• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于云和高斯過(guò)程的網(wǎng)聯(lián)車輛協(xié)同式道路參數(shù)估計(jì)

    2022-05-13 05:17:40LIZhaojianHAJIDAVALLOOMohammadXIAXinZHENGMinghui
    關(guān)鍵詞:東蘭協(xié)同式州立大學(xué)

    LI Zhaojian,HAJIDAVALLOO Mohammad R,XIA Xin,ZHENG Minghui

    (1.密歇根州立大學(xué)機(jī)械工程學(xué)院,東蘭辛 48824;2.加利福尼亞大學(xué)洛杉磯分校交通與環(huán)境學(xué)院,洛杉磯 90095;3.布法羅大學(xué)機(jī)械與航空航天工程學(xué)院,布法羅 14260)

    Road profile is one of the most important road characteristics that has been frequently used(or proposed to be used)to improve suspension control[1-2],enable comfort-based route planning[3],and alert road agencies for maintenance. Road profilers have been conventionally used to measure road profile.However,they are costly to acquire and maintain and can provide limited coverage.Alternatively,with great advances in vehicular telematics,various sensors and communication modules are deployed in modern vehicles,which can potentially be exploited for road profile estimation.Vehicles can thus be used as mobile sensors to crowdsource road information with great road coverage[4-7].

    For instance, vehicle-based estimation approaches have been extensively pursued to exploit the onboard measurements along with the underlying dynamics to reconstruct the road profile[2,8-14].These approaches can be categorized into two classes:unknown input observer(UIO)-based and extended state observer(ESO)-based.The UIO methods generally aim to obtain a precise and stable model inverse to estimate the road profile(which is the input)from the outputs of the system[8-9].On the other hand,the ESO methods exploit an augmented state by treating the road disturbance signal as an additional state,which is estimated along with the original states using the commonly used state observers such as the Kalman filter(KF)for linear systems and high gain observers(HGO)or extended KF(EKF)for nonlinear dynamic systems[2,10-14].

    However,despite the above progresses,these approaches are based on a single-vehicle setting,which is thus susceptible to model uncertainty and measurement errors.To address these challenges,in this paper,a new collaborative estimation framework is developed that exploits multiple heterogeneous vehicles to iteratively improve the estimation.The proposed approach utilizes the cloud as a central platform to crowdsource local vehicle estimations using Gaussian processes (GP)[15]. The crowdsourced GP is then sent back to the vehicle as a pseudo-measurement to enhance onboard estimation using a KF.The enhanced local estimate is then uploaded to the cloud to update the GP.More specifically,each participating vehicle runs a local KF-based ESO for simultaneous vehicle state and road profile estimation.Instead of just using the available onboard measurements,a crowdsourced“pseudo- measurement”from prior participating vehicle estimates is used to enhance the local estimation.Two types of pseudo-measurements are considered where in the first case each vehicle uses the previous estimation of the vehicle as the pseudomeasurements whereas in the second case,a trained GP from all prior participating vehicles are used.Both cases are compared with a benchmark to demonstrate the superior performance.

    This proposed framework is novel as it systematically exploits the estimates from multiple heterogeneous vehicles to both iteratively enhance onboard estimation and collaboratively refine crowdsourced road profile,through the seamless integration of individual local estimators with the cloud-based Gaussian processes.First,the model dynamics and KF design is introduced.Then,the cloud-based GP regression is investigated whereas the recursive on-board estimation using pseudomeasurements for KF is discussed. Finally,extensive simulation results are expounded.

    1 Problem formulation

    The aim of this paper is to develop approaches to efficiently crowdsource road profile from multiple heterogeneous vehicles.Specifically,given a road segment(e.g.,defined by two consecutive road mile markers[16])as illustrated in Fig.1,the objective of vehicle-based road profile estimation is to use existing onboard sensors(e.g.,accelerometers,GPS,yaw rate,and roll rate)to discoverw(s),the road elevation as a function of distance in the longitudinal direction(thesdirection in Fig.1).Here it is assumed that the road profile is uniformly distributed in the lateral direction(ndirection in Fig.1).By scaling the distanceswith the vehicle speed,the road profile to be estimated can also be represented byw(t),a function of time.Consider the following dynamics that characterizes the underlying vehicle-road interaction:

    Fig.1 A road segment with profile denoted by w(s)

    wherex1,x2,x3,andx4represent the sprung mass displacement,sprung mass velocity,unsprung mass displacement,and sprung mass velocity,respectively(see Fig.2).Herew∈R is the road disturbance signal,which can be modeled as the output of a lowpass filter whose input is a white Gaussian noise with unit intensity,i.e.w?=aw(t)+be(t)whereaandbare some constants as defined in[17].

    Fig.2 Illustration of a quarter-car suspension model

    Thus,by augmenting the road signalwas an additional state,i.e.,Eq.(1)can be rewritten into the following augmented state-space model

    whereA,G,andCare appropriate matrices derived from Eq.(1);ηis the white Gaussian noise;andyis the noisy output measurements.Discretizing the system with an appropriate sampling time yields the following discrete state space equations:

    which can now be used in a KF to estimate the augmented state which includes the road disturbance signal by the following two steps:

    Prediction:

    The above description is a standard ESO design and will serve as a benchmark to compare with the developed collaborative estimation method which will be discussed next.

    2 Cloud-based Gaussian process regression

    In Section 2,road profile estimation with a single vehicle using ESO is presented.In this section,a cloud-based collaborative estimation framework is developed to iteratively refine the estimates from single vehicles.The considered GPbased collaborative road profile estimation framework is illustrated in Fig.3.Specifically,each participating vehicleireceives a Gaussian process(GP)GPi-1(mi-1(s),Ki-1(s,s′)|Θ?i-1)with a mean functionmi-1(s) and a kernel functionKi-1(s,s′)parameterized byΘ?i-1,from the cloud.The GP model describes the road profile distribution(with both mean and covariance),aggregated from the data of prior participating vehicles until vehiclei-1.The receivedGPi-1(·,·|Θi-1)is then utilized as a priori“pseudo-measurement”of the road profile,forming an augmented output along with the onboard measurements asyˉ=[y;w?i-1], wherew?i-1~GPi-1(·,·|Θi-1).This augmented output is then incorporated into a local estimator(e.g.,KF or JDP-based estimator)to estimate the augmented state(both vehicle state and road profile).This GP“pseudo-measurement”can be viewed as an additional sensor measurement,providing both the means and the covariances of the road profile to be fused with onboard sensors for enhancing the local estimation.The pair of road profile and position estimate sequence,(w?i,s?i):={w?i,s?i}Ni i=1is then uploaded to the cloud to update the GP hyperparameters using e.g.,maximum likelihood learning:

    Fig.3 Schematics of collaborative estimation using GP

    The updated GP with hyper-parametersΘ?i,GPi(·,·|Θi)is then sent to the next participating vehiclei+1 to enhance its estimate.The process is then repeated.

    In the presented framework,Nnumber of vehicles are considered which can collaboratively improve the estimation of the road disturbance signal from vehicle to vehicle.When Vehicleipasses the considered road segment,it will pass its KF estimation information of the road disturbance signal to the cloud which has the capability of storing large data structures and dealing with heavy computations.On the cloud side,the road profile estimations of Vehicleiand all prior participating vehicles are used to fit a GP to characterize the road disturbance.The goal is that as more vehicles collaborate in the proposed estimation framework,the estimation error for the cloud-based GP and for the vehicle on-board estimation is reduced. Next,more details are provided regarding the GP and the collaborative estimation framework.

    The road profile can be described by a function of the spatial distance,w(s),or characterized by its power spectrum density[18]. An alternative description is from a machine learning perspective using the GP model [19] , i. e.,w(s)~GP(m(s),k(s,s′)),wherem(s)=E[w(s)]is the mean function that can take the form ofm(s)=whereψ(·)is the vector ofKbasis functions(e.g.,polynomial functions or Gaussian basis functions),andβis the vector of corresponding linear weights to be trained from the data. The kernel function,k(s,s′)=Cov(s,s′),characterizes the covariance between any two spatial pointssands′, an example of which is the

    In this paper,GP is used to predict and update the spatial function values of the road disturbance signal for a considered road segment. More specifically,Vehicleipasses the considered road segment and sends its KF estimation pointsto the cloud,where(s?i,w?i)is the sequence of the estimated road signal points.Gathering all the estimated values for the road signal up to Vehiclei,the training data points for the cloud-based GP will beD={(s?1,w?1),(s?2,w?2),...,(s?i,w?i)}. In this regard,the input and output training data matrices can be written by stacking the data points obtained by each KF for Vehicle 1 to VehicleiasS?=[s?1,s?2,...,s?i]andW?=[w?1,w?2,...,w?i]respectively.The objective is to approximate the nonlinear mapping of a system

    With the tuned hyperparameters of the kernel and mean function,predictions can be made by posterior inference conditional on observed dataD.Using these information,the predictive equations for theith GP regression at pointss*follow as

    The proposed cloud-facilitated collaborative estimation with GP has several advantages.First,it works for heterogeneous vehicles as the framework has no requirement in vehicle homogeneity.Each vehicle exploits its own model and an estimator for local estimation. Second, the “pseudomeasurement”scheme is guaranteed to reduce the estimation variance from iteration to iteration thanks to the posterior covariance reduction update in KF[20].Finally,as the only information regarding road estimate is communicated,privacy-sensitive information such as vehicle states are inherently protected.The GP crowdsources the estimates from multiple vehicles to iteratively improve the road profile estimation,which is then shared with participating vehicles to enhance its onboard state and road estimation.

    3 Cloud-assisted onboard estimation with pseudo-measurements

    In this section,the idea of pseudo-measurement from the cloud as an additional measurement is presented to enhance the local estimation performance.In particular,two types of pseudomeasurements are considered.The first is to use the KF from the last vehicle as the pseudo-measurement while the second is to use the crowdsourced GP as the pseudo-measurement.

    3.1 KF pseudo-measurements

    When Vehicleipasses a road segment,the KF for Vehicleiuses the KF estimation of Vehiclei-1 as extra measurements i.e.,the outputyfor Vehicleiwill be modified as

    The modification of the output of the KF for Vehicleiresults in the modification of the KF algorithm as well.That is,a new measurement noise covariance for Vehicleiis defined by taking account of the variance of the road signal estimation error of the prior Vehiclei-1 at each time step.This can be formulated as a KF with augmented pseudomeasurements as

    Prediction:

    whereCˉandRˉare the modified output matrix and modified measurement noise matrix respectively,i.e.

    andσ2w?i-1(k)stands for the variance of the road disturbance signal estimation error of the KF for Vehiclei-1 at the time stepk.This recursive scheme will lead to a better estimation of the road profile as each vehicle travels the road segment as shown in the simulations.

    3.2 GP pseudo-measurements

    In this case,the KF for each vehicle will incorporate the information of the latest GP regression as the pseudo-measurements for the road profile estimation purpose.Specifically,the output measurement for Vehicleiis modified as

    Similarly,the KF for Vehicleiwill be augmented with GP pseudo-measurements as the previous case,whereRˉin this case is equal to

    whereVAR(wGP,i-1(k))stands for the variance of the road disturbance signal estimation error obtained by the latest GP regression done at the cloud at iteration numberi-1.In Section 5,how these two types of extra measurements will lead to better performance of the on-board KFs in each vehicle will be demonstrated. It is noted that the proposed framework will still work if a nonlinear plant model is used.In this case,instead of using KFs,nonlinear observers such as EKFs and high-gain observers can be used for local estimations.

    4 Simulation

    In this section,simulation results for the proposed collaborative estimation framework are presented. Specifically,N=5 heterogeneous vehicles with different model parameters are considered.The parameter values for constructing theAandGmatrices in Eq.(2)for each vehiclei=1,…,Nare

    which corresponds to the measurements of sprung mass displacement and suspension deflection that are available in(semi-)active suspension systems.

    In the simulations,all participating vehicles travel through a road segment of 5m in length at the same speed.This results in the correspondence of the estimated points of each vehicle obtained by the KF algorithm.The actual road profile was generated based on a Class-C road[17].The measurement noisevifor each vehicle is generated in a way that the signal-to-noise ratio is between 10 and 20.For the cloud-based GP,the initial GP prior is defined with a zero mean function and squared exponential(SE)

    In this equation,the hyperparameterσ2fstands for the signal variance or the vertical scaling factor whereas the hyperparameter is known as the horizontal scaling factor.In other words,the distance that is needed to move along the specified axis in the input space so that the function values become uncorrelated[21].The parameterris the distance measure of the inputs and equals tor=|si-sj|[22].

    For the GP regressions,there are 3 approaches to calculate Eqs.(8)and(9).The first approach is that,for theith GP,all the estimation data of the KF up to vehicle numberiis used as the training points and then the posterior is inferred given all the collected data.The second approach is to similarly collect all the data up to Vehicleibut instead use a sparsity approximation GP approach.The last one is to use an updating recursive approach[6]where for the new arriving data,the GP will infer the posterior distribution given all the previous data without taking account of all the collected data to construct the matrices in Eqs.(8)and(9)which will cause a heavy computational burden if there are a lot of training data points.In this preliminary study,the first approach is used as the number of considered vehicles are small and the implemented approach does not impose heavy computational burden. Other approaches will be considered in the future.

    The performance of the proposed recursive KF for Vehicles 1 to 5 when exploiting the KF pseudomeasurements from the prior vehicle is compared with the benchmark case,i.e.,without using the pseudomeasurements.The results are shown in Figure 4a and it is clear that using this extra measurement can reduce the root mean squared error(RMSE)of the estimated road profile.This extra measurement is helpful for the KF algorithm to have a better estimation in general and the variances of the estimation error decreases from vehicle to vehicle.Fig.4b shows the mean and variance of the road profile estimation error when comparing Vehicles 1 and 5,which shows that a lower mean and variance is achieved in the last vehicle(Vehicle 5)as compared to the Vehicle 1.

    Fig.4 Onboard estimation performance estimation

    Fig.5-Fig.7 summarizes the performance of the pro-posed recursive KF when exploiting the latest GP pseudo-measurements as pseudo-measurements.Fig.5 is a comparison of the GP pseudo-measurement case and the benchmark setting where each vehicle performs the KF without using the pseudo-measurements.It is clearly observed that using pseudo-measurements brings about a superior performance.For the KF using pseudomeasurements,after Vehicle 4 the error does not decrease much.This is due to the fact that after certain number of vehicles,the GP will fit a curve to the road profile which has a low variance and the next KF(that is,the KF for Vehicle 5 which uses the GP pseudomeasurement)will be more likely to trust the latest GP pseudo-measurement rather than the process dynamics.Going one step before,on the GP side,this is the result of using the training data points originated from the previous KFs augmented with GP pseudomeasurements.This iterative use of the information of GP for the KF estimation of road profile and the use of GP of the estimation of KF,is the reason that eventually both KF and GP predictions converge to a single road profile and the improvement will be halted.Ongoing research is on the development of new ideas to enhance the current result.

    Fig.5 RMSE of the on-board KF of the vehicle with respect to the actual road with and without using pseudo-measurements

    Fig.6 is a comparison of the first cloud-based GP regression and the last one.In addition to reduction of the variance from the first to the last vehicle,the improvement of the mean function,which is the prediction of the GP of the road profile,is significant.In Fig.7,the cloud based RMSE of the GP regression with the actual road profile for GP fit numberiis compared with the average of KFs up to Vehiclei,used as a benchmark.The results show a clear superiority of the GP regression,resulting in a lower RMSE of road profile for all vehicles.

    Fig.6 First and last GP regression

    Fig.7 Comparison of the cloud-based GP and the benchmark setting

    5 Conclusion

    In this paper,a novel cloud-based collaborative road profile estimation framework using multiple heterogeneous vehicles was developed.GP was used to crowdsource individual estimates,which was then used as pseudo-measurements for future vehicles to enhance its local measurements. This pseudomeasurement was able to greatly enhance the local estimation performance. The enhanced local estimation was then uploaded to the cloud to update the GP estimation.Future work will focus on dealing with GPS imprecision and data-efficient GP to make this framework more practically viable.

    作者貢獻(xiàn)聲明:

    LI Zhaojian:Conceptualization,Supervision,Writing-review&editing.

    HAJIDAVALLOO MOHAMMAD R:Formal analysis,Software,Writing original draft.XIA Xin:Discussion,Writing-review&editing.ZHENG Minghui:Discussion,Writing-review&editing.

    猜你喜歡
    東蘭協(xié)同式州立大學(xué)
    東蘭銅鼓美術(shù)元素在高校美術(shù)教學(xué)中的創(chuàng)新應(yīng)用
    ——以廣西現(xiàn)代職業(yè)技術(shù)學(xué)院為例
    教育觀察(2022年20期)2022-08-16 12:13:22
    “四大板塊、六大支撐” 協(xié)同式“雙創(chuàng)”教學(xué)模式研究
    淺析東蘭銅鼓的音樂(lè)特色及錄音技巧
    過(guò)東蘭(外二首)
    基于虛擬現(xiàn)實(shí)的人機(jī)交互下協(xié)同式產(chǎn)品外觀設(shè)計(jì)
    探究協(xié)同式空中交通流量管理核心技術(shù)
    美國(guó)費(fèi)里斯州立大學(xué)(FSU)大學(xué)生學(xué)習(xí)動(dòng)力來(lái)源的思考與啟示
    研究生培養(yǎng)教育的協(xié)同式創(chuàng)新探析
    廣西東蘭:開(kāi)通“遠(yuǎn)教微信”搭建黨員教育新平臺(tái)
    美國(guó)學(xué)前教育教師職前專業(yè)能力培養(yǎng)的特征及啟示——以美國(guó)塞勒姆州立大學(xué)早期兒童教育專業(yè)為例
    国产片特级美女逼逼视频| 日本-黄色视频高清免费观看| 熟女av电影| 成人亚洲欧美一区二区av| 99re6热这里在线精品视频| 黄色配什么色好看| 国产色婷婷99| 国产爽快片一区二区三区| 青春草国产在线视频| 97精品久久久久久久久久精品| 三级国产精品片| 久热久热在线精品观看| 亚洲精品中文字幕在线视频 | 国产伦理片在线播放av一区| 特大巨黑吊av在线直播| 又爽又黄无遮挡网站| 成人鲁丝片一二三区免费| 超碰97精品在线观看| 美女视频免费永久观看网站| 美女高潮的动态| 成人欧美大片| 亚洲美女搞黄在线观看| 亚州av有码| 久久精品人妻少妇| 国产探花极品一区二区| 日本一本二区三区精品| 日韩一区二区三区影片| 性色avwww在线观看| 日本爱情动作片www.在线观看| 在线观看三级黄色| 哪个播放器可以免费观看大片| 亚洲激情五月婷婷啪啪| 全区人妻精品视频| 人人妻人人澡人人爽人人夜夜| 久久久久久久久久成人| 亚洲国产精品999| 成人午夜精彩视频在线观看| 久久久a久久爽久久v久久| 亚洲最大成人av| 久久人人爽人人爽人人片va| 七月丁香在线播放| 婷婷色综合大香蕉| 日韩欧美 国产精品| 国产老妇女一区| 国产精品秋霞免费鲁丝片| 午夜福利在线在线| 国产精品无大码| 97人妻精品一区二区三区麻豆| 免费播放大片免费观看视频在线观看| 国产精品秋霞免费鲁丝片| 少妇人妻久久综合中文| 九九久久精品国产亚洲av麻豆| 丰满人妻一区二区三区视频av| av在线观看视频网站免费| 在线观看av片永久免费下载| 中文字幕av成人在线电影| 男女边摸边吃奶| 两个人的视频大全免费| 身体一侧抽搐| 免费观看在线日韩| 亚洲精品视频女| 亚洲欧美日韩无卡精品| 国产真实伦视频高清在线观看| 亚洲欧美精品专区久久| 国产精品偷伦视频观看了| 男女啪啪激烈高潮av片| 日产精品乱码卡一卡2卡三| 午夜福利在线观看免费完整高清在| 熟女电影av网| 欧美最新免费一区二区三区| 国产老妇女一区| 亚洲成色77777| 伦精品一区二区三区| 色5月婷婷丁香| 国产午夜精品一二区理论片| 精品人妻一区二区三区麻豆| 国产91av在线免费观看| 国产乱来视频区| 黄色视频在线播放观看不卡| 久久久色成人| 国产免费一区二区三区四区乱码| 女人十人毛片免费观看3o分钟| 免费大片18禁| 有码 亚洲区| 中文精品一卡2卡3卡4更新| 三级经典国产精品| 中文字幕久久专区| 丝袜脚勾引网站| 婷婷色综合www| 国语对白做爰xxxⅹ性视频网站| 色视频在线一区二区三区| 色哟哟·www| 国产国拍精品亚洲av在线观看| 五月玫瑰六月丁香| 亚洲精品色激情综合| 亚州av有码| 精品午夜福利在线看| 亚洲综合色惰| 国产精品久久久久久精品电影| 精品久久久久久电影网| 各种免费的搞黄视频| 99久久中文字幕三级久久日本| 26uuu在线亚洲综合色| 国产精品偷伦视频观看了| 国产极品天堂在线| 免费观看a级毛片全部| 精品人妻视频免费看| 自拍偷自拍亚洲精品老妇| 高清午夜精品一区二区三区| 亚洲婷婷狠狠爱综合网| 丝袜美腿在线中文| 成年人午夜在线观看视频| 人妻 亚洲 视频| 色吧在线观看| 亚洲久久久久久中文字幕| 欧美成人a在线观看| 欧美成人一区二区免费高清观看| 欧美日韩国产mv在线观看视频 | 一本久久精品| 国语对白做爰xxxⅹ性视频网站| 日韩欧美精品免费久久| 一本久久精品| 男人和女人高潮做爰伦理| 热99国产精品久久久久久7| 青春草国产在线视频| 熟女人妻精品中文字幕| 国产精品一区www在线观看| 99热6这里只有精品| 性色av一级| 亚洲av不卡在线观看| 欧美极品一区二区三区四区| 精品久久久精品久久久| 99久久精品国产国产毛片| 成年人午夜在线观看视频| 精品一区二区三区视频在线| 水蜜桃什么品种好| 国产乱来视频区| 成人鲁丝片一二三区免费| 免费黄网站久久成人精品| 日本三级黄在线观看| 国产欧美日韩一区二区三区在线 | 国产一级毛片在线| 欧美3d第一页| av线在线观看网站| 大又大粗又爽又黄少妇毛片口| 日韩一区二区视频免费看| 日日摸夜夜添夜夜添av毛片| 国产男女超爽视频在线观看| 两个人的视频大全免费| 亚洲精品久久久久久婷婷小说| 男女边摸边吃奶| 欧美精品人与动牲交sv欧美| 国产午夜福利久久久久久| 高清午夜精品一区二区三区| 夫妻性生交免费视频一级片| 色网站视频免费| 欧美变态另类bdsm刘玥| 高清午夜精品一区二区三区| 久久热精品热| 亚洲精品,欧美精品| 在线观看一区二区三区| 18禁裸乳无遮挡动漫免费视频 | 精品人妻一区二区三区麻豆| 亚洲av不卡在线观看| 亚洲人成网站高清观看| a级一级毛片免费在线观看| 国产成人freesex在线| 在线天堂最新版资源| 日本免费在线观看一区| 精华霜和精华液先用哪个| 搡女人真爽免费视频火全软件| 99久久精品热视频| 777米奇影视久久| 99九九线精品视频在线观看视频| 国产成人a∨麻豆精品| 最近手机中文字幕大全| 一级毛片我不卡| 国产老妇伦熟女老妇高清| 少妇 在线观看| 亚洲精品乱码久久久v下载方式| 天堂网av新在线| 国产伦在线观看视频一区| 中文天堂在线官网| 成人黄色视频免费在线看| 亚洲国产精品专区欧美| 亚洲av免费在线观看| 我要看日韩黄色一级片| 一区二区三区乱码不卡18| 男人爽女人下面视频在线观看| 欧美3d第一页| 亚洲人成网站高清观看| 色5月婷婷丁香| 欧美xxⅹ黑人| 国内揄拍国产精品人妻在线| 中文精品一卡2卡3卡4更新| 亚洲精品国产成人久久av| 一个人观看的视频www高清免费观看| 少妇人妻精品综合一区二区| 性色avwww在线观看| 女人十人毛片免费观看3o分钟| 日本爱情动作片www.在线观看| 一级二级三级毛片免费看| 婷婷色综合www| 麻豆乱淫一区二区| 超碰97精品在线观看| 午夜精品一区二区三区免费看| 亚洲,欧美,日韩| 肉色欧美久久久久久久蜜桃 | 啦啦啦中文免费视频观看日本| 丰满少妇做爰视频| 国产精品嫩草影院av在线观看| 少妇熟女欧美另类| 久久久久性生活片| 亚洲精品国产av蜜桃| 涩涩av久久男人的天堂| 熟女av电影| 在线a可以看的网站| 街头女战士在线观看网站| 亚洲精品成人久久久久久| 亚洲精品乱久久久久久| 国产av不卡久久| 亚洲,一卡二卡三卡| 国产精品99久久99久久久不卡 | 丰满人妻一区二区三区视频av| 美女国产视频在线观看| a级毛片免费高清观看在线播放| 女人十人毛片免费观看3o分钟| 日韩 亚洲 欧美在线| av在线播放精品| 91午夜精品亚洲一区二区三区| 九九久久精品国产亚洲av麻豆| 夜夜爽夜夜爽视频| 一个人看的www免费观看视频| 日韩精品有码人妻一区| 日本猛色少妇xxxxx猛交久久| 亚洲aⅴ乱码一区二区在线播放| 少妇 在线观看| 免费人成在线观看视频色| 成年版毛片免费区| 男人舔奶头视频| 成人国产麻豆网| 亚洲精品日韩av片在线观看| 国产真实伦视频高清在线观看| 啦啦啦在线观看免费高清www| 校园人妻丝袜中文字幕| 婷婷色综合www| 欧美极品一区二区三区四区| 一级毛片aaaaaa免费看小| 亚洲人成网站在线观看播放| 国产一区有黄有色的免费视频| 亚洲成色77777| 久久久午夜欧美精品| 99久久精品热视频| 国产成年人精品一区二区| 国产黄a三级三级三级人| 欧美另类一区| 六月丁香七月| 成年av动漫网址| 国产精品国产av在线观看| 夜夜看夜夜爽夜夜摸| 亚洲内射少妇av| 精品久久久久久电影网| av在线天堂中文字幕| 久久久色成人| 亚洲精品乱码久久久v下载方式| 国产毛片在线视频| 欧美xxⅹ黑人| 成人毛片60女人毛片免费| 国产熟女欧美一区二区| 97人妻精品一区二区三区麻豆| 精品久久国产蜜桃| 成人无遮挡网站| 欧美丝袜亚洲另类| 晚上一个人看的免费电影| 成人综合一区亚洲| 国产高清不卡午夜福利| 亚洲欧美精品专区久久| 中文精品一卡2卡3卡4更新| 美女内射精品一级片tv| 亚洲精品国产av成人精品| 色婷婷久久久亚洲欧美| 成年免费大片在线观看| 特大巨黑吊av在线直播| 少妇的逼水好多| 我的老师免费观看完整版| 亚洲av成人精品一二三区| 美女xxoo啪啪120秒动态图| 老司机影院成人| videos熟女内射| 在线天堂最新版资源| eeuss影院久久| 综合色丁香网| 简卡轻食公司| 欧美一级a爱片免费观看看| 人人妻人人澡人人爽人人夜夜| 亚洲熟女精品中文字幕| 成人特级av手机在线观看| 中文乱码字字幕精品一区二区三区| 欧美一级a爱片免费观看看| 精品国产一区二区三区久久久樱花 | 中文字幕制服av| 国产成人午夜福利电影在线观看| 大话2 男鬼变身卡| 少妇被粗大猛烈的视频| 我要看日韩黄色一级片| 老司机影院成人| 久久久久九九精品影院| 午夜精品国产一区二区电影 | 岛国毛片在线播放| 中文欧美无线码| 嫩草影院精品99| 水蜜桃什么品种好| 夜夜爽夜夜爽视频| 夜夜看夜夜爽夜夜摸| 99久久精品热视频| 色播亚洲综合网| 干丝袜人妻中文字幕| 另类亚洲欧美激情| 中文字幕av成人在线电影| 国产男女内射视频| 精品一区二区三区视频在线| 成人美女网站在线观看视频| 黄色一级大片看看| 亚洲成人中文字幕在线播放| 在线观看美女被高潮喷水网站| 成人亚洲精品av一区二区| 日韩国内少妇激情av| 亚洲av欧美aⅴ国产| 一本色道久久久久久精品综合| 91久久精品国产一区二区成人| 18禁动态无遮挡网站| 赤兔流量卡办理| 免费观看av网站的网址| 国产成人免费观看mmmm| 久久久久国产精品人妻一区二区| 中文天堂在线官网| 日韩三级伦理在线观看| 丰满少妇做爰视频| 亚洲精品乱码久久久v下载方式| 搞女人的毛片| 亚洲激情五月婷婷啪啪| 亚洲国产av新网站| 嫩草影院入口| 丝瓜视频免费看黄片| www.av在线官网国产| 看非洲黑人一级黄片| 在线观看免费高清a一片| 内地一区二区视频在线| 内射极品少妇av片p| 五月伊人婷婷丁香| 女人十人毛片免费观看3o分钟| 亚洲精品乱码久久久v下载方式| 99精国产麻豆久久婷婷| 日本午夜av视频| 久久久久久久精品精品| 99热这里只有是精品在线观看| 日韩在线高清观看一区二区三区| 看十八女毛片水多多多| 亚洲怡红院男人天堂| 欧美xxxx黑人xx丫x性爽| 午夜精品国产一区二区电影 | 国产淫语在线视频| 在线观看av片永久免费下载| 亚洲精品国产色婷婷电影| 99热6这里只有精品| 高清视频免费观看一区二区| 久久国产乱子免费精品| 久久ye,这里只有精品| 韩国av在线不卡| 熟女av电影| 久久精品久久久久久噜噜老黄| 99久久精品国产国产毛片| 国产日韩欧美在线精品| 91久久精品电影网| av国产精品久久久久影院| 亚洲国产精品国产精品| 国产成人精品久久久久久| 国产av不卡久久| 麻豆精品久久久久久蜜桃| 国产精品国产av在线观看| 少妇人妻一区二区三区视频| 免费大片18禁| 亚洲av不卡在线观看| 99精国产麻豆久久婷婷| 国产成人精品婷婷| 乱系列少妇在线播放| 国产在线男女| 亚洲精品亚洲一区二区| 成人漫画全彩无遮挡| 女人被狂操c到高潮| 成年版毛片免费区| 亚洲怡红院男人天堂| 亚洲最大成人手机在线| 97超碰精品成人国产| 日韩av不卡免费在线播放| 青春草亚洲视频在线观看| 又爽又黄无遮挡网站| 亚洲av二区三区四区| 少妇人妻 视频| 亚洲国产精品成人综合色| 精品亚洲乱码少妇综合久久| 午夜福利在线观看免费完整高清在| 国产精品三级大全| 日韩一区二区三区影片| 一个人看视频在线观看www免费| av国产免费在线观看| 欧美xxxx黑人xx丫x性爽| 成人一区二区视频在线观看| 永久免费av网站大全| 99九九线精品视频在线观看视频| 免费看av在线观看网站| 精品酒店卫生间| 在线观看三级黄色| 一本一本综合久久| 欧美成人精品欧美一级黄| av.在线天堂| 国产视频首页在线观看| 国产精品国产三级国产专区5o| 乱码一卡2卡4卡精品| 国产av码专区亚洲av| 亚洲自偷自拍三级| 色播亚洲综合网| 国产精品国产av在线观看| 搡女人真爽免费视频火全软件| 午夜激情福利司机影院| 国产av码专区亚洲av| 欧美zozozo另类| 免费看不卡的av| 高清日韩中文字幕在线| 国产精品伦人一区二区| 午夜福利高清视频| 午夜老司机福利剧场| 欧美激情国产日韩精品一区| 国产亚洲91精品色在线| 免费黄网站久久成人精品| 日韩av在线免费看完整版不卡| 欧美成人一区二区免费高清观看| 成人午夜精彩视频在线观看| 18禁裸乳无遮挡动漫免费视频 | 91午夜精品亚洲一区二区三区| 精品久久久精品久久久| 搞女人的毛片| 精品久久国产蜜桃| 国产精品久久久久久久久免| 在线天堂最新版资源| 久久ye,这里只有精品| 九九爱精品视频在线观看| 男的添女的下面高潮视频| 免费大片18禁| 国产美女午夜福利| 伊人久久精品亚洲午夜| 日韩制服骚丝袜av| 国产黄色视频一区二区在线观看| 日韩国内少妇激情av| 一本色道久久久久久精品综合| 建设人人有责人人尽责人人享有的 | 成年女人看的毛片在线观看| 亚洲高清免费不卡视频| 亚洲精品国产成人久久av| 欧美 日韩 精品 国产| 国产成人一区二区在线| 国产精品偷伦视频观看了| 嫩草影院入口| 国产欧美日韩精品一区二区| 成人黄色视频免费在线看| 天天躁日日操中文字幕| 一级爰片在线观看| 一区二区三区精品91| 好男人视频免费观看在线| 一级爰片在线观看| 亚洲天堂av无毛| 2021少妇久久久久久久久久久| 人妻一区二区av| 777米奇影视久久| 亚洲av不卡在线观看| 少妇高潮的动态图| 亚洲国产欧美在线一区| 在线免费观看不下载黄p国产| 一级毛片aaaaaa免费看小| 在线看a的网站| 在线观看美女被高潮喷水网站| 午夜精品国产一区二区电影 | 亚洲国产高清在线一区二区三| 国产视频首页在线观看| 国产黄色视频一区二区在线观看| 色综合色国产| 99久久中文字幕三级久久日本| 建设人人有责人人尽责人人享有的 | 精品一区二区免费观看| 在线免费观看不下载黄p国产| 国产男女超爽视频在线观看| 久久精品综合一区二区三区| 欧美高清性xxxxhd video| 99久久精品一区二区三区| 精品午夜福利在线看| 美女视频免费永久观看网站| 寂寞人妻少妇视频99o| 观看美女的网站| videos熟女内射| 亚洲欧美日韩无卡精品| 大香蕉97超碰在线| 黄色配什么色好看| 亚洲av免费在线观看| 久热久热在线精品观看| 91久久精品电影网| 嫩草影院入口| 国产精品不卡视频一区二区| 国产精品国产三级国产av玫瑰| 干丝袜人妻中文字幕| 亚洲性久久影院| 大片电影免费在线观看免费| 中文字幕制服av| 久久久亚洲精品成人影院| 一个人观看的视频www高清免费观看| 久久久精品免费免费高清| 少妇人妻久久综合中文| 韩国高清视频一区二区三区| 麻豆成人av视频| 亚洲精品色激情综合| 免费看日本二区| 国产爱豆传媒在线观看| 好男人视频免费观看在线| 人妻一区二区av| 2018国产大陆天天弄谢| 伊人久久国产一区二区| 亚洲欧美精品专区久久| 国产精品一区www在线观看| h日本视频在线播放| 久久影院123| 亚洲国产精品国产精品| 久久99精品国语久久久| 男插女下体视频免费在线播放| 亚洲欧美日韩东京热| 精品一区在线观看国产| 亚洲天堂国产精品一区在线| 日韩伦理黄色片| 秋霞在线观看毛片| 亚洲精品aⅴ在线观看| 好男人视频免费观看在线| 久久亚洲国产成人精品v| 日韩三级伦理在线观看| 亚洲精品乱码久久久v下载方式| 亚洲国产高清在线一区二区三| 免费观看无遮挡的男女| 国产又色又爽无遮挡免| 五月伊人婷婷丁香| 99热6这里只有精品| 纵有疾风起免费观看全集完整版| 亚洲婷婷狠狠爱综合网| 国产精品99久久久久久久久| 国国产精品蜜臀av免费| 久久久久久久亚洲中文字幕| 精品一区二区免费观看| 国产v大片淫在线免费观看| 国产精品成人在线| 熟女人妻精品中文字幕| 内射极品少妇av片p| 成人特级av手机在线观看| 乱码一卡2卡4卡精品| 26uuu在线亚洲综合色| 国产精品一二三区在线看| 在线观看av片永久免费下载| 精品一区二区免费观看| 免费观看的影片在线观看| 波多野结衣巨乳人妻| 各种免费的搞黄视频| 欧美 日韩 精品 国产| 国产精品偷伦视频观看了| 欧美xxxx性猛交bbbb| 身体一侧抽搐| 一级毛片我不卡| 色综合色国产| 国产av国产精品国产| kizo精华| 久久久久久国产a免费观看| 可以在线观看毛片的网站| av一本久久久久| 国产成人一区二区在线| av国产精品久久久久影院| 亚洲欧美成人综合另类久久久| 久久精品综合一区二区三区| 亚洲欧美成人精品一区二区| 亚洲内射少妇av| kizo精华| 最近中文字幕高清免费大全6| 伦理电影大哥的女人| 亚洲综合精品二区| 大话2 男鬼变身卡| 国产人妻一区二区三区在| 2022亚洲国产成人精品| 免费看av在线观看网站| 国产一区二区在线观看日韩| 亚洲av在线观看美女高潮| 777米奇影视久久| 18+在线观看网站| 少妇裸体淫交视频免费看高清| 伦理电影大哥的女人| 97热精品久久久久久| 国产高清三级在线| 亚洲av男天堂| 国产欧美日韩精品一区二区| av在线天堂中文字幕| 女人久久www免费人成看片| 校园人妻丝袜中文字幕| 麻豆成人av视频| 男女国产视频网站| 国产乱人偷精品视频| 日日啪夜夜撸| 欧美成人a在线观看| 赤兔流量卡办理| www.色视频.com| 婷婷色av中文字幕| 欧美精品一区二区大全| 亚洲国产精品成人综合色| 日韩视频在线欧美|