邱一蕾,吳帆,張莉,李紅亮
亞致死劑量吡蟲啉對(duì)中華蜜蜂神經(jīng)代謝基因表達(dá)的影響
邱一蕾,吳帆,張莉,李紅亮*
中國(guó)計(jì)量大學(xué)生命科學(xué)學(xué)院/生物計(jì)量及檢驗(yàn)檢疫技術(shù)浙江省重點(diǎn)實(shí)驗(yàn)室,杭州 310018
【背景】新煙堿類殺蟲劑的作用靶標(biāo)是昆蟲神經(jīng)系統(tǒng)中的乙酰膽堿受體,由于其良好的內(nèi)吸性及對(duì)人畜低毒性,使其在農(nóng)業(yè)生產(chǎn)上獲得了廣泛應(yīng)用,然而這也使得其在植物體內(nèi)仍然具有較低的殘留,而這種亞致死劑量殘留仍可對(duì)訪花昆蟲如蜜蜂的行為和神經(jīng)系統(tǒng)造成不利影響?!灸康摹棵鞔_亞致死劑量新煙堿類殺蟲劑吡蟲啉對(duì)中華蜜蜂(,簡(jiǎn)稱中蜂)神經(jīng)生理和代謝系統(tǒng)的影響。【方法】首先以兩個(gè)亞致死濃度梯度劑量5和10 μg·L-1吡蟲啉處理工蜂10 d(3個(gè)生物學(xué)重復(fù)),提取總RNA后,以RNA-seq方法對(duì)所得文庫進(jìn)行高通量測(cè)序,利用生物信息學(xué)技術(shù)對(duì)序列進(jìn)行從頭組裝、注釋,并對(duì)亞致死劑量吡蟲啉處理后的差異表達(dá)基因進(jìn)行聚類和富集等分析,最后利用實(shí)時(shí)熒光定量PCR(RT-qPCR)技術(shù)對(duì)部分與中蜂神經(jīng)和代謝系統(tǒng)相關(guān)的差異表達(dá)基因進(jìn)行驗(yàn)證。【結(jié)果】從兩個(gè)吡蟲啉濃度梯度和對(duì)照組數(shù)據(jù)中共獲得9個(gè)測(cè)序文庫,測(cè)序有效數(shù)據(jù)比例超過94.45%,從獲得的37 364個(gè)unigenes中鑒定出571個(gè)差異表達(dá)基因。經(jīng)GO和KEGG富集分析發(fā)現(xiàn)這些差異表達(dá)基因主要與蛋白質(zhì)翻譯、氧化還原、氧化磷酸化和核糖體等多個(gè)通路有關(guān),表明亞致死劑量的吡蟲啉對(duì)中蜂多個(gè)生理過程和代謝通路造成影響。挑選了與昆蟲神經(jīng)信號(hào)傳遞和代謝功能有關(guān)的上調(diào)或下調(diào)差異表達(dá)基因,如神經(jīng)肽F、神經(jīng)肽SIFamide受體、3-磷酸肌醇依賴性蛋白激酶、激酶(PRKA)錨蛋白1、碳酸酐酶、超氧化物歧化酶、NADH脫氫酶亞基、表皮蛋白和氣味結(jié)合蛋白17共9個(gè)差異表達(dá)基因進(jìn)行了qPCR驗(yàn)證,其表達(dá)規(guī)律與轉(zhuǎn)錄組結(jié)果完全一致?!窘Y(jié)論】亞致死劑量的吡蟲啉能對(duì)中蜂神經(jīng)信號(hào)轉(zhuǎn)導(dǎo)、細(xì)胞呼吸、免疫反應(yīng)、內(nèi)環(huán)境穩(wěn)態(tài)的維持和嗅覺感受等多方面造成影響。
中華蜜蜂;亞致死劑量;吡蟲啉;RNA-seq;實(shí)時(shí)熒光定量PCR
【研究意義】蜜蜂作為重要的經(jīng)濟(jì)資源昆蟲,不僅能夠提供蜂產(chǎn)品,還能為開花植物傳粉,在維持植物生態(tài)系統(tǒng)穩(wěn)定和生物多樣性方面發(fā)揮著重要作用[1]。由于哺乳動(dòng)物與昆蟲乙酰膽堿受體(acetylcholine receptor,nAChR)結(jié)構(gòu)有明顯差異,因此新煙堿類殺蟲劑對(duì)哺乳動(dòng)物低毒,卻能對(duì)多種非靶標(biāo)益蟲表現(xiàn)出高毒作用[2]。中華蜜蜂(,簡(jiǎn)稱中蜂)是我國(guó)本土重要蜂種,具有抗寒耐熱、采集力強(qiáng)、善于利用零星蜜源、適應(yīng)性強(qiáng)等多種優(yōu)良特性[3]。目前有大量報(bào)道新煙堿類殺蟲劑對(duì)蜜蜂等授粉昆蟲產(chǎn)生了嚴(yán)重影響[4-6],因此,研究該類殺蟲劑對(duì)中蜂神經(jīng)感受系統(tǒng)的影響,對(duì)保護(hù)中蜂這一優(yōu)質(zhì)蜂種資源具有重要理論意義?!厩叭搜芯窟M(jìn)展】新煙堿類殺蟲劑是20世紀(jì)80年代開發(fā)出的新型殺蟲劑,也是目前使用最為廣泛的一類殺蟲劑,其能夠模擬乙酰膽堿的作用方式,競(jìng)爭(zhēng)性地結(jié)合昆蟲神經(jīng)系統(tǒng)內(nèi)的煙堿型乙酰膽堿受體,導(dǎo)致乙酰膽堿受體沖動(dòng)信號(hào)傳導(dǎo)不能停止,從而擾亂昆蟲正常的神經(jīng)活動(dòng),最終使昆蟲過度興奮而死[7]。且新煙堿類殺蟲劑被植物吸收后,可以長(zhǎng)期存在于植物組織中[8],蜜蜂等訪花昆蟲在取食時(shí)如果攝入含有新煙堿類殺蟲劑的成分,不僅危害自身健康,還可能把這些成分帶回巢中儲(chǔ)存[9],在亞致死劑量下對(duì)整個(gè)蜂群造成慢性影響[10]。吡蟲啉是第一個(gè)開發(fā)使用的新煙堿類殺蟲劑,在農(nóng)業(yè)生產(chǎn)中被廣泛應(yīng)用,其在南瓜花粉中的殘留范圍為6—28 μg·L-1,平均值為14 μg·L-1[11];在蜜蜂采集的蜂花粉中的殘留范圍約為1—70 μg·L-1[12];在蜜蜂蜂房花粉中的殘留范圍約為6.2—206 μg·L-1,平均值為20.5 μg·L-1[13]。在這種亞致死劑量下吡蟲啉能夠引起蜜蜂多種生理和行為異常,如降低蜜蜂線粒體活性[14]、影響乙酰膽堿受體的表達(dá)和分布[15]、降低蜜蜂覓食活性和延長(zhǎng)覓食飛行時(shí)間[16]、學(xué)習(xí)和記憶能力損害[17]、采集和避敵能力減弱[18]等?!颈狙芯壳腥朦c(diǎn)】目前,吡蟲啉對(duì)意大利蜜蜂()的危害已有廣泛的研究,但其對(duì)中蜂危害的研究較少,而亞致死劑量下吡蟲啉對(duì)中蜂生理和神經(jīng)感受系統(tǒng)的影響所知更少。【擬解決的關(guān)鍵問題】采用高通量RNA-seq技術(shù)探究中蜂暴露于亞致死劑量(5和10 μg·L-1)吡蟲啉10 d后神經(jīng)感受系統(tǒng)轉(zhuǎn)錄譜的差異表達(dá)基因(differentially expressed gene,DEG)表達(dá)變化,揭示亞致死劑量吡蟲啉對(duì)中蜂神經(jīng)感受系統(tǒng)的影響,為解釋其神經(jīng)感受系統(tǒng)受損后的行為和生理變化提供理論依據(jù)。
試驗(yàn)于2019年在中國(guó)計(jì)量大學(xué)生命科學(xué)學(xué)院/生物計(jì)量及檢驗(yàn)檢疫技術(shù)浙江省重點(diǎn)實(shí)驗(yàn)室完成。
中蜂飼養(yǎng)于中國(guó)計(jì)量大學(xué)生命科學(xué)學(xué)院,從同一蜂群中捕捉采集工蜂約300頭(約為18日齡),在溫度為35.5℃、相對(duì)濕度為(50±10)%的培養(yǎng)箱中黑暗飼養(yǎng)。以滅菌的脫脂棉蘸取50%(w/v)濃度的蔗糖溶液飼喂工蜂,3 d后以吡蟲啉處理。
將飼養(yǎng)的工蜂平均分成3組,分別為對(duì)照組CK0,試驗(yàn)組ImiT1和ImiT2,每組均設(shè)置3個(gè)重復(fù)。吡蟲啉購(gòu)自上海麥克林生化科技有限公司(分析純,純度≥97%),用甲醇配置成1 mmol·L-1的溶液,并按比例添加入50%蔗糖溶液中,使其終濃度分別為5和10 μg·L-1。CK0組以不含吡蟲啉的50%蔗糖溶液飼喂,ImiT1和ImiT2組分別以含有5和10 μg·L-1濃度吡蟲啉的50%蔗糖溶液飼喂。為盡量提高神經(jīng)和代謝相關(guān)基因表達(dá)豐度,所有工蜂在吡蟲啉處理10 d后去除腹部,于-80℃保存,每個(gè)樣品30頭工蜂,送至杭州聯(lián)川生物技術(shù)股份有限公司進(jìn)行轉(zhuǎn)錄組測(cè)序。
使用動(dòng)物組織RNA提取試劑盒TRK1002(LC Science,Houston,TX)提取樣品總RNA。以Bioanalyzer 2100和RNA 1000 Nano LabChip試劑盒(Agilent,CA,USA)對(duì)所提取的總RNA總量和純度進(jìn)行分析。使用附著有poly-T寡核苷酸的磁珠,通過兩輪純化從總RNA中純化Poly(A)RNA,所有樣品中純化得到的Poly(A)RNA均大于3 μg。純化后的mRNA在高溫下以二價(jià)陽離子進(jìn)行片段化。然后按照mRNASeq樣品制備試劑盒(Illumina,San Diego,USA)方法逆轉(zhuǎn)錄裂解的RNA片段以創(chuàng)建最終的cDNA文庫,配對(duì)末端文庫的平均插入片段大小為300 bp(±50 bp)。最后通過Illumina Hiseq4000測(cè)序儀(LC Sciences,USA)進(jìn)行配對(duì)末端測(cè)序。
在去除測(cè)序接頭、低質(zhì)量和未確定堿基的讀本后使用FastQC(http://www.bioinformatics.babraham.ac.uk /projects/fastqc/)驗(yàn)證序列質(zhì)量,包括有效數(shù)據(jù)(clean data)的Q20、Q30和GC含量,所有下游分析均基于篩選后的高質(zhì)量的有效數(shù)據(jù)。使用Trinity 2.4.0進(jìn)行轉(zhuǎn)錄組的從頭組裝并歸一化后得到非重復(fù)序列(unigenes)。使用DIAMOND將組裝完的unigenes與六大數(shù)據(jù)庫NCBI_NR(http://www.ncbi.nlm.nih.gov)、GO(http://www.geneontology.org)、KEGG(http://www.genome.jp/kegg)、Pfam(http://www.pfam.xfam.org)、Swiss-Prot(http://www.expasy.ch/sprot)和eggNOG(http://eggnogdb.embl.de)進(jìn)行比對(duì)、分類和相應(yīng)的功能注釋,并且E-value閾值小于0.00001。
通過計(jì)算樣品基因TPM值以評(píng)估unigenes的表達(dá)水平,選擇log2fold change (FC)>1或<-1,且具有統(tǒng)計(jì)學(xué)意義(<0.05)的unigenes作為差異表達(dá)基因。同時(shí)再次通過內(nèi)部perl腳本對(duì)差異表達(dá)的unigenes進(jìn)行GO和KEGG富集分析。
為了進(jìn)一步驗(yàn)證轉(zhuǎn)錄組數(shù)據(jù)的可靠性,選擇了9個(gè)與神經(jīng)和代謝相關(guān)的差異表達(dá)基因進(jìn)行實(shí)時(shí)熒光定量PCR分析,包括神經(jīng)肽F、神經(jīng)肽SIFamide受體、3-磷酸肌醇依賴性蛋白激酶、激酶(PRKA)錨蛋白1、碳酸酐酶、超氧化物歧化酶、NADH脫氫酶亞基、表皮蛋白和氣味結(jié)合蛋白17,以(NCBI序列號(hào):AB072495)作為內(nèi)參基因。采用PrimeScriptTMRT Master Mix Kit(TaKaRa,Japan)和TB GreenTMPremix Ex TaqTMII(Tli RNaseH Plus)Kit(TaKaRa,Japan),根據(jù)試劑盒說明書進(jìn)行cDNA第一鏈的合成和實(shí)時(shí)熒光定量PCR,以2-ΔΔCt法計(jì)算基因相對(duì)表達(dá)量。本試驗(yàn)所用的引物見表1。
通過高通量RNA測(cè)序,9個(gè)測(cè)序文庫獲得的有效讀長(zhǎng)均大于37 150 854個(gè),有效數(shù)據(jù)比例超過94.45%,Q20和Q30分別大于97.08%和91.79%,GC含量介于41.82%—42.48%。將所有樣品混合組裝并進(jìn)行歸一化,共獲得37 364個(gè)unigenes,所有unigenes長(zhǎng)度介于201—23 675 bp,GC含量為37.76%,N50為1 619 bp,由此可見,測(cè)序所得序列組裝質(zhì)量良好。
將組裝所得基因序列與六大數(shù)據(jù)庫NCBI_NR、GO、KEGG、Pfam、Swiss-Prot和eggNOG進(jìn)行比對(duì),同時(shí)合并各個(gè)數(shù)據(jù)庫中所注釋到的詳細(xì)信息,結(jié)果顯示大多數(shù)注釋信息來源于中蜂(52.74%)和意大利蜜蜂(17.79%)基因,說明轉(zhuǎn)錄組測(cè)序、組裝和注釋質(zhì)量良好。GO分類注釋顯示較多的基因與細(xì)胞核、細(xì)胞質(zhì)和膜的組成部分有關(guān),KEGG分類注釋則顯示參與信號(hào)轉(zhuǎn)導(dǎo)的基因數(shù)量最多(924個(gè)),其次為參與翻譯的基因(801個(gè)),參與運(yùn)輸及分解代謝的基因數(shù)量為704個(gè)。
使用TPM方式對(duì)測(cè)序得到的基因的表達(dá)量進(jìn)行歸一化,共篩選到571個(gè)差異表達(dá)基因。同時(shí)根據(jù)樣品基因表達(dá)譜的相近程度,將基因進(jìn)行聚類分析(圖1),結(jié)果顯示試驗(yàn)組和對(duì)照組被分成了4個(gè)聚類,從整體上來說,可以觀察到CK0、ImiT1和ImiT2 3個(gè)處理的高表達(dá)量差異基因明顯不同。進(jìn)一步分析發(fā)現(xiàn)較多的差異表達(dá)基因與神經(jīng)信號(hào)轉(zhuǎn)導(dǎo)密切相關(guān),如神經(jīng)肽F、3-磷酸肌醇依賴性蛋白激酶以及磷酸二酯酶等參與多種信號(hào)通路調(diào)節(jié)的基因表達(dá)量發(fā)生顯著變化。其次,某些差異表達(dá)基因與細(xì)胞呼吸過程有關(guān),尤其是電子傳遞鏈過程中所需的酶類,如細(xì)胞色素C氧化酶亞基、ATP合成酶亞基和NADH脫氫酶亞基等。此外,多個(gè)核糖體蛋白亞基基因表達(dá)量呈顯著差異。被認(rèn)為參與昆蟲外源毒素代謝和內(nèi)源性生理物質(zhì)合成的P450家族的、和表達(dá)量均呈現(xiàn)顯著下調(diào)的趨勢(shì),而具有抗氧化功能的超氧化物歧化酶家族的表達(dá)量則呈現(xiàn)上調(diào)的趨勢(shì)。另外,還發(fā)現(xiàn)一個(gè)氣味結(jié)合蛋白基因出現(xiàn)了顯著的上調(diào)表達(dá)。
表1 實(shí)時(shí)熒光定量PCR引物
將所有差異表達(dá)基因向GO數(shù)據(jù)庫映射,找出差異表達(dá)基因顯著富集的GO條目,進(jìn)行差異基因GO富集分析。在所有差異表達(dá)基因中,在生物學(xué)途徑富集的GO條目中,差異表達(dá)的基因主要參與蛋白質(zhì)翻譯(13個(gè))和氧化還原代謝過程(12個(gè));在細(xì)胞組分富集的GO條目中,差異表達(dá)基因數(shù)量最多的為細(xì)胞核結(jié)構(gòu)和功能相關(guān)的基因(23個(gè)),其次為膜的組成成分(22個(gè));在分子功能富集的GO條目中,差異基因主要是與核糖體的結(jié)構(gòu)成分(16個(gè))、金屬離子結(jié)合(10個(gè))和poly (A) RNA結(jié)合(8個(gè))有關(guān)的蛋白。差異基因在各GO條目上的個(gè)數(shù)分布具體情況見圖2。
將差異表達(dá)基因映射到KEGG數(shù)據(jù)庫,進(jìn)行差異基因KEGG富集分析。如圖3所示,共有327個(gè)差異表達(dá)基因被富集到142條通路中。其中參與氧化磷酸化(20個(gè))和核糖體(19個(gè))通路的差異表達(dá)基因數(shù)量最多,富集性較高。
橫坐標(biāo)為不同樣品,縱坐標(biāo)表示不同的差異表達(dá)基因,顏色越深表示該基因在不同樣品間差異越大
1:翻譯Translation;2:氧化還原過程 Oxidation-reduction process;3:生物學(xué)過程 Biological process;4:疼痛的感官知覺Sensory perception of pain;5:RNA聚合酶II啟動(dòng)子的轉(zhuǎn)錄負(fù)調(diào)控Negative regulation of transcription from RNA polymerase II promoter;6:成蟲盤衍生的翅形態(tài)發(fā)生 Imaginal disc-derived wing morphogenesis;7:先天免疫反應(yīng) Innate immune response;8:轉(zhuǎn)錄負(fù)調(diào)控,以DNA為模板Negative regulation of transcription, DNA-templated;9:轉(zhuǎn)錄調(diào)控,以DNA為模板Regulation of transcription, DNA-templated;10:運(yùn)動(dòng)節(jié)律Locomotor rhythm;11:信號(hào)轉(zhuǎn)導(dǎo)Signal transduction;12:通過 eIF2α磷酸化調(diào)節(jié)翻譯起始Regulation of translational initiation by eIF2 alpha phosphorylation;13:蛋白質(zhì)重折疊Protein refolding;14:軸突引導(dǎo)Axon guidance;15:ATP合成耦合質(zhì)子轉(zhuǎn)運(yùn)ATP synthesis coupled proton transport;16:肌節(jié)組織Sarcomere organization;17:胞質(zhì)翻譯Cytoplasmic translation;18:凋亡過程的負(fù)調(diào)控Negative regulation of apoptotic process;19:自噬的調(diào)節(jié)Regulation of autophagy;20:蛋白質(zhì)脂化 Protein lipidation;21:G-蛋白偶聯(lián)受體信號(hào)通路G-protein coupled receptor signaling pathway;22:對(duì)熱的反應(yīng)Response to heat;23:B細(xì)胞活化的正調(diào)節(jié)Positive regulation of B cell activation;24:神經(jīng)系統(tǒng)發(fā)育Nervous system development;25:吞噬,識(shí)別Phagocytosis, recognition;26:細(xì)胞核Nucleus;27:膜的組成成分Integral component of membrane;28:線粒體Mitochondrion;29:膜Membrane;30:細(xì)胞質(zhì)Cytoplasm;31:胞外區(qū)Extracellular region;32:質(zhì)膜Plasma membrane;33:胞漿大核糖體亞基Cytosolic large ribosomal subunit;34:細(xì)胞組分Cellular component;35:脂質(zhì)顆粒Lipid particle;36:細(xì)胞外外泌體Extracellular exosome;37:胞質(zhì)溶膠Cytosol;38:質(zhì)膜的組成部分Integral component of plasma membrane;39:線粒體內(nèi)膜Mitochondrial inner membrane;40:胞質(zhì)小核糖體亞基Cytosolic small ribosomal subunit;41:核糖體的結(jié)構(gòu)成分Structural constituent of ribosome;42:金屬離子結(jié)合Metal ion binding;43:poly (A) RNA結(jié)合poly (A) RNA binding;44:分子功能 Molecular function;45:氧化還原酶活性O(shè)xidoreductase activity;46:蛋白質(zhì)同二聚化活性Protein homodimerization activity;47:血紅素結(jié)合Heme binding;48:DNA結(jié)合DNA binding;49:蛋白質(zhì)結(jié)合Protein binding;50:ATP結(jié)合ATP binding
根據(jù)轉(zhuǎn)錄組測(cè)序結(jié)果,挑選了9個(gè)與神經(jīng)和代謝相關(guān)的差異表達(dá)基因,實(shí)時(shí)熒光定量PCR結(jié)果如圖4顯示,從差異顯著性上,其中有5個(gè)基因與對(duì)照組呈顯著差異表達(dá),包括與CK0相比,和兩個(gè)吡蟲啉濃度梯度下均顯著上調(diào)表達(dá),而在兩個(gè)吡蟲啉濃度梯度下均顯著下調(diào)表達(dá);與CK0相比,與在低濃度吡蟲啉時(shí)均顯著上調(diào)表達(dá),而在高濃度吡蟲啉時(shí)反而下調(diào)且與低濃度呈顯著差異,表達(dá)在高濃度時(shí)變化不大。另外,供試9個(gè)差異基因的表達(dá)趨勢(shì)與轉(zhuǎn)錄組測(cè)序結(jié)果完全一致,表明轉(zhuǎn)錄組測(cè)序結(jié)果比較可靠。
亞致死劑量新煙堿類殺蟲劑(如吡蟲啉)能引起蜜蜂多種行為異常,如覓食活性及遠(yuǎn)距離飛行能力影響(1.5 ng/bee)[16]、學(xué)習(xí)與記憶能力損害(100 nmol·L-1)[17]、采集和避敵能力減弱(40 μg·L-1)[18],以及影響蜂王繁殖力[19]等。另外亞致死劑量吡蟲啉對(duì)蜜蜂蔗糖敏感性(0.65 ng/bee)和學(xué)習(xí)行為(0.15 ng/bee)產(chǎn)生影響[20],蛹期處理(0.04 ng/蛹)也會(huì)導(dǎo)致羽化工蜂嗅覺功能受到損害[21]。可見,在目前農(nóng)業(yè)生產(chǎn)廣泛使用新煙堿類殺蟲劑背景下,其在生態(tài)環(huán)境中所引起的亞致死劑量殘留仍然會(huì)對(duì)蜜蜂生理活動(dòng)產(chǎn)生潛在嚴(yán)重的危害。此外,有報(bào)道顯示新煙堿類殺蟲劑在測(cè)試玉米花中的殘留量為3.7 μg·L-1[22],在測(cè)試土壤中的殘留約為1—50 μg·L-1,對(duì)蜜蜂的亞致死劑量正好介于殘留范圍之內(nèi)(約為1—20 μg·L-1)[7],而低劑量的吡蟲啉也往往殘留在蜂產(chǎn)品中(如蜂蜜約為2 μg·L-1[23],花粉中約為6—28 μg·L-1[11])。
Rich factor表示位于該KEGG的差異基因數(shù)/位于該KEGG的總基因數(shù),Rich factor值越大,KEGG富集程度越大。點(diǎn)的顏色越接近紅色代表復(fù)性程度越大,點(diǎn)的大小代表富集到該通路的基因數(shù)量
柱高為平均值±SEM。采用LSD法進(jìn)行單因素方差分析。*表示具有顯著性差異,p<0.05
考慮到吡蟲啉在生產(chǎn)實(shí)際中的亞致死劑量,本試驗(yàn)將中蜂工蜂暴露于5和10 μg·L-1兩個(gè)濃度梯度的吡蟲啉,利用轉(zhuǎn)錄組技術(shù)鑒定出了571個(gè)差異表達(dá)基因。這些差異表達(dá)基因廣泛分布于神經(jīng)信號(hào)轉(zhuǎn)導(dǎo)、電子傳遞呼吸鏈、氧化還原、免疫系統(tǒng)和細(xì)胞穩(wěn)態(tài)系統(tǒng)等。GO和KEGG富集性分析顯示,較多的差異表達(dá)基因參與了蛋白質(zhì)翻譯、氧化還原、氧化磷酸化等多個(gè)生理過程以及細(xì)胞核和核糖體的構(gòu)成,表明亞致死劑量的吡蟲啉對(duì)中蜂代謝生理功能途徑產(chǎn)生了較大的影響,如細(xì)胞呼吸途徑的廣泛上調(diào)和蛋白質(zhì)合成途徑的紊亂失調(diào)。這一結(jié)果與已報(bào)道的吡蟲啉和其他種類新煙堿類殺蟲劑對(duì)蜜蜂的影響結(jié)果一致[24-25]。
編碼的神經(jīng)肽F是一種神經(jīng)遞質(zhì),參與昆蟲多種生理功能的調(diào)節(jié)[26],如在昆蟲的取食[27]、學(xué)習(xí)和記憶[28]、求偶與繁殖[29]、時(shí)鐘節(jié)律[30]、壓力反饋[31]等過程中均發(fā)揮重要作用。作為G蛋白偶聯(lián)的神經(jīng)肽SIFamide(SIFa)[32]的受體,SIFamide受體(SIFaR)可能與昆蟲性行為[33]、睡眠節(jié)律[34]和進(jìn)食行為[35]密切相關(guān)。這兩個(gè)基因在吡蟲啉處理后表達(dá)量均呈現(xiàn)不同程度的上調(diào)(圖4),表明吡蟲啉可能導(dǎo)致中蜂神經(jīng)信號(hào)轉(zhuǎn)導(dǎo)產(chǎn)生紊亂。在5 μg·L-1吡蟲啉濃度下表達(dá)量高于10 μg·L-1吡蟲啉濃度,表明對(duì)低濃度吡蟲啉脅迫更加敏感。
AKAP1是A激酶錨蛋白家族成員,在將cAMP信號(hào)傳遞至線粒體外過程中發(fā)揮著重要的作用[36],且參與調(diào)節(jié)氧化代謝、細(xì)胞器的生物發(fā)生、細(xì)胞存活[37]和血管功能[38]。另外“NADH脫氫酶:泛醌1”是線粒體電子傳遞鏈的第一個(gè)膜結(jié)合電子傳輸復(fù)合物[39],編碼該脫氫酶的亞基。這兩個(gè)基因的表達(dá)量上調(diào)(圖4),說明吡蟲啉可能干擾中蜂的細(xì)胞呼吸作用,尤其是電子傳遞鏈過程。此外,細(xì)胞色素C氧化酶、ATP合酶的多個(gè)亞基和SOD2等與呼吸或抗氧化相關(guān)的基因的表達(dá)量均呈現(xiàn)不同程度的上調(diào),也說明吡蟲啉干擾中蜂的氧化還原過程。
3-磷酸肌醇依賴性蛋白激酶在細(xì)胞存活、分化和增殖中起到重要作用[40],特別是對(duì)多種類型免疫細(xì)胞的發(fā)育至關(guān)重要[41]。在試驗(yàn)組的表達(dá)量下調(diào)(圖4),但可以觀察到在ImiT2組中表達(dá)量有一定程度的恢復(fù),表明吡蟲啉會(huì)影響蜜蜂的免疫反應(yīng),且在低濃度下對(duì)蜜蜂免疫反應(yīng)的抑制作用更強(qiáng),隨著濃度的增加,免疫能力會(huì)有所恢復(fù)。碳酸酐酶3是碳酸酐酶家族成員,在各種細(xì)胞過程中都發(fā)揮作用,其能促進(jìn)CO2擴(kuò)散、H+和HCO3-轉(zhuǎn)運(yùn)[42]以維持細(xì)胞pH穩(wěn)態(tài)[43]。的表達(dá)量呈現(xiàn)先下調(diào)再輕微上調(diào)的趨勢(shì)(圖4),說明吡蟲啉可能對(duì)蜜蜂的內(nèi)環(huán)境穩(wěn)態(tài)調(diào)節(jié)能力有一定的破壞。
亞致死劑量殺蟲劑處理后,昆蟲氣味結(jié)合蛋白也能產(chǎn)生響應(yīng),如經(jīng)擬除蟲菊酯殺蟲劑處理后的小菜蛾()上調(diào)表達(dá)[44]。本研究發(fā)現(xiàn)中蜂對(duì)吡蟲啉處理表現(xiàn)出顯著響應(yīng),且表達(dá)量隨吡蟲啉濃度的增加而遞增(圖4)。而有報(bào)道顯示,受狄斯瓦螨()脅迫后中蜂表達(dá)量也呈顯著上調(diào)[45],這表明很可能在中蜂抵抗外界脅迫時(shí)發(fā)揮重要作用。此外,中蜂OBP12也被證實(shí)能與吡蟲啉產(chǎn)生相互作用[46],這表明吡蟲啉可能會(huì)與中蜂嗅覺感受系統(tǒng)發(fā)生作用,從而引起后者的響應(yīng)。
亞致死劑量的新煙堿類殺蟲劑吡蟲啉參與中蜂體內(nèi)包括蛋白翻譯、氧化還原、氧化磷酸化等多個(gè)生理過程以及細(xì)胞核和核糖體的構(gòu)成相關(guān)蛋白的表達(dá),可能對(duì)中蜂神經(jīng)信號(hào)轉(zhuǎn)導(dǎo)、細(xì)胞呼吸、免疫反應(yīng)、內(nèi)環(huán)境穩(wěn)態(tài)的維持和嗅覺感受等多方面造成影響。
[1] LO N, GLOAG R S, ANDERSON D L, OLDROYD B P.A molecular phylogeny of the genussuggests that the giant honey bee of the Philippines,Maa, and the plains honey bee of southern India,Fabricius, are valid species.Systematic Entomology, 2010, 35(2): 226-233.
[2] MILLAR N S, DENHOLM I.Nicotinic acetylcholine receptors: Targets for commercially important insecticides.Invertebrate Neuroscience, 2007, 7(1): 53-66.
[3] RADLOFF S E, HEPBURN C, HEPBURN H R, FUCHS S, HADISOESILO S, TAN K, ENGEL M S, KUZNETSOV V.Population structure and classification of.Apidologie, 2010, 41(6): 589-601.
[4] 藺哲廣, 孟飛, 鄭火青, 周婷, 胡福良.新煙堿類殺蟲劑對(duì)蜜蜂健康的影響.昆蟲學(xué)報(bào), 2014, 57(5): 607-615.
LIN Z G, MENG F, ZHENG H Q, ZHOU T, HU F L.Effects of neonicotinoid insecticides on honeybee health.Acta Entomologica Sinica, 2014, 57(5): 607-615.(in Chinese)
[5] SUCHAIL S, GUEZ D, BELZUNCES L P.Characteristics of imidacloprid toxicity in twosubspecies.Environmental Toxicology and Chemistry, 2000, 19(7): 1901-1905.
[6] BONMATIN J M, MOINEAU I, CHARVET R, COLIN M E, FLECHE C, BENGSCH E R.Behaviour of imidacloprid in fields.Toxicity for honey bees//LICHTFOUSE E, SCHWARZBAUER J, ROBERT D.Environmental Chemistry.Green chemistry and pollutants in ecosystems.Springer Berlin Heidelberg, 2005: 483-494.
[7] NISHIMURA K, KANDA Y, OKAZAWA A, UENO T.Relationship between insecticidal and neurophysiological activities of imidacloprid and related compounds.Pesticide Biochemistry and Physiology, 1994, 50(1): 51-59.
[8] KRUPKE C, HUNT G, EITZER B, ANDINO G, GIVEN K.Multiple routes of pesticide exposure for honey bees living near agricultural fields.PLoS ONE, 2012, 7(1): e29268.
[9] CRESSWELL J.A meta-analysis of experiments testing the effects of a neonicotinoid insecticide (imidacloprid) on honey bees.Ecotoxicology, 2011, 20(1): 149-157.
[10] BRYDEN J, GILL R J, MITTON R A, RAINE N E, JANSEN V A.Chronic sublethal stress causes bee colony failure.Ecology Letters, 2013, 16(12): 1463-1469.
[11] STONER K A, EITZER B D.Movement of soil-applied imidacloprid and thiamethoxam into nectar and pollen of squash ().PLoS ONE, 2012, 7(6): e39114.
[12] STONER K A, EITZER B D.Using a hazard quotient to evaluate pesticide residues detected in pollen trapped from honey bees () in Connecticut.PLoS ONE, 2013, 8(10): e77550.
[13] MULLIN C A, FRAZIER M, FRAZIER J L, ASHCRAFT S, SIMONDS R, VANENGELSDORP D, PETTIS J S.High levels of miticides and agrochemicals in north American apiaries: implications for honey bee health.PLoS ONE, 2010, 5(3): e9754.
[14] NICODEMO D, MAIOLI M A, MEDEIROS H C D, GUELFI M, BALIEIRA K V B, DE JONG D, MINGATTO F E.Fipronil and imidacloprid reduce honeybee mitochondrial activity.Environmental Toxicology and Chemistry, 2014, 33(9): 2070-2075.
[15] 周婷, 宋懷磊, 王強(qiáng), 代平禮, 吳艷艷, 孫繼虎.吡蟲啉對(duì)意大利蜜蜂腦乙酰膽堿受體分布的影響.昆蟲學(xué)報(bào), 2013, 56(11): 1258-1266.
ZHOU T, SONG H L, WANG Q, DAI P L, WU Y Y, SUN J H.Effects of imidacloprid on the distribution of nicotine acetylcholiine receptors in the brain of adult honeybee ().Acta Entomologica Sinica, 2013, 56(11): 1258-1266.(in Chinese)
[16] SCHNEIDER C W, TAUTZ J, GRüNEWALD B, FUCHS S.RFID tracking of sublethal effects of two neonicotinoid insecticides on the foraging behavior of.PLoS ONE, 2012, 7(1): e30023.
[17] WILLIAMSON S M, WRIGHT G A.Exposure to multiple cholinergic pesticides impairs olfactory learning and memory in honeybees.The Journal of Experimental Biology, 2013, 216(10): 1799-1807.
[18] TAN K, CHEN W, DONG S, LIU X, WANG Y, NIEH J C.Imidacloprid alters foraging and decreases bee avoidance of predators.PLoS ONE, 2014, 9(7): e102725.
[19] WU-SMART J, SPIVAK M.Sub-lethal effects of dietary neonicotinoid insecticide exposure on honey bee queen fecundity and colony development.Scientific Reports, 2016, 6: 32108.
[20] 代平禮, 周婷, 王強(qiáng), 吳艷艷, 耿文龍, 宋懷磊.吡蟲啉對(duì)意大利蜜蜂學(xué)習(xí)行為的影響.農(nóng)藥, 2013, 52(7): 512-514.
DAI P L, ZHOU T, WANG Q, WU Y Y, GENG W L, SONG H L.Effects of imidacloprid on learning performance of.Agrochemicals, 2013, 52(7): 512-514.(in Chinese)
[21] YANG E C, CHANG H C, WU W Y, CHEN Y W.Impaired olfactory associative behavior of honeybee workers due to contamination of imidacloprid in the larval stage.PLoS One, 2012, 7(11): e49472.
[22] ALBURAKI M, BOUTIN S, MERCIER P L, LOUBLIER Y, CHAGNON M, DEROME N.Neonicotinoid-coatedseeds indirectly affect honeybee performance and pathogen susceptibility in field trials.PLoS One, 2015, 10(5): e0125790.
[23] CHAUZAT M P, CARPENTIER P, MARTEL A C, BOUGEARD S, COUGOULE N, PORTA P, LACHAIZE J, MADEC F, AUBERT M, FAUCON J P.Influence of pesticide residues on honey bee (Hymenoptera: Apidae) colony health in France.Environmental Entomology, 2009, 38(3): 514-523.
[24] CHRISTEN V, BACHOFER S, FENT K.Binary mixtures of neonicotinoids show different transcriptional changes than single neonicotinoids in honeybees ().Environmental Pollution, 2017, 220: 1264-1270.
[25] FENT K, SCHMID M, HETTICH T, SCHMID S.The neonicotinoid thiacloprid causes transcriptional alteration of genes associated with mitochondria at environmental concentrations in honey bees.Environmental Pollution, 2020, 266(1): 115297.
[26] 黃一村, 時(shí)敏, 陳學(xué)新.昆蟲神經(jīng)肽F的研究進(jìn)展.應(yīng)用昆蟲學(xué)報(bào), 2015, 52(6): 1315-1325.
HUANG Y C, SHI M, CHEN X X.Advances in research on insect neuropeptide F.Chinese journal of applied entomology, 2015, 52(6): 1315-1325.(in Chinese)
[27] LINGO P, ZHAO Z, SHEN P.Co-regulation of cold-resistant food acquisition by insulin- and neuropeptide Y-like systems in.Neuroscience, 2007, 148(2): 371-374.
[28] KRASHES M, DASGUPTA S, VREEDE A, WHITE B, ARMSTRONG J, WADDELL S.A neural circuit mechanism integrating motivational state with memory expression in.Cell, 2009, 139(2): 416-427.
[29] HERMANN C, YOSHII T, DUSIK V, HELFRICH-FOERSTER C.Neuropeptide F immunoreactive clock neurons modify evening locomotor activity and free-running period in.The Journal of Comparative Neurology, 2012, 520(5): 970-987.
[30] LEE G, BAHN J H, PARK J H.Sex- and clock-controlled expression of the neuropeptide F gene in.Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(33): 12580-12585.
[31] XU J, LI M, SHEN P.A G-protein-coupled neuropeptide Y-like receptor suppresses behavioral and sensory response to multiple stressful stimuli in.The Journal of Neuroscience, 2010, 30(7): 2504-2512.
[32] AYUB M, HERMIZ M, LANGE A B, ORCHARD I.SIFamide influences feeding in the chagas disease vector,.Frontiers in Neuroscience, 2020, 14: 134.
[33] SELLAMI A, VEENSTRA J A.SIFamide acts on fruitless neurons to modulate sexual behavior in.Peptides, 2015, 74: 50-56.
[34] PARK S, SONN J Y, OH Y, LIM C, CHOE J.SIFamide and SIFamide receptor define a novel neuropeptide signaling to promote sleep in.Molecules and Cells, 2014, 37(4): 295-301.
[35] MARTELLI C, PECH U, KOBBENBRING S, PAULS D, BAHL B, SOMMER M V, POORYASIN A, BARTH J, ARIAS C W P, VASSILIOU C,.SIFamide translates hunger signals into appetitive and feeding behavior in.Cell Reports, 2017, 20(2): 464-478.
[36] FELICIELLO A, GOTTESMAN M, AVVEDIMENTO E.The biological functions of A-Kinase anchor proteins.Journal of Molecular Biology, 2001, 308(2): 99-114.
[37] RINALDI L, SEPE M, DONNE R D, CONTE K, ARCELLA A, BORZACCHIELLO D, AMENTE S, DE VITA F, PORPORA M, GARBI C,.Mitochondrial AKAP1 supports mTOR pathway and tumor growth.Cell Death and Disease, 2017, 8(6): e2842.
[38] SCHIATTARELLA G G, CATTANEO F, CARRIZZO A, PAOLILLO R, BOCCELLA N, AMBROSIO M, DAMATO A, PIRONTI G, FRANZONE A, RUSSO G,.regulates vascular function and endothelial cells behavior.Hypertension, 2018, 71(3): 507-517.
[39] OKUN J G, LUMMEN P, BRANDT U.Three classes of inhibitors share a common binding domain in mitochondrial complex I (NADH: ubiquinone oxidoreductase).The Journal of biological chemistry, 1999, 274(5): 2625-2630.
[40] VANHAESEBROECK B, ALESSI D R.The PI3K-PDK1 connection: more than just a road to PKB.The Biochemical Journal, 2000, 346(3): 561-576.
[41] SUN Z, YAO Y, YOU M, LIU J, GUO W, QI Z, WANG Z, WANG F, YUAN W, YU S.The kinase PDK1 is critical for promoting T follicular helper cell differentiation.eLife, 2021, 10: e61406.
[42] WANG H L, ZHU Z M, WANG H, YANG S L, ZHAO S H, LI K.Molecular characterization and association analysis of porcine CA3.Cytogenetic and Genome Research, 2006, 115(2): 129-133.
[43] SOWDEN J, SMITH H, MORRISON K, EDWARDS Y.Sequence comparisons and functional studies of the proximal promoter of the carbonic anhydrase 3 (CA3) gene.Gene, 1998, 214(1/2): 157-165.
[44] BAUTISTA M A M, BHANDARY B, WIJERATNE A J, MICHEL A P, HOY C W, MITTAPALLI O.Evidence for trade-offs in detoxification and chemosensation gene signatures in.Pest Management Science, 2015, 71(3): 423-432.
[45] 殷玲, 吉挺, 李冠華, 牛德芳.中華蜜蜂OBP17基因CDS序列及其表達(dá)與抗螨性狀的相關(guān)性.江蘇農(nóng)業(yè)科學(xué), 2015, 43(11): 45-48.
YIN L, JI T, LI G H, NIU D F.The CDS sequence of OBP17 gene ofand its correlation of resistance to.Jiangsu Agricultural Sciences, 2015, 43(11): 45-48.(in Chinese)
[46] 吳帆.中華蜜蜂氣味結(jié)合蛋白配基結(jié)合特征和OBP12與吡蟲啉結(jié)合機(jī)理研究[D].杭州: 中國(guó)計(jì)量大學(xué), 2016.
WU F.Study binding characterization of Chinese honeybee’s () odorant binding proteins with ligands and binding mechanism of OBP12 with imidacloprid (Hymenoptera: Apidae)[D].Hangzhou: China Jiliang University, 2016.(in Chinese)
Effects of Sublethal Doses of Imidacloprid on the Expression of Neurometabolic Genes in
QIU YiLei, WU Fan, ZHANG Li, LI HongLiang*
College of Life Sciences, China Jiliang University/Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, Hangzhou 310018
【Background】The target of neonicotinoid insecticides is the acetylcholine receptor in the nervous system of insects.Due to its good systemicity and low toxicity to humans and animals, it has been widely used in agricultural production.Thus there is still a low residue in plants, and this sublethal dose residue can still cause adverse effects on the behavior and nervous system of flower-visiting insects like bees.【Objective】The objective of this study is to clarify the effect of sublethal dose imidacloprid (a kind of neonicotinoid insecticides) on the nervous physiological and metabolism system of.【Method】In this study, the worker bees were treated with two sublethal concentration gradient doses of 5 and 10 μg·L-1imidacloprid for 10 days (three biological replicates).After total RNA was extracted, the resulting library was analyzed by RNA-seq.Throughput sequencing, and the bioinformatics technology was used to assemble and annotate the sequence, and the differentially expressed genes (DEGs) after sublethal doses imidacloprid treatment were analyzed by clustering and enrichment.Finally, real-time fluorescence quantitative PCR (RT-qPCR) technology was used to verify the DEGs related to the nervous and metabolic systems.【Result】A total of 9 sequencing libraries were obtained, the ratio of effective sequencing data exceeded 94.45%.From the obtained 37 364 unigenes, 571 DEGs were identified.The enrichment analysis of GO and KEGG found that the DEGs were mainly related to multiple pathways such as protein translation, redox, oxidative phosphorylation, and ribosome, indicating that sublethal doses of imidacloprid had an impact on multiple physiological processes and metabolic pathways of.Nine DEGs (e.g.neuropeptide F (NPF), neuropeptide SIFamide receptor (SIFaR), phosphoinositide 3-dependent kinases (PDK1), A-kinase anchoring protein 1 (AKAP1), carbonic anhydrase 3 (CA3), superoxide dismutase 2 (SOD2), NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 10 (ND42), cuticle protein 12 (CP12), and odorant-binding protein (OBP17)) related to nerve signal transmission and metabolic function were selected for RT-qPCR verification.Their expression patterns were completely consistent with the transcriptome results.【Conclusion】The sublethal dose of imidacloprid can affect lots of aspects ofsuch as nerve signal transduction, cellular respiration, immune response, maintenance of homeostasis, and olfactory perception.
; sublethal dose; imidacloprid; RNA-seq; RT-qPCR
2021-11-02;
2021-11-15
國(guó)家自然科學(xué)基金(31772544,3217030483,332000331)、浙江省自然科學(xué)基金(LQ21C030007)、科技部基礎(chǔ)資源調(diào)查專項(xiàng)(2018FY100405)
邱一蕾,E-mail:qiuyil96@163.com。通信作者李紅亮,E-mail:hlli@cjlu.edu.cn
(責(zé)任編輯 岳梅)