• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Maximum entropy mobility spectrum analysis for the type-I Weyl semimetal TaAs

    2022-05-16 07:11:16WenChongLi李文充LingXiaoZhao趙凌霄HaiJunZhao趙海軍GenFuChen陳根富andZhiXiangShi施智祥
    Chinese Physics B 2022年5期
    關鍵詞:海軍

    Wen-Chong Li(李文充) Ling-Xiao Zhao(趙凌霄) Hai-Jun Zhao(趙海軍)Gen-Fu Chen(陳根富) and Zhi-Xiang Shi(施智祥)

    1School of Physics and Key Laboratory of MEMS of the Ministry of Education,Southeast University,Nanjing 211189,China

    2Beijing National Laboratory for Condensed Matter Physics,and Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    Keywords: Weyl semimetal,mobility spectrum analysis,magnetoresistance,electrical transportation

    1. Introduction

    Studying new quantum materials such as topological insulators, Dirac materials and Weyl semimetals (WSMs) is of great importance in condensed matter physics because of their abundant physical properties and application potentials.[1–5]For WSMs,according to whether the Weyl cone is tilted,they can be divided into two categories: type-I and type-II.Recent first-principles calculations predicted a family of nonmagnetic WSM including TaAs,TaP,NbAs,and NbP.[6–11]Large magnetoresistance(MR)and low field Shubnikov–de Haas(SdH)oscillation were predicted.[8]These unique electronic structures and peculiar physical properties suggest that the WSM shows interesting physics and has potential future applications.

    First-principles calculation predicted that TaAs is a type-I WSM with data-like W1 pockets and dot-like W2 pockets.[7]Ultrahigh mobility (μe≈18 m2·V-1·s-1at 10 K) and extremely large positive MR (80000% at 1.8 K in a field of 9 T)were discovered.[7]Surprisingly,negative MR is observed when the magnetic field is parallel to the current. Moreover,unlike ordinary metals or semiconductors,the SdH oscillations can be observed at a very low field. Detailed analysis indicates that there are two types of carrier in TaAs,in agreement with first-principles calculations.[6–8]However, how to quantitatively analyze the conducting behaviors of different types of fermions and how to study their evolution with temperature and magnetic field are still open questions,which may give answers to many interesting experimental observations including unsaturated MR and low field SdH oscillation.

    Mobility spectrum analysis (MSA)[12–16]is a useful tool for extracting carrier information from experimentally measured longitudinal and transverse electric transport curves. It has previously been used for Ba(FeAs)2and FeSe superconductors[17,18]and type-II Weyl semimetals Td-MoTe2.[19]Recently, maximum entropy mobility spectrum analysis(MEMSA)has been used forβ-PtBi2.[20]Compared with other methods, MEMSA has higher resolution, and can perfectly fit the MR and Hall resistance data. In this paper,we use MEMSA to analyze the experimentally measured MR and Hall resistance of TaAs, from which mobility spectrum(MS)is obtained. MSA successfully distinguishes between the conductivity contributions of two different Weyl fermions (W1 and W2) at all experimentally measured temperatures. Our results give important clues for understanding the large and non-saturating MR in a TaAs single crystal.

    2. Method

    Within MS theory, the conductivity tensor is given by[14–18,20]

    Here,s(μ)=eμdn/duis the mobility spectrum,n(μ)is the density for carriers with mobilityμ. Equations(1)and(2)can be solved numerically using MEMSA. Details of the method can be found in Refs.[15,20].

    3. Results and discussion

    3.1. Mobility spectrum of TaAs

    The MS of TaAs for temperaturesT=1.8 K,10 K,40 K,80 K, 100 K, and 120 K are shown in Figs. 1(a)–1(f), respectively. The corresponding fitting curves to experimentally measured magnetic conductivityσxx(B)/σxx(0)and Hall conductivityσxy(B)/σxx(0) are shown in Figs. 2(a) and 2(b). It is clear that MS nicely fits the experimental data, benefitting from the MEMSA method.

    We now compare our MS results with reported firstprinciples calculations. According to Ref.[7],the band structure of TaAs contains a data-like Weyl pocket (W1) 21 meV below the Fermi surface, and a dot-like Weyl pocket (W2)about 2 meV above the Fermi surface. Therefore, the dominant carrier is the electron for W1, and is the hole for W2.At low temperatures (T <40 K), our MS also contains two dominant pockets: one electron pocket and one hole pocket(see Figs. 1(a)–1(c)). Therefore, we mark the big electron peak witheW1,and the big hole peak withhW2. Holes for W1 and electrons for W2,in principle,can be thermally activated.There are two small peaks on our MS at low temperatureT,which grow big after increasingT. Therefore,they very likely originate from W1 and W2(we mark them withhW1andeW2,respectively). Other carriers coming from ordinary pockets should have mobilities that are smaller than that of the best normal metal conductors(e.g.,μ ≈0.6 m2·V-1·s-1for silver at 5 K[21]). No such peak with small mobilities is observed in our MS curves,indicating that conductivity contributions from ordinary pockets are too small to be detected by transport measurement.

    The MS is sensitive to temperature. In general, with increasing temperatureT, the number of peaks remains unchanged forT >120 K (see Figs. 1(a)–1(f)). However, peak positions(corresponding to mobilities)as well as heights(corresponding to charge densities),greatly vary with temperature.For peak positions, as shown in Figs. 1(a)–1(f), almost all peaks move toward the low mobility direction(i.e.,mobilities decrease)as temperature increases. However, the mobility ofeW1decreases faster than that ofhW2.

    As a result,gradually,the mobility ofhW2approaches that ofeW1,and the MS becomes symmetric. For peak heights,the peaks ofeW1andhW2decrease with increasing temperature,whereas those ofeW2andhW1increase. At high temperatures(T >40 K),the height of all four peaks is equal.

    Fig.1. The MS of TaAs displayed in semi-logarithmic scale for temperature of(a)1.8 K,(b)10 K,(c)40 K,(d)80 K,(e)100 K,and(f)120 K.

    Fig.2. Normalized experimental magnetic conductivity(a)σxx(B)/σxx(0)and(b)Hall conductivity σxy(B)/σxx(0)at 1.8 K,10 K,40 K,80 K,100 K,and 120 K(dots),and its MEMSA fitting(solid lines).

    3.2. Temperature dependence of mobility,carrier density,and conductivity contributions

    To further explore the temperature dependence of MS,we calculate the mobilities, carrier densities, and conductivity contributions from MS and present them in Figs.3(a)–3(c).

    The mobilities for each type of carriers are calculated by taking the peak values. At the lowest temperatureT=1.8 K, for W1 fermions,eW1has a very high mobility(μeW1= 13.44 m2·V-1·s-1), which is close to the mobilities of Dirac fermions in Dirac materials such as graphene(μ=20 m2·V-1·s-1), and is slightly smaller than the value estimated by SdH oscillation (μ= 18 m2·V-1·s-1).[7]The mobility ofhW1is lower (μhW1=1.64 m2·V-1·s-1), but it is still much larger than the mobility of carriers in silver, and is close to Dirac-like fermions in PtBi2.[20]For W2 fermions,the mobility ofhW2μhW2=6.39 m2·V-1·s-1, which is about half ofμeW1, whereas that ofeW2,μeW2=1.36 m2·V-1·s-1,which is comparable toμhW1. When changing the temperature, as shown in Fig. 3(a), low mobility fermions, i.e.,μeW2andμhW1, are almost temperature independent. For high mobility fermions,i.e.,μeW1andμhW2,on the contrary,in general,the mobility decreases significantly with increasing temperature, except thatμhW2increases slightly atT=10 K.The decrease of mobilities for W2 is probably due to increased thermal scattering.μeW1decreases faster thanμhW2forT <80 K,butμeW1≈μhW2forT >80 K, which is consistent with the symmetric MS shown in Figs.1(d)–1(f).

    In Fig. 3(b), we show carrier densities as a function of temperature. Carrier densities for mobilityμ ∈[a,b] can be calculated by

    By takingaandbto be the lower and upper boundary of a specific peak,this integral gives its carrier density. ForT <40 K,the carrier densities of big peaks,i.e.,neW1foreW1andnhW2forhW2, are almost independent of temperature, and their values are 2 orders less than many other reported large magnetoresistance topological materials,such as pyrite PtBi2,[20]WTe2[22]and LaSb,[23]but are similar to Cr3As2.[24]The charge densities for the two small peaks(neW2foreW2andnhW1forhW1)are 1 order smaller.

    Fig.3. (a)The temperature dependence of mobilities μ,(b)carrier densities n,(c)RCC at zero field γ.

    Table 1. Summery of carrier information: contribution to the conductivity γ,average mobility μ,and change concentration n.

    3.3. Field dependence of the conductivity contribution

    To analyze the ultra-high MR of TaAs, we calculate the field dependence ofσxxfor each peak by substitutings(μ)of each peak back to Eq. (1). ForμB ?1,σxx∝(μB)-2≈0.Therefore, the initially dominated high mobility carriers will be localized after increasing field,while the localization of the low mobility carriers is weak. As a result, low mobility carriers become dominant. This behavior leads to a crossover of the conductivity contribution as a function of field for different bands. If an initially hole-dominated conductivity becomes electron-dominated at a high field(vice versa),the Hall conductivity sign changes. For complex MS,the sign change can even appear more than once. If ultra-high mobility carriers dominate the conductivity(e.g.,our TaAs sample at low temperature), even a very low field is capable of localizing the conducting carriers, thus, greatly decreasing conductivity, causing a field-induced conductor to insulator transition(CIT),[25–28]and generating extremely large MR.

    For TaAs, the conductivities of each type of carriers as a function of field are shown in Fig. 4. AtT=1.8 K, the ultra-high mobility ofeW1causes a very fast localization. As shown in Fig.4(a),the crossover of the conductivity contribution ofeW1, andhW2appears at a field as low asB=0.12 T(see the intersection ofσxxforeW2andhW2). This illustrates that the dominant carrier is the electron-like W1 fermion whenB >0.12 T,but it is the hole-like W2 fermion whenB >0.12 T.Therefore,the Hall conductivity sign changes. For a high field limit,σxx(B)≈[σxx(0)μ-2]B-2=KB-2, whereKis a parameter that determines dominant carriers at high field. Therefore, due to the extremely lowσxx(0) of thermal-activated fermions, theirKvalue is always smaller than that of the preexisting fermionseW1andhW2. Therefore, the thermalactivated fermions always have a lower contribution to the conductor for various fields.

    Fig.4. (a)The conductivity contributions vary with the magnetic field for T =1.8 K(a),and T =80 K(b),respectively.

    At 80 K, as was discussed previously, the mobility and density of the electron equals that of the hole for both W1 and W2. Therefore, theσxx(B) of the electron always overlaps with the hole(see Fig.4(b)),so we cannot easily identify the dominant carrier between the electron-like and hole-like carriers. However, compared with the low temperature case,the conductivity for thermal-activated fermions is greatly enhanced. Due to their low mobilities, theirKvalues become larger than those of preexisting fermions. Therefore,an intersection ofσxx(B)for thermal-activated fermions and preexisting fermions appears (atB=0.5 T), indicating that the preexisting fermion-dominated conductivity becomes thermalactivated-fermion dominant whenB >0.5 T.

    4. Conclusion

    In summary,we use MEMSA to study the carrier properties of the type-I Weyl semimetal TaAs by fitting the experimentally measured longitudinal and transverse electric transport curves. At low temperature, we discovered four peaks:two big peaks and two small peaks(each containing one electron peak and one hole peak). Upon increasing the temperature, the two small peaks grow, showing that they are thermal-activated fermions. By comparing with reported firstprinciples results,the following peaks are identified: big electron peak and the small hole peak correspond to Weyl-I and the other two correspond to Weyl-II.Further quantitative calculation of mobility,carrier density,and RCC for varying temperatures shows that at low temperatures, the two dominant peaks have very high mobilities,which decrease with increasing temperature, whereas the carrier densities are insensitive to temperature change untilT >40 K. However, the carrier densities of the two small peaks quickly increase with temperature,indicating that they are thermal-activated fermions. The increased carrier density also increases their RCC.Our results explain the Hall sign change phenomenon,and shows the origin of non-saturating magnetoresistance.

    Acknowledgment

    Project supported by the National Natural Science Foundation of China (Grant Nos. 11674054, U1932217, and 11704067).

    猜你喜歡
    海軍
    曉褐蜻
    綠色天府(2022年6期)2022-07-14 11:59:42
    Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
    我的海軍之夢
    軍事文摘(2020年22期)2021-01-04 02:17:24
    相信愛
    海軍行動
    封面人物·楊海軍
    新聞愛好者(2016年3期)2016-12-01 06:04:24
    海軍協(xié)議1
    New Approach to Calculate the Unavailability of Identical Spares in Cold Spare Configuration
    近代中國海軍的早期教育
    軍事歷史(1993年3期)1993-08-21 06:16:06
    清末海軍一次引人注目的軍艦出訪
    軍事歷史(1992年6期)1992-08-15 06:25:16
    精品少妇久久久久久888优播| 12—13女人毛片做爰片一| 少妇粗大呻吟视频| 日韩精品免费视频一区二区三区| 欧美日韩亚洲综合一区二区三区_| 如日韩欧美国产精品一区二区三区| 久久久国产一区二区| 精品一区二区三区av网在线观看| 一本综合久久免费| 黑人巨大精品欧美一区二区蜜桃| 亚洲熟妇中文字幕五十中出 | a在线观看视频网站| 高清黄色对白视频在线免费看| 亚洲av第一区精品v没综合| 久9热在线精品视频| 正在播放国产对白刺激| 亚洲一区二区三区不卡视频| 亚洲成人免费av在线播放| 大香蕉久久网| 三级毛片av免费| 国产成人av激情在线播放| 一二三四在线观看免费中文在| 国产日韩欧美亚洲二区| 久久国产精品大桥未久av| 国产av又大| 正在播放国产对白刺激| 日本黄色视频三级网站网址 | 免费在线观看日本一区| 国产99白浆流出| 另类亚洲欧美激情| 欧美精品人与动牲交sv欧美| 色综合欧美亚洲国产小说| 精品国产国语对白av| ponron亚洲| 日韩欧美三级三区| 18在线观看网站| 精品熟女少妇八av免费久了| 亚洲第一av免费看| 曰老女人黄片| 免费一级毛片在线播放高清视频 | 国产有黄有色有爽视频| 日韩欧美三级三区| 国产一区在线观看成人免费| 亚洲国产看品久久| 男女之事视频高清在线观看| www.精华液| 久久久久国产精品人妻aⅴ院 | 高清在线国产一区| 国产精品1区2区在线观看. | 欧美黄色淫秽网站| 精品卡一卡二卡四卡免费| 精品一区二区三区视频在线观看免费 | 亚洲国产欧美网| 精品少妇一区二区三区视频日本电影| 欧美精品高潮呻吟av久久| 午夜福利免费观看在线| 国产97色在线日韩免费| 在线观看舔阴道视频| 18禁观看日本| 成在线人永久免费视频| 精品久久蜜臀av无| 中文字幕av电影在线播放| 亚洲精品国产区一区二| 亚洲精品粉嫩美女一区| 国产极品粉嫩免费观看在线| 午夜91福利影院| 日韩制服丝袜自拍偷拍| 女人久久www免费人成看片| 国产欧美日韩一区二区精品| 亚洲av片天天在线观看| 少妇粗大呻吟视频| 十八禁网站免费在线| 一边摸一边抽搐一进一小说 | 岛国毛片在线播放| 国产成人欧美在线观看 | 色精品久久人妻99蜜桃| 欧美久久黑人一区二区| 一进一出抽搐gif免费好疼 | 夜夜夜夜夜久久久久| 欧美人与性动交α欧美软件| 国产真人三级小视频在线观看| 黄色视频,在线免费观看| 日本撒尿小便嘘嘘汇集6| av国产精品久久久久影院| 黄色成人免费大全| 免费在线观看完整版高清| 亚洲精品自拍成人| 国产精品一区二区免费欧美| 日韩制服丝袜自拍偷拍| 国产精品av久久久久免费| 久久久久久亚洲精品国产蜜桃av| 老熟妇乱子伦视频在线观看| 国产91精品成人一区二区三区| 久久久久国内视频| 人人澡人人妻人| 999久久久精品免费观看国产| 午夜福利,免费看| 国产精品偷伦视频观看了| 亚洲情色 制服丝袜| 成人特级黄色片久久久久久久| 美女高潮喷水抽搐中文字幕| 成人手机av| 精品久久久久久久久久免费视频 | 午夜影院日韩av| 国产有黄有色有爽视频| 国产精品永久免费网站| 国产亚洲一区二区精品| 亚洲av日韩精品久久久久久密| 日韩有码中文字幕| 亚洲专区字幕在线| 亚洲片人在线观看| 欧美乱妇无乱码| 亚洲欧美日韩高清在线视频| 一边摸一边抽搐一进一出视频| 在线国产一区二区在线| 国产成+人综合+亚洲专区| 亚洲精品久久午夜乱码| 国产高清videossex| 看免费av毛片| www日本在线高清视频| 亚洲全国av大片| 午夜免费观看网址| 国产精品av久久久久免费| 国产色视频综合| 美女扒开内裤让男人捅视频| 一区二区三区国产精品乱码| 亚洲成人免费电影在线观看| 国产日韩欧美亚洲二区| 欧美黄色片欧美黄色片| 欧美乱色亚洲激情| 曰老女人黄片| 午夜影院日韩av| a级片在线免费高清观看视频| 91av网站免费观看| 亚洲国产中文字幕在线视频| 久久久久久人人人人人| 狠狠婷婷综合久久久久久88av| 大码成人一级视频| 老熟妇乱子伦视频在线观看| 黄色视频不卡| 中文字幕色久视频| 国产亚洲一区二区精品| 国产精品av久久久久免费| 亚洲第一欧美日韩一区二区三区| 亚洲欧美精品综合一区二区三区| 99国产精品免费福利视频| tocl精华| 国产成人免费无遮挡视频| 国产深夜福利视频在线观看| 母亲3免费完整高清在线观看| 亚洲精品国产色婷婷电影| 国产无遮挡羞羞视频在线观看| 国产亚洲欧美在线一区二区| av片东京热男人的天堂| 建设人人有责人人尽责人人享有的| 亚洲精品美女久久av网站| 日韩一卡2卡3卡4卡2021年| 不卡av一区二区三区| 日韩欧美一区视频在线观看| 亚洲熟女精品中文字幕| 中文字幕精品免费在线观看视频| 亚洲精品一二三| 99香蕉大伊视频| 亚洲国产欧美网| 亚洲国产精品sss在线观看 | 欧美日韩福利视频一区二区| 亚洲国产欧美网| 天天影视国产精品| 丝袜人妻中文字幕| 亚洲av成人一区二区三| 啦啦啦免费观看视频1| 丝袜人妻中文字幕| 女人爽到高潮嗷嗷叫在线视频| 亚洲国产精品sss在线观看 | 两人在一起打扑克的视频| 久久久久国产精品人妻aⅴ院 | 精品卡一卡二卡四卡免费| 国产野战对白在线观看| 啪啪无遮挡十八禁网站| 午夜免费鲁丝| 村上凉子中文字幕在线| 国产精品成人在线| 国产亚洲精品一区二区www | 日日夜夜操网爽| 婷婷精品国产亚洲av在线 | 精品国产亚洲在线| 午夜福利免费观看在线| 成人18禁在线播放| 老熟女久久久| 这个男人来自地球电影免费观看| 美女福利国产在线| 国产成人系列免费观看| 久9热在线精品视频| 亚洲av片天天在线观看| 欧美激情 高清一区二区三区| 国产精品美女特级片免费视频播放器 | 免费不卡黄色视频| 天堂俺去俺来也www色官网| 国产男女超爽视频在线观看| 黑人猛操日本美女一级片| 建设人人有责人人尽责人人享有的| 黄色视频不卡| 大码成人一级视频| 999久久久国产精品视频| 中文字幕人妻丝袜制服| 亚洲精品av麻豆狂野| 精品一区二区三卡| 精品无人区乱码1区二区| 757午夜福利合集在线观看| 欧美黑人欧美精品刺激| 免费在线观看亚洲国产| 亚洲专区国产一区二区| 国产精品一区二区在线观看99| 可以免费在线观看a视频的电影网站| 中文亚洲av片在线观看爽 | 下体分泌物呈黄色| 欧美黑人欧美精品刺激| 久久草成人影院| 亚洲熟女毛片儿| 色94色欧美一区二区| 亚洲国产中文字幕在线视频| 久久精品国产a三级三级三级| av网站免费在线观看视频| 精品国产乱子伦一区二区三区| 波多野结衣av一区二区av| 桃红色精品国产亚洲av| av电影中文网址| 欧美激情 高清一区二区三区| 亚洲免费av在线视频| 午夜两性在线视频| 国产精品久久久久久人妻精品电影| 欧美最黄视频在线播放免费 | 亚洲久久久国产精品| 国产精品亚洲av一区麻豆| 激情视频va一区二区三区| 性色av乱码一区二区三区2| 久久热在线av| 国产免费av片在线观看野外av| 日本撒尿小便嘘嘘汇集6| 日本黄色视频三级网站网址 | 国产无遮挡羞羞视频在线观看| 男女之事视频高清在线观看| 亚洲av成人一区二区三| 国产午夜精品久久久久久| 色尼玛亚洲综合影院| 国产日韩欧美亚洲二区| 热99re8久久精品国产| 少妇 在线观看| 精品国产一区二区三区久久久樱花| 最近最新中文字幕大全电影3 | 亚洲人成伊人成综合网2020| 超碰97精品在线观看| 男女免费视频国产| 91在线观看av| 国产免费现黄频在线看| 精品少妇久久久久久888优播| 一区福利在线观看| 婷婷丁香在线五月| 国产精品影院久久| 51午夜福利影视在线观看| 99精品久久久久人妻精品| 精品国内亚洲2022精品成人 | 成人亚洲精品一区在线观看| 亚洲成a人片在线一区二区| 黑人操中国人逼视频| 欧美精品高潮呻吟av久久| 欧美精品人与动牲交sv欧美| 美女 人体艺术 gogo| 黑人猛操日本美女一级片| a级片在线免费高清观看视频| 免费女性裸体啪啪无遮挡网站| 国产精品久久电影中文字幕 | 99国产精品免费福利视频| 久9热在线精品视频| 色综合婷婷激情| 亚洲精品在线观看二区| 天堂中文最新版在线下载| 法律面前人人平等表现在哪些方面| 国产视频一区二区在线看| 日本精品一区二区三区蜜桃| 欧美乱妇无乱码| 色播在线永久视频| 亚洲国产看品久久| 成人手机av| 欧美日韩国产mv在线观看视频| 国产淫语在线视频| 桃红色精品国产亚洲av| 精品国内亚洲2022精品成人 | 欧美一级毛片孕妇| 国产野战对白在线观看| 国产亚洲欧美98| 久久久久久人人人人人| 午夜精品久久久久久毛片777| 水蜜桃什么品种好| av网站免费在线观看视频| 中文字幕精品免费在线观看视频| 国内毛片毛片毛片毛片毛片| 好看av亚洲va欧美ⅴa在| 亚洲精品国产精品久久久不卡| 国产aⅴ精品一区二区三区波| 在线观看免费视频网站a站| 99热网站在线观看| 国产日韩欧美亚洲二区| 夜夜夜夜夜久久久久| 91字幕亚洲| 欧美日韩视频精品一区| 欧美日韩黄片免| 亚洲精华国产精华精| 不卡av一区二区三区| 免费高清在线观看日韩| 热re99久久国产66热| 在线天堂中文资源库| 两个人看的免费小视频| 美女高潮喷水抽搐中文字幕| 精品久久久久久久久久免费视频 | 视频区欧美日本亚洲| 黑人欧美特级aaaaaa片| 黄片小视频在线播放| 午夜成年电影在线免费观看| 美女午夜性视频免费| 在线av久久热| 国产日韩欧美亚洲二区| 亚洲欧美激情综合另类| 人人妻,人人澡人人爽秒播| 69精品国产乱码久久久| 亚洲三区欧美一区| 久久性视频一级片| 999精品在线视频| 18在线观看网站| 一级a爱视频在线免费观看| 精品免费久久久久久久清纯 | 又大又爽又粗| 麻豆乱淫一区二区| 一区二区三区精品91| 亚洲五月色婷婷综合| 亚洲av欧美aⅴ国产| 黑人操中国人逼视频| 欧美日韩中文字幕国产精品一区二区三区 | 视频区欧美日本亚洲| 国精品久久久久久国模美| 午夜福利,免费看| 欧美大码av| 丰满的人妻完整版| 国产精品一区二区在线不卡| 亚洲精品一二三| 国产人伦9x9x在线观看| 热99久久久久精品小说推荐| 成人18禁在线播放| 宅男免费午夜| 50天的宝宝边吃奶边哭怎么回事| 国产一区二区三区综合在线观看| 99精品在免费线老司机午夜| 国产欧美亚洲国产| 看黄色毛片网站| av有码第一页| netflix在线观看网站| 午夜福利免费观看在线| 精品国产国语对白av| 国产成人精品在线电影| 一本综合久久免费| 狠狠狠狠99中文字幕| 色婷婷久久久亚洲欧美| 免费人成视频x8x8入口观看| 一二三四在线观看免费中文在| 亚洲国产欧美一区二区综合| 国产亚洲精品久久久久久毛片 | 好男人电影高清在线观看| 18禁黄网站禁片午夜丰满| 精品电影一区二区在线| 极品人妻少妇av视频| 亚洲精品在线观看二区| 狂野欧美激情性xxxx| 一级a爱片免费观看的视频| 成年女人毛片免费观看观看9 | 国产成人av教育| 欧美+亚洲+日韩+国产| 国产国语露脸激情在线看| 好男人电影高清在线观看| 国产成人一区二区三区免费视频网站| 亚洲精品在线观看二区| 亚洲精品乱久久久久久| 一区福利在线观看| 久久午夜综合久久蜜桃| 国产欧美日韩精品亚洲av| 50天的宝宝边吃奶边哭怎么回事| 国产一区二区激情短视频| 国产激情欧美一区二区| 成人亚洲精品一区在线观看| 一本大道久久a久久精品| 日韩欧美免费精品| 成年版毛片免费区| 久久亚洲真实| 高清欧美精品videossex| 亚洲精品美女久久av网站| 国产精品电影一区二区三区 | 国产精品欧美亚洲77777| 日本欧美视频一区| 在线播放国产精品三级| 天堂动漫精品| 国产成人精品久久二区二区免费| 狠狠婷婷综合久久久久久88av| 免费日韩欧美在线观看| 一级,二级,三级黄色视频| 一边摸一边做爽爽视频免费| 久久香蕉激情| 十八禁高潮呻吟视频| 国产亚洲欧美98| 巨乳人妻的诱惑在线观看| 亚洲国产中文字幕在线视频| 午夜福利,免费看| 精品国内亚洲2022精品成人 | 人人澡人人妻人| 啦啦啦 在线观看视频| 少妇猛男粗大的猛烈进出视频| 久久国产精品大桥未久av| 又黄又粗又硬又大视频| 中文字幕人妻丝袜制服| 欧美精品亚洲一区二区| 在线观看免费日韩欧美大片| 91字幕亚洲| 亚洲免费av在线视频| 欧美在线黄色| 亚洲欧洲精品一区二区精品久久久| 欧美黄色片欧美黄色片| 美女福利国产在线| 51午夜福利影视在线观看| 国产精品99久久99久久久不卡| 高清毛片免费观看视频网站 | 欧美av亚洲av综合av国产av| 免费av中文字幕在线| 欧美激情 高清一区二区三区| 精品国内亚洲2022精品成人 | 一级毛片女人18水好多| 大陆偷拍与自拍| 国产精品乱码一区二三区的特点 | 性色av乱码一区二区三区2| 手机成人av网站| 欧美日韩成人在线一区二区| av天堂在线播放| 国产午夜精品久久久久久| 久久久久精品国产欧美久久久| 在线观看一区二区三区激情| bbb黄色大片| 身体一侧抽搐| 欧美精品人与动牲交sv欧美| 女人爽到高潮嗷嗷叫在线视频| 日韩三级视频一区二区三区| 免费观看精品视频网站| 捣出白浆h1v1| av一本久久久久| 亚洲视频免费观看视频| 9色porny在线观看| 亚洲,欧美精品.| 人妻丰满熟妇av一区二区三区 | 波多野结衣一区麻豆| 国产成人欧美| 欧美在线一区亚洲| 又黄又爽又免费观看的视频| 中文字幕另类日韩欧美亚洲嫩草| 中文字幕av电影在线播放| 搡老岳熟女国产| av片东京热男人的天堂| 日韩免费av在线播放| 久久九九热精品免费| 亚洲精品成人av观看孕妇| 久久精品国产亚洲av高清一级| 国产亚洲精品一区二区www | 色综合婷婷激情| 美女高潮到喷水免费观看| 久久热在线av| 18禁国产床啪视频网站| 免费av中文字幕在线| avwww免费| 亚洲第一欧美日韩一区二区三区| 人人妻,人人澡人人爽秒播| 人人妻人人澡人人看| 国产欧美日韩一区二区三区在线| 国产av又大| 国产精品久久久久久精品古装| 国产色视频综合| 在线观看www视频免费| 黄色片一级片一级黄色片| 啦啦啦免费观看视频1| 久久国产精品人妻蜜桃| 视频区欧美日本亚洲| 欧美激情久久久久久爽电影 | 欧美激情高清一区二区三区| 侵犯人妻中文字幕一二三四区| 欧美人与性动交α欧美精品济南到| 村上凉子中文字幕在线| 国产人伦9x9x在线观看| 国产免费现黄频在线看| 亚洲色图av天堂| 国产熟女午夜一区二区三区| 日韩成人在线观看一区二区三区| 在线播放国产精品三级| 久久久国产精品麻豆| 曰老女人黄片| 亚洲一卡2卡3卡4卡5卡精品中文| 色在线成人网| 丰满迷人的少妇在线观看| 国产成人精品在线电影| 欧美精品亚洲一区二区| 国产极品粉嫩免费观看在线| 国产精品香港三级国产av潘金莲| 脱女人内裤的视频| 中文字幕人妻丝袜制服| 在线观看www视频免费| 亚洲成a人片在线一区二区| 他把我摸到了高潮在线观看| 国产成人精品久久二区二区免费| 国产精品 国内视频| 三上悠亚av全集在线观看| 成人三级做爰电影| 国产一区二区三区综合在线观看| 日韩免费高清中文字幕av| 亚洲人成电影观看| 十八禁高潮呻吟视频| 欧美精品av麻豆av| 成人免费观看视频高清| 欧美日韩精品网址| bbb黄色大片| 久久精品aⅴ一区二区三区四区| 一级毛片精品| 久久久久久久久久久久大奶| 男人舔女人的私密视频| 免费av中文字幕在线| 久久久国产精品麻豆| 国产精品98久久久久久宅男小说| 99热国产这里只有精品6| 国产精品香港三级国产av潘金莲| 啦啦啦在线免费观看视频4| 国产成人精品久久二区二区91| 久久婷婷成人综合色麻豆| 欧美一级毛片孕妇| 在线天堂中文资源库| 老司机亚洲免费影院| 麻豆国产av国片精品| 欧美在线黄色| 啦啦啦视频在线资源免费观看| 满18在线观看网站| 纯流量卡能插随身wifi吗| 成熟少妇高潮喷水视频| 国产一区二区三区综合在线观看| 美女国产高潮福利片在线看| 日本一区二区免费在线视频| 国产av一区二区精品久久| 久久国产亚洲av麻豆专区| 电影成人av| 韩国精品一区二区三区| 亚洲精品国产色婷婷电影| 大陆偷拍与自拍| 天堂俺去俺来也www色官网| 亚洲精品乱久久久久久| 捣出白浆h1v1| 精品福利观看| 极品人妻少妇av视频| 国产精品国产av在线观看| 韩国av一区二区三区四区| av超薄肉色丝袜交足视频| 久久精品国产a三级三级三级| 久久ye,这里只有精品| 国内毛片毛片毛片毛片毛片| 欧美亚洲日本最大视频资源| 亚洲精品国产一区二区精华液| 女性生殖器流出的白浆| 国产视频一区二区在线看| 十分钟在线观看高清视频www| 人人妻人人爽人人添夜夜欢视频| 老司机亚洲免费影院| 操出白浆在线播放| 日韩欧美一区视频在线观看| 欧美日韩国产mv在线观看视频| 国产精华一区二区三区| 久久国产精品男人的天堂亚洲| 亚洲精品av麻豆狂野| 中亚洲国语对白在线视频| 精品亚洲成a人片在线观看| 久久热在线av| 亚洲一码二码三码区别大吗| 成人国产一区最新在线观看| 搡老乐熟女国产| 一夜夜www| 亚洲全国av大片| 搡老乐熟女国产| 18禁美女被吸乳视频| 每晚都被弄得嗷嗷叫到高潮| 国产激情久久老熟女| 天天添夜夜摸| 国产一区二区三区视频了| 国产激情久久老熟女| 黄色视频,在线免费观看| 身体一侧抽搐| 国产精品永久免费网站| 少妇裸体淫交视频免费看高清 | 99re在线观看精品视频| 亚洲中文日韩欧美视频| 嫁个100分男人电影在线观看| 巨乳人妻的诱惑在线观看| 男男h啪啪无遮挡| 男人的好看免费观看在线视频 | 交换朋友夫妻互换小说| 乱人伦中国视频| 高潮久久久久久久久久久不卡| 久久久久久久久久久久大奶| 国产亚洲精品第一综合不卡| 人人妻人人添人人爽欧美一区卜| a级毛片在线看网站| 日韩成人在线观看一区二区三区| 啦啦啦视频在线资源免费观看| 欧美亚洲 丝袜 人妻 在线| 国产在线观看jvid| 中文字幕高清在线视频| 欧美成狂野欧美在线观看| 久热这里只有精品99|