]but the magnetic moment of orbital in carbon nanotubes originate from the two equivalent ways in which electrons can circle around the graphene cylinder; while in TTQD structure, the orbitals stem from the chiral spin states caused by the many-body interactions; and the many-body spin states is closely related to superconductivity.[4]Additionally,the Kondo peak is broken into two peaks with an increase inBwithout a perpendicular field in Appendix B.

    4. Conclusion

    In summary, we investigate new characteristic of the Kondo effect caused by the spin chirality arising from the phase factor in the TTQD structure in the equilibrium state.Under a perpendicular magnetic field,a fluxφthreads TTQD,lifting the degeneracy of left-and right-hand chiral state pairs|q±〉. Moreover,the chiral splitting of Kondo peak(Fig.3(b))can be explained by electron hopping between two chiral state pairs. The particle–hole revive symmetry by adjusting magnitude of fluxφ=π/2. The numerical simulation results in agreement with analytical results(Fig.3(c)). Furthermore,the Zeeman magnetic fieldBlifts the spin freedom degeneracy of chiral state pairs, leading to splitting of four peaks(shown in Fig. 4) under perpendicular magnetic field conditions. This work indicates the phase factor plays a core role in introducing new features into Kondo effect in strong correlated systems and the numerical results provide a detailed understanding of physical characters for the implementation in experiment.

    Acknowledgments

    Computational resources have been provided by the Physical Laboratory of High Performance Computing at Renmin University of China. Project supported by the National Natural Science Foundation of China (Grant Nos. 11774418,11374363,and 21373191).

    Appendix A:HEOM approach

    The HEOM approach is established based on Feynman–Vernon influence functional path-integral theory[41]without any approximations, and implemented with Grassmann algebra for fermion dissipations.[42]Basically,the HEOM is a nonperturbative method for general quantum systems coupled to reservoir baths those satisfy Grassmann Gaussian statistics.The reduced density matrix and a set of auxiliary density matrices are the basic variables in HEOM. Basing on the linear response theory of quantum open systems,the HEOM can obtain dynamical observables of strongly correlated quantum impurity systems accurately and efficiently.[39]In recent years,the HEOM approach has been widely used to investigate the Kondo effect and transport properties under equilibrium and non-equilibrium conditions in quantum dots.[33,46,47,50–52,54]

    Comments on the HEOM approach

    The main advantages are as follows: (i) the HEOM approach adopts a general form of the system Hamiltonian. It is applicable to a wide range of system parameters without additional derivation and programming efforts. The different transport processes can be handled in a unified manner and the transient dynamics can be studied readily;(ii)the HEOM approach is nonperturbative. It treats quantum impurity systems from the perspective of open dissipative dynamics. In principle, the HEOM formalism is formally accurate for noninteracting electron reservoirs. It also resolves non-perturbatively the combined effects of electron–electron (e–e) interactions;(iii) in HEOM all the system-bath correlations are taken into consideration. It is capable of characterizing both static and transient electronic properties of strongly correlated systems;and(iv)the HEOM is a high-accuracy numerical approach. It has the ability to achieve the same level of accuracy as the the numerical renormalization group(NRG)and quantum Monte Carlo approaches.

    The disadvantages for HEOM approach are mainly shown as follows: (i) it can only deal with the case of finite temperatures, while the zero temperature is inaccessible; (ii) a higher truncation level is necessary to ensure numerical convergence at an extreme low temperature,this leading to a rapid growth of the required computational resources;(iii)the computation cost increases dramatically as the degree of system increases. For example, we can not reach the problem that a quintuple-impurity Anderson model with strong e–e interactions at present.

    As a successful application, the HEOM approach has been proved to be capable of quantitatively describing the essential signatures of Kondo physics[33,39,46,48]and achieving the accuracy of the NRG approach.Currently for a typical Anderson model,the HEOM approach reaches quantitatively accuracy for temperatureT ≥0.1TK(Kondo temperature). Here,we show the benchmark scaling character and spectral features of the Kondo effect in single-impurity Anderson model(SIAM). Figure A1 indicates the HEOM results exhibit the correct scaling behavior by Kondo temperatureTK. By referring to the calculated dI/dVversusT/TKas depicted in Fig.A1,the universal scaling is clearly manifested atT <TKandΔ ?U ?W(whereΔis the hybrid function andWis the band width of itinerant electrons). It is clear at low temperature(T <TK),no matter of our parameters,the results of differential conductance fall on one line,which characters the Kondo effect.For unscaledT,we draw it in the inset(for more details,please refer to Ref.[39]).

    Fig.A1. The dI/dV calculated by HEOM vs. T/TK for symmetric SIAM.The inset depicts dI/dV vs. unscaled T.

    Figure A2 depicts the calculatedA(ω) of a symmetric SIAM,from weak(U=0.5πΔ)to strong(U=6πΔ)e–e interactions. For comparison,we also show results obtained by using the full density matrix NRG method,where a self-energy scheme is employed, and the results are averaged over 8 different logarithmic discretization. Apparently, the two sets of curves agree quantitatively at all values ofUstudied. In the weak(U=0.5 and 1.0πΔ)and intermediate(U=3πΔ)interaction regimes, HEOM and NRG curves almost overlap with each other;while in the strong(U=6πΔ)interaction regime minor deviation is observed in the height of Hubbard peaks(for more details,please refer to Ref.[39]).

    As aforementioned, the HEOM approach has been applied to investigate the Kondo effect in different QD structures. For example, Yeet al.applied it onto two-level QDs with Kondo correlations, providing an understanding of, and a viable mechanism for controlling,the thermoelectric properties of strongly correlated QD systems.[53]In coupled double QDs,Liet al.studied the Kondo-peak splitting and resonance enhancement caused by inter-dot tunneling;[33]Chenget al.investigated transport properties in the real-time domain;[54]and Panet al.studied the Kondo effect in the context of ferromagnetic RKKY interaction.[55]Recently, in open triple QDs,Chenget al.investigated the reappearance of the Kondo effect[45]and long-range overlapping of Kondo clouds.[48]

    Fig. A2. Comparison between A(ω) of symmetric SIAM calculated by HEOM and NRG methods. The parameters adopted are T =0.2 and W =50(in units of Δ). The inset shows the imaginary part of interaction self-energy calculated from HEOM at energy close to ω =0.

    Appendix B: Some supplementary information about the physical image

    Figure B1 depicts the spectral density functionsA1↑(ω)in the absence of external magnetic field with the increase of tunneling strengtht. The spectral density functions is shifting left with the increasingt,which means the electron–hole is asymmetry. And we can recover the symmetry of electron–hole by applied a perpendicular magnetic field to the TTQD structure.We adjust the flux atφ=π/2 with the increasing tunneling strengthtin the right part of Fig. B1, and the electron–hole recover to symmetry.

    Fig.B1. (a)The A1↑(ω)as function of ω with the increase of t; and A1(ω)=2A1↑(ω)=2A1↓(ω). (b)The A1↑(ω)calculated by HEOM versus ω/Δ with the flux φ =π/2.

    Fig.B2.(a)Theχand ΔE asfunctionofφin twoperiods.The dottedline inreddenotesthetheoreticaldeduceχ andthelineinblack isthenumerical computationΔE[we set2/ΔE forsimplifciation]. (b)TheA1↑(ω)asfunctionofω/Δwith the increaseofflux φ;A1(ω)=2A1↑(ω)=2A1↓(ω).We calculate at t=0.25 meV.

    The left part of Fig. B2 depicts the comparison for the numerical computation and theoretical deduce about distance between two lateral peaks[in Fig.3(b)of the main text],which as function of the fluxφwith a perpendicular magnetic field.The periodic variation of the curve with the fluxφis adjustable; the difference between two curves derives from the non-perturbation computing method. And the right part of Fig.B2 depicts the spectral density functionsA1↑(ω)with the increase of fluxφin half period when applied perpendicular magnetic field to the TTQD structure. The lateral peaks is expanding with the increase of flux; and the distance between two lateral peaks is linear fitting well with the equationχ~24t3sin(φ)/U2.

    Figure B3 depicts the spectral density functionsA(ω)of QD1 with the increasing Zeeman magnetic fieldBin the absence of perpendicular magnetic field.With the increase of the Zeeman magnetic fieldB,the spectral density functions splits into two peaks, from Kondo resonance peak [in the Fig. 2(b)of main text],which means the splitting of spin freedom.

    Fig.B3.The influence of Zeeman magnetic field without perpendicular field.A1(ω)as function of ω/Δ with the increase of Zeeman magnetic field B.

    猜你喜歡
    建華
    倒立奇奇
    故事作文·低年級(jí)(2018年11期)2018-11-19 17:25:58
    托尼逃跑
    米沙在書里
    可怕的事
    哈比的愿望
    100歲的貝其
    變變變
    阿嗚想做貓
    快樂的秘密
    91精品伊人久久大香线蕉| 老师上课跳d突然被开到最大视频| 国产精品偷伦视频观看了| 国产黄频视频在线观看| 久久久久视频综合| 亚洲av电影在线观看一区二区三区| 亚洲综合色惰| 国产真实伦视频高清在线观看| 国产黄频视频在线观看| 久久久久视频综合| 天天躁日日操中文字幕| 中文乱码字字幕精品一区二区三区| 日韩成人av中文字幕在线观看| 亚洲精品乱久久久久久| 国产精品偷伦视频观看了| 国产精品一区二区三区四区免费观看| 欧美xxxx性猛交bbbb| 菩萨蛮人人尽说江南好唐韦庄| 成人亚洲精品一区在线观看 | 欧美日本视频| 丰满少妇做爰视频| 日日啪夜夜撸| 80岁老熟妇乱子伦牲交| 国产成人免费无遮挡视频| 精品人妻偷拍中文字幕| 极品少妇高潮喷水抽搐| 99久久综合免费| 国产精品久久久久久久久免| 精品久久久精品久久久| 午夜福利影视在线免费观看| videossex国产| 一边亲一边摸免费视频| 各种免费的搞黄视频| 国产精品av视频在线免费观看| 视频区图区小说| 久久99热这里只有精品18| 精品一区在线观看国产| 国产精品久久久久久av不卡| 97超视频在线观看视频| 蜜臀久久99精品久久宅男| 欧美区成人在线视频| 亚洲久久久国产精品| 在线播放无遮挡| 午夜免费观看性视频| 国产成人a区在线观看| 亚洲国产最新在线播放| 亚洲自偷自拍三级| 国产成人免费观看mmmm| 色婷婷av一区二区三区视频| 国产精品一及| 久久精品国产自在天天线| 黄片wwwwww| 日韩人妻高清精品专区| 久久久久精品久久久久真实原创| 欧美一区二区亚洲| 国产精品嫩草影院av在线观看| 下体分泌物呈黄色| 亚洲三级黄色毛片| 91狼人影院| 制服丝袜香蕉在线| 亚洲美女黄色视频免费看| 97超视频在线观看视频| 国产精品一区二区在线不卡| 久久久久网色| 涩涩av久久男人的天堂| 亚洲中文av在线| 亚洲一区二区三区欧美精品| 久久人人爽人人爽人人片va| 亚洲综合精品二区| 久久久久久久大尺度免费视频| 大又大粗又爽又黄少妇毛片口| 性高湖久久久久久久久免费观看| 亚洲色图av天堂| 高清黄色对白视频在线免费看 | 自拍欧美九色日韩亚洲蝌蚪91 | 又黄又爽又刺激的免费视频.| 色网站视频免费| 亚洲怡红院男人天堂| 少妇猛男粗大的猛烈进出视频| 精品99又大又爽又粗少妇毛片| 免费大片黄手机在线观看| 欧美日韩精品成人综合77777| 色视频在线一区二区三区| 久热久热在线精品观看| 波野结衣二区三区在线| 2018国产大陆天天弄谢| 国产乱来视频区| 91精品一卡2卡3卡4卡| 婷婷色麻豆天堂久久| 亚洲精品国产色婷婷电影| 国产中年淑女户外野战色| av视频免费观看在线观看| freevideosex欧美| 偷拍熟女少妇极品色| 男人狂女人下面高潮的视频| 欧美激情极品国产一区二区三区 | 精品久久久噜噜| 人妻夜夜爽99麻豆av| 免费久久久久久久精品成人欧美视频 | 啦啦啦视频在线资源免费观看| 欧美日韩亚洲高清精品| 在线天堂最新版资源| 亚洲精品乱久久久久久| 国产乱来视频区| 精品少妇黑人巨大在线播放| 国产真实伦视频高清在线观看| av国产精品久久久久影院| 纯流量卡能插随身wifi吗| 亚洲中文av在线| 一区二区av电影网| 国产老妇伦熟女老妇高清| 国产欧美日韩精品一区二区| 边亲边吃奶的免费视频| 在线观看美女被高潮喷水网站| 麻豆精品久久久久久蜜桃| 国产精品99久久久久久久久| 久久久成人免费电影| 18禁裸乳无遮挡免费网站照片| 国产高清三级在线| 国产乱人视频| 亚洲欧美日韩卡通动漫| tube8黄色片| 久久人妻熟女aⅴ| 中文精品一卡2卡3卡4更新| 高清不卡的av网站| 成人综合一区亚洲| 国产 一区精品| 国产av国产精品国产| 香蕉精品网在线| 国产伦精品一区二区三区四那| 国产女主播在线喷水免费视频网站| 欧美精品国产亚洲| 国产中年淑女户外野战色| 亚洲精品一二三| 蜜臀久久99精品久久宅男| 久久久久人妻精品一区果冻| 国产精品久久久久久精品古装| 亚洲av成人精品一区久久| 亚洲在久久综合| 欧美三级亚洲精品| 久久99蜜桃精品久久| 深爱激情五月婷婷| 六月丁香七月| 少妇人妻精品综合一区二区| 尤物成人国产欧美一区二区三区| 熟女av电影| 色网站视频免费| 蜜臀久久99精品久久宅男| 一本色道久久久久久精品综合| 色视频在线一区二区三区| 毛片女人毛片| 男人狂女人下面高潮的视频| 中文在线观看免费www的网站| 亚洲精华国产精华液的使用体验| 久久婷婷青草| 伦精品一区二区三区| 亚洲成色77777| 国产精品国产三级专区第一集| 七月丁香在线播放| 日本爱情动作片www.在线观看| 亚洲国产色片| 亚洲人成网站在线播| 午夜免费观看性视频| 精品国产一区二区三区久久久樱花 | 国产毛片在线视频| 免费观看av网站的网址| 观看av在线不卡| 久久久精品94久久精品| 热99国产精品久久久久久7| 老师上课跳d突然被开到最大视频| 亚洲av日韩在线播放| 男女国产视频网站| 成年av动漫网址| 九九在线视频观看精品| 我要看日韩黄色一级片| 高清在线视频一区二区三区| 亚洲精品久久久久久婷婷小说| 国产黄片视频在线免费观看| 久久精品熟女亚洲av麻豆精品| 国产精品国产三级专区第一集| 久久 成人 亚洲| 精品亚洲成国产av| 中文字幕av成人在线电影| 亚洲精品国产成人久久av| 下体分泌物呈黄色| 久久精品国产a三级三级三级| 久久午夜福利片| 国产一级毛片在线| 精品一品国产午夜福利视频| 亚洲av日韩在线播放| 九色成人免费人妻av| 黄色视频在线播放观看不卡| 国产免费又黄又爽又色| 九九在线视频观看精品| 国产成人91sexporn| 天天躁日日操中文字幕| 国产在线一区二区三区精| 最近中文字幕2019免费版| 我的女老师完整版在线观看| 一区二区三区乱码不卡18| 国产 一区 欧美 日韩| 欧美激情极品国产一区二区三区 | 在线观看免费日韩欧美大片 | 大又大粗又爽又黄少妇毛片口| 国产高潮美女av| 国产精品无大码| 综合色丁香网| 国产片特级美女逼逼视频| 99热这里只有是精品50| 久久人妻熟女aⅴ| 国产男人的电影天堂91| 亚洲四区av| 久久精品国产a三级三级三级| 人人妻人人澡人人爽人人夜夜| 亚洲激情五月婷婷啪啪| 国产色婷婷99| 亚洲成人手机| 国产精品一区www在线观看| 高清在线视频一区二区三区| 亚洲av中文字字幕乱码综合| 欧美激情国产日韩精品一区| 亚洲国产高清在线一区二区三| 最近最新中文字幕免费大全7| 97热精品久久久久久| av黄色大香蕉| 日本黄色日本黄色录像| 午夜福利高清视频| 亚洲国产欧美人成| 国产综合精华液| 免费看日本二区| 精品一区二区三卡| 国产成人精品福利久久| 日本wwww免费看| 成人无遮挡网站| 欧美高清性xxxxhd video| 久久鲁丝午夜福利片| 亚洲av中文av极速乱| 日韩三级伦理在线观看| 插阴视频在线观看视频| 国产乱人偷精品视频| 在线精品无人区一区二区三 | 啦啦啦中文免费视频观看日本| 久热久热在线精品观看| 一级毛片aaaaaa免费看小| 免费黄色在线免费观看| 亚洲人成网站在线播| 久久鲁丝午夜福利片| 99热国产这里只有精品6| 日本色播在线视频| 人人妻人人添人人爽欧美一区卜 | 在线免费观看不下载黄p国产| 男女无遮挡免费网站观看| 1000部很黄的大片| 国产精品欧美亚洲77777| 最近2019中文字幕mv第一页| 青春草视频在线免费观看| 两个人的视频大全免费| 欧美另类一区| 人妻系列 视频| 18+在线观看网站| 午夜福利在线在线| 在线观看美女被高潮喷水网站| 特大巨黑吊av在线直播| 久久国产精品大桥未久av | 久久久国产一区二区| 亚洲中文av在线| 国产极品天堂在线| 搡老乐熟女国产| 成人特级av手机在线观看| 色婷婷久久久亚洲欧美| 九九爱精品视频在线观看| 成人免费观看视频高清| 欧美日韩精品成人综合77777| 黄色怎么调成土黄色| 少妇熟女欧美另类| 十八禁网站网址无遮挡 | 国产v大片淫在线免费观看| 国产成人午夜福利电影在线观看| 大陆偷拍与自拍| 精品午夜福利在线看| 简卡轻食公司| 久久这里有精品视频免费| 亚洲精品视频女| 亚洲精品久久午夜乱码| 久久久久久久久久久丰满| 在线观看免费日韩欧美大片 | 免费大片18禁| 久久久精品免费免费高清| av播播在线观看一区| 在线观看三级黄色| 秋霞伦理黄片| 熟女电影av网| 日本wwww免费看| 大片免费播放器 马上看| tube8黄色片| 纵有疾风起免费观看全集完整版| 欧美另类一区| 国产精品伦人一区二区| 黑丝袜美女国产一区| 免费播放大片免费观看视频在线观看| 免费看av在线观看网站| 日产精品乱码卡一卡2卡三| 在现免费观看毛片| 一级毛片黄色毛片免费观看视频| 亚洲高清免费不卡视频| 亚洲在久久综合| 久久久精品94久久精品| 精品久久久噜噜| 99热网站在线观看| 国产在线一区二区三区精| 亚洲天堂av无毛| 少妇人妻精品综合一区二区| 国产乱人视频| 下体分泌物呈黄色| 身体一侧抽搐| 亚洲va在线va天堂va国产| 五月开心婷婷网| 观看美女的网站| 精品视频人人做人人爽| 亚洲av.av天堂| 国产精品久久久久久精品古装| 久久精品人妻少妇| 丝袜脚勾引网站| 久久久久久久久久人人人人人人| 超碰av人人做人人爽久久| 人妻 亚洲 视频| 啦啦啦在线观看免费高清www| 亚洲精品国产av蜜桃| 亚洲精品,欧美精品| 久久久久精品性色| 寂寞人妻少妇视频99o| 男男h啪啪无遮挡| 伦精品一区二区三区| 国产亚洲最大av| 欧美一级a爱片免费观看看| 日韩中字成人| 一级黄片播放器| 亚洲婷婷狠狠爱综合网| 亚洲精品国产av蜜桃| 亚洲欧美一区二区三区黑人 | 波野结衣二区三区在线| 免费不卡的大黄色大毛片视频在线观看| 国语对白做爰xxxⅹ性视频网站| 不卡视频在线观看欧美| 国产亚洲欧美精品永久| 性色av一级| 国产欧美亚洲国产| 日产精品乱码卡一卡2卡三| 久久韩国三级中文字幕| 尤物成人国产欧美一区二区三区| 久久女婷五月综合色啪小说| 亚洲内射少妇av| 久久久久久久国产电影| 亚洲在久久综合| 97超视频在线观看视频| 最近手机中文字幕大全| 老熟女久久久| 日韩av不卡免费在线播放| 日韩成人av中文字幕在线观看| 在线免费观看不下载黄p国产| 欧美老熟妇乱子伦牲交| 亚洲精品久久久久久婷婷小说| 久久综合国产亚洲精品| 丝袜脚勾引网站| 欧美日本视频| 2022亚洲国产成人精品| 国产免费视频播放在线视频| 黄色欧美视频在线观看| 午夜福利高清视频| 美女xxoo啪啪120秒动态图| 亚洲不卡免费看| 国产黄色免费在线视频| 久久 成人 亚洲| 亚洲国产成人一精品久久久| 日韩,欧美,国产一区二区三区| 国产一区二区三区av在线| 久久综合国产亚洲精品| av在线app专区| 国产一区二区三区综合在线观看 | 亚洲精品国产av成人精品| 日韩成人伦理影院| 亚洲精品日韩av片在线观看| 免费观看的影片在线观看| 少妇精品久久久久久久| 日韩欧美一区视频在线观看 | 免费观看在线日韩| 成人国产麻豆网| 丰满迷人的少妇在线观看| 国产精品99久久99久久久不卡 | 国产成人一区二区在线| 精品人妻视频免费看| av一本久久久久| 国产在线一区二区三区精| 国产午夜精品一二区理论片| 国产精品国产三级专区第一集| 久久 成人 亚洲| 国产av一区二区精品久久 | 能在线免费看毛片的网站| 亚洲性久久影院| 美女主播在线视频| 国内精品宾馆在线| 尾随美女入室| 久久久亚洲精品成人影院| 亚洲内射少妇av| 在线亚洲精品国产二区图片欧美 | 一级黄片播放器| 国产欧美亚洲国产| 中文精品一卡2卡3卡4更新| 日本一二三区视频观看| 中文字幕人妻熟人妻熟丝袜美| 日韩一本色道免费dvd| 啦啦啦视频在线资源免费观看| 欧美97在线视频| 久久久成人免费电影| 亚洲欧美日韩另类电影网站 | 五月伊人婷婷丁香| 美女福利国产在线 | 伦理电影大哥的女人| 久久人人爽人人爽人人片va| 嫩草影院入口| a级一级毛片免费在线观看| 日本午夜av视频| 亚洲va在线va天堂va国产| kizo精华| 少妇人妻一区二区三区视频| 青青草视频在线视频观看| 99热这里只有精品一区| 久久精品人妻少妇| 能在线免费看毛片的网站| 国产高清三级在线| 草草在线视频免费看| 18禁裸乳无遮挡免费网站照片| 国产 一区 欧美 日韩| 欧美最新免费一区二区三区| 我的女老师完整版在线观看| 人妻少妇偷人精品九色| 久久女婷五月综合色啪小说| 国产精品爽爽va在线观看网站| 男人狂女人下面高潮的视频| 欧美激情极品国产一区二区三区 | 免费不卡的大黄色大毛片视频在线观看| 纵有疾风起免费观看全集完整版| 国产高清有码在线观看视频| 国产成人a区在线观看| 日韩不卡一区二区三区视频在线| 欧美3d第一页| 成年美女黄网站色视频大全免费 | 国产成人精品福利久久| 久久韩国三级中文字幕| 天堂中文最新版在线下载| 国产精品一区www在线观看| 蜜臀久久99精品久久宅男| 香蕉精品网在线| 亚洲怡红院男人天堂| 久久精品国产亚洲av天美| 亚洲av男天堂| 80岁老熟妇乱子伦牲交| 久久99热这里只频精品6学生| 伦理电影大哥的女人| 日韩欧美精品免费久久| 高清黄色对白视频在线免费看 | 久热这里只有精品99| 亚洲精品国产成人久久av| 久久精品国产亚洲av涩爱| 亚洲,一卡二卡三卡| 波野结衣二区三区在线| 在线免费十八禁| 久久99精品国语久久久| 高清毛片免费看| 色婷婷av一区二区三区视频| 日韩视频在线欧美| 成人漫画全彩无遮挡| 欧美+日韩+精品| av国产精品久久久久影院| 精品国产一区二区三区久久久樱花 | 国产成人aa在线观看| 久久久亚洲精品成人影院| 秋霞在线观看毛片| 在线观看一区二区三区| 精品久久久噜噜| 搡老乐熟女国产| 色综合色国产| 国产精品久久久久成人av| 久久久亚洲精品成人影院| 国产精品久久久久久精品古装| 久久99热这里只有精品18| 亚洲三级黄色毛片| 成人国产av品久久久| 国产老妇伦熟女老妇高清| 蜜臀久久99精品久久宅男| 国产91av在线免费观看| 国产成人免费观看mmmm| 欧美97在线视频| 偷拍熟女少妇极品色| 女人久久www免费人成看片| 日本欧美国产在线视频| 在线天堂最新版资源| 久久精品夜色国产| 精品久久久久久久久亚洲| 国产高清三级在线| 亚洲av电影在线观看一区二区三区| 久久久欧美国产精品| 国产成人免费无遮挡视频| 亚洲电影在线观看av| 欧美xxxx性猛交bbbb| 亚洲美女黄色视频免费看| av黄色大香蕉| 国产精品免费大片| 人妻制服诱惑在线中文字幕| 久久久色成人| 久久99蜜桃精品久久| 精品人妻一区二区三区麻豆| 伦理电影免费视频| 国产精品一区二区在线观看99| 丝袜脚勾引网站| 国产精品福利在线免费观看| videos熟女内射| 91久久精品国产一区二区三区| 国产成人freesex在线| 久久国内精品自在自线图片| 91久久精品电影网| 欧美极品一区二区三区四区| 国产国拍精品亚洲av在线观看| 中国美白少妇内射xxxbb| 国产成人免费无遮挡视频| 成人毛片60女人毛片免费| 久久精品久久久久久久性| 免费播放大片免费观看视频在线观看| 成人一区二区视频在线观看| 久久6这里有精品| 免费av不卡在线播放| 久久久久精品性色| 少妇丰满av| 青春草视频在线免费观看| 久久99热这里只频精品6学生| .国产精品久久| 美女cb高潮喷水在线观看| 国产黄频视频在线观看| 国产色爽女视频免费观看| 国产视频首页在线观看| 成人亚洲欧美一区二区av| 51国产日韩欧美| 看非洲黑人一级黄片| 日韩电影二区| 久久 成人 亚洲| 亚洲av欧美aⅴ国产| 狠狠精品人妻久久久久久综合| 精品午夜福利在线看| 不卡视频在线观看欧美| 亚洲精品日本国产第一区| 婷婷色综合大香蕉| 一级毛片aaaaaa免费看小| 欧美zozozo另类| 纵有疾风起免费观看全集完整版| 在线亚洲精品国产二区图片欧美 | 日本wwww免费看| 少妇的逼水好多| 国模一区二区三区四区视频| 边亲边吃奶的免费视频| 内地一区二区视频在线| 国产亚洲午夜精品一区二区久久| h日本视频在线播放| 日韩 亚洲 欧美在线| 日韩中字成人| 成人美女网站在线观看视频| 在线观看国产h片| 国产高清不卡午夜福利| 久久99热6这里只有精品| 各种免费的搞黄视频| 色5月婷婷丁香| 99久国产av精品国产电影| 深夜a级毛片| 精品亚洲乱码少妇综合久久| 成人漫画全彩无遮挡| 天堂中文最新版在线下载| 香蕉精品网在线| 亚洲欧洲日产国产| 黑丝袜美女国产一区| 成年免费大片在线观看| 在线观看三级黄色| 色综合色国产| 亚洲精品成人av观看孕妇| 中国三级夫妇交换| 日本黄色日本黄色录像| 乱系列少妇在线播放| 精品一区二区免费观看| 91精品一卡2卡3卡4卡| 国产精品久久久久成人av| 免费观看a级毛片全部| 成人综合一区亚洲| 毛片一级片免费看久久久久| 男女免费视频国产| 色视频www国产| 又粗又硬又长又爽又黄的视频| 国产精品.久久久| 丝袜脚勾引网站| 亚洲综合色惰| 国产探花极品一区二区| 在现免费观看毛片| 亚洲欧美成人综合另类久久久| 久久这里有精品视频免费| 欧美日韩国产mv在线观看视频 | 精品人妻一区二区三区麻豆| 亚洲一级一片aⅴ在线观看| 国产av一区二区精品久久 | 亚洲在久久综合| 人妻少妇偷人精品九色| www.色视频.com| 久久精品国产亚洲av涩爱| 国产美女午夜福利| 菩萨蛮人人尽说江南好唐韦庄| kizo精华| 老司机影院成人| 菩萨蛮人人尽说江南好唐韦庄| 欧美日本视频|