• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    大模場(chǎng)Er3+/Yb3+共摻錐形微結(jié)構(gòu)光纖1.5 μm激光特性

    2022-05-06 02:39:28王玲玲許鵬飛周德春
    發(fā)光學(xué)報(bào) 2022年4期
    關(guān)鍵詞:工程系晉中鵬飛

    王玲玲, 許鵬飛, 周德春*

    (1. 山西能源學(xué)院 能源與動(dòng)力工程系, 山西 晉中 030600; 2. 長(zhǎng)春理工大學(xué) 材料科學(xué)與工程學(xué)院, 吉林 長(zhǎng)春 130022)

    1 Introduction

    The near-infrared 1.5 μm laser has become a research hotspot owing to the wide range of applications in many fields such as biomedicine, environmental detection, space communications, infrared countermeasures, and guidance[1-4]. Er3+single-doped or Er3+/Yb3+co-doped microstructured optical fiber(hereinafter referred to as MOF) is an important way to generate high-power laser output in the 1.5 μm band[5-6]. This paper uses bismuth germanate glass as the host glass to prepare rare-earth-doped optical fiber. Bismuth germanate glass is expected to combine the advantages of bismuth glass and germanate glass, such as lower phonon energy, high refractive index, wider infrared transmission range, and good rare-earth ion solubility, which provides low laser pumping threshold and high pump absorption efficient. Compared with traditional optical fibers, MOF can achieve large-mode-field area, high-power single-mode laser output by effectively controlling the duty cycle and core[7-8]. Meanwhile, MOF has the advantages of a large numerical aperture and high coupling efficiency[9-11]. Fiber cone is drawn based on fiber through secondary processing technology. Its internal microstructure and cone shape make it have a large-mode-field area, adjustable dispersion, high nonlinear effect, non-cut-off single model, low transmission loss, and good beam quality[12-18]. Fiber cone has new applications in many fields. In 2017, Petersenetal.demonstrated the ability of tapered large-mode-area Ge10As22Se68PCFs to generate broadband MIR SC with record high output power above 4.5 μm[19]. In 2018, Maoetal. realized all-fiber flexible cylindrical vector lasers at 1 550 nm using fiber cones[20]. Previous studies have shown that the nonlinear effect of optical fiber can be reduced by shortening the length of optical fiber and increasing the core diameter[21-22]. However, with the increase in core diameter, the fiber laser no longer works in the single-mode state, and the quality of the output laser beam becomes poor. As the power continues to rise, there will be some scientific issues such as nonlinear effects, heat dissipation, laser damage,etc[23-26]. The design of a large-mode-field double-cladding Er3+/Yb3+co-doped MOF cone can avoid these problems and is an effective way to increase the output power further[27-30]. The excellent characteristics of rare earth doped MOF provide a new technical approach for high-power and high brightness fiber lasers.

    In this paper, a waveguide structure of large-mode-field double-cladding MOF was designed based on Er3+/Yb3+co-doped 45Bi2O3-29GeO2-15Ga2O3-10Na2O-1CeO2(hereinafter referred to as BGGN) glass. The full vector finite element method and the numerical analysis methods were used to study the optimal structural parameters of the MOF during single-mode operation. Furthermore, the main structural parameters such as the lattice constant(hole spacing) and the duty cycle of the MOF were determined. The large-mode-field Er3+/Yb3+co-doped MOF and its cone were prepared using the cluster drawing method and the fused biconical taper technology. The spectral and laser characteristics were studied. Finally, a self-designed linear cavity-structured fiber laser achieved a single-mode laser output of 1 546.9 nm in the fiber cone, and its beam quality factorM2reached 1.16±0.01.

    2 Experiments

    2.1 Structural Design of MOF and Analytical Method

    The MOF is an optical waveguide with triangular air pores in the cladding in this study. The guided mode propagates in the lattice defects in a process analogous to total internal reflection, that is, the flaws create the MOF core. Fig.1 shows the cross-section of bismuthate glass microstructure fiber. The number of microporous lattice layers in the inner cladding is 5, the core diameter is 70 μm, and the outside cladding is 488 μm. Before and after taper drawing, the fiber cone keeps the effective duty ratio at 0.25, the inner cladding air hole diameter at 10 μm, and the lattice constant at 40 μm.

    Fig.1 Cross-section of bismuthate glass microstructure fiber

    The full vector finite element method(FEM) uses matrix analysis to solve related algebraic equations.The discrete Maxwell equation is used to express the fluctuation of each cell in the transverse diffusion section of the optical fiber. The waveguide equation is solved for an approximate solution in the full fiber mode field[31]. For example, the two sides of a MOF cladding cell are ideal magnetic conductors(Fig.2). The fundamental mode HE11ypolarized in they-direction and HE11xof the fundamental mode polarized in thex-direction. The effective refractive index of the fundamental space-filling mode can be calculated by using complete vector finite element analysis(Fundamental space-filling mode, FSM).

    Fig.2 The cell calculation unit of MOF cladding

    The wave optics model of the MOF is developed through using FEM in this study, and the theoretical simulation calculation of the wave optics model of the MOF is performed using the absorption boundary condition of the perfectly matched layer.

    As with regular step-index fibers, Birks and Knightetal. reported in 1997[32]that the comparable normalized frequencyVeffis:

    (1)

    wherencoreis the refractive index of the core material at the MOF’s working wavelength,nFSMis the effective refractive index of the FSM, andReffis the MOF’s equivalent core radius. The single-mode operation can be maintained whenVeffis less than 2.405.

    For triangular microstructure fiber, Parketal. gave a functional relationship of equivalent core radius based on hole spacing and duty cycle in 2005[33]:

    (2)

    the values ofc1,c2andc3in the formula are 0.686 064, 0.265 366 and 1.291 080, respectively. Based on the fundamental mode effective refractive indexneffand the cladding effective refractive indexnFSM, the theoretical numerical aperture(NA) of the inner cladding can be computed:

    (3)

    The following equation can be used to calculate the effective mode field area of the MOF[34]:

    (4)

    whereAeffis the effective mode field area of the MOF,E(x,y) is the electric field distribution of the cross section of the fiber, and the integral region is the section of the whole fiber.

    2.2 Sample Preparation

    The cladding glass is composed of 45Bi2O3-29GeO2-15Ga2O3-10Na2O-1CeO2.The core glass samples with molar compositions of 45Bi2O3-29GeO2-15Ga2O3-10Na2O-1CeO2-0.5Er2O3-xYb2O3(wherex=0, 1, 2, 2.5, named as B1to B4) were prepared by melt-quenching method. The sample was weighed accurately and melted in an alumina oxide crucible at 1 200 ℃ for about 50 min under a dry O2/N2atmosphere to reduce the OH-content. Then it was quenched in preheated stainless steel blocks and annealed at the glass transition temperature for 3 h. Finally, the annealed glass sample was cut and polished to the size of 10 mm×10 mm×2 mm with two parallel sides for optical and spectroscopic measurements.

    The core glass rod was prepared by the melt-quenching method, and was drawn into a core rod with a diameter of 4.2 mm and a cutting length of 280 mm by a fiber drawing machine. The bundled drawing method was used to draw it into an Er3+/Yb3+co-doped MOF with a diameter of 488 μm, the core diameter was 70 μm, the inner cladding air hole diameterdwas 10 μm, the lattice constantΛis 40 μm, and the duty ratiod/Λ=0.25. The MOF was drawn into a fiber cone with a diameter of 122 μm, a core diameter of 17.5 μm, a length of the taper region of 30 mm, and a taper angle of 0.7° using the fused biconical taper technology.

    2.3 Measurements

    The absorption spectra were measured with a Perkin Elmer Lambda 950-type spectrophotometer. The measurement of infrared fluorescence spectrometry employs the Horiba Jobin Yvon’s Fluorolog-3 fluorescence spectrometer. In addition, the output quality of the fiber laser before and after the taper was measured by knife-edge method. AQ6370D spectrum analyzer manufactured by Yokogawa was used to detect the optical signal. The output power at the output end of the optical fiber was recorded by using a Newport 2936-R optical power meter. All the tests were performed at room temperature.

    3 Results and Discussion

    3.1 Spectral Analysis of Er3+/Yb3+ Co-doped BGGN Core Glass

    The absorption spectra of B1-B4glass are shown in Fig.3. The absorption peaks at 1 530, 980, 800, 650, 543, 520, 487 nm correspond to the Er3+ion from the ground state4I15/2to the excited state4I13/2,4I11/2,4I9/2,4F9/2,4S3/2,2H11/2and4F7/2, respectively. Obviously, the absorption peak near 980 nm is very strong which is caused by the spectral overlap of Yb3+ion energy level2F7/2→2F5/2and the Er3+ion energy level4I15/2→4I11/2. Therefore, the pump efficiency of 980 nm LD can be improved by the energy transfer between the energy level2F5/2of Yb3+and the energy level4I11/2of Er3+. Owing to the absorption cross section of Yb3+being larger than that of Er3+, and the concentration of Yb3+is several times that of Er3+, the absorption peak increases with the increase of Yb3+ion concentration.

    Fig.3 Absorption spectra of BGGN glass samples

    Fig.4 shows the 1.53 μm fluorescence spectra in Er3+/Yb3+co-doped BGGN glass. It can be seen from the figure that the fluorescence intensity of about 1.53 μm is significantly enhanced after Yb3+ions are doped. The highest emission intensity around 1.5 μm is achieved at around 2% Yb2O3concentration. This is because the sensitization of Yb3+ions improves the pump efficiency of 980 nm LD. However, due to the concentration quenching effect and anti-cross relaxation effect of Yb3+ions, when the doping concentration of Yb3+ions reach 2.5% or more, the energy cannot be effectively forwarded Er3+ions, which makes the 1.53 μm fluorescence intensity in the B4glass decrease significantly. Hence, the optimum doping ratio of Er3+∶Yb3+is 0.5%∶2%.

    Fig.4 Fluorescence spectra of the BGGN glass samples

    3.2 Cut-off Characteristic Analysis

    The finite element method was used to study the relationship between different duty cycles and the normalized final frequency of the fiber. In this paper, the lattice constantΛof inner cladding layer is 10-60 μm(Λis 10, 20, 30, 40, 50, 60 μm in order, and the working wavelength is 1.55 μm). According to formula (1), under different conditions ofd/Λ, the relationship curve between theVeffandd/Λwas obtained in Fig.5. It can be seen that, withd/Λ=0.25 andΛ=10, theVeffof MOF is less than 2.405, and the laser can achieve single-mode operation. At this time, the air hole diameterdof the inner cladding capillary glass should be 2.5 μm, and the duty cycle should be 0.25.

    Fig.5 Relationship between normalized cut-off frequency Veff and inner cladding duty cycle

    3.3 Mode Field and Numerical Aperture

    The structural parameters of fiber and fiber cone were verified and calculated by using the full vector finite element method. Fig.6 shows the structure and mode-field energy distribution. It should be emphasized that the optical field of this MOF is approximately hexagonal, and the core has the strongest optical field. The mode field diameters and effective mode field areas of fiber and fiber cone are 65.661 μm, 3 014.8 μm2, 17.603 μm and 206.47 μm2, respectively. The results show the parameters of the fiber cone can meet the single-mode operation of large-mode-field lasers[35-36].

    Fig.6 Structure and mode field energy distribution with effective duty ratio d/Λ=0.25. (a)Fiber. (b)Fiber cone.

    The inner cladding numerical aperture(NA) represents the ability of optical fiber collecting incident pump light, which is directly related to the coupling efficiency of the pump light[37]. Therefore, increasing the NA is important for improving the coupling efficiency of pump light. In this paper, the outer cladding air holes were selected as the cell calculation unit, the hole spacingPand the diameterDof the outer cladding air holes were used as the key variables. When the hole spacingPis 1, 2, 3, 4, 5 μm in order, the relationship curve between the NA of the inner cladding and the duty cycleD/Pof the outer cladding is shown in Fig.7. Obviously, the NA increases with theD/Pincreasing. Under the same duty cycle condition, the smallerPis, the larger NA is. WhenPis less than 2 μm, the theoretical maximum value of NA can reach above 0.8. Therefore, this work determine the hole spacingPafter taper is 2 mm,D/Pis 0.98, andDis 1.96 mm.At the same time, the optimal NA of the inner cladding could reach 0.75, which is larger than the tapered MOF (0.6) reported by Duan in 2020[38].

    Fig.7 The relationship curve between NA and D/P

    3.4 Laser Characteristics Analysis

    Fig.8 is the schematic diagram of a laser measuring apparatus for Er3+/Yb3+co-doped BGGN MOF. The laser uses 980 nm LD as the pump source and a self-made Er3+/Yb3+co-doped BGGN fiber with a length of 30 cm as the gain medium. Fig.9 is a cross section microscopic image of self-made optical fiber. The pump source pigtail is coupled into the inner cladding of the double-clad Er3+/Yb3+co-doped fiber through a collimating lens and a focusing lens. The laser cavity consists of a front cavity mirror which is a dichroic mirror(980 nm high transmission 98%, 1 530 nm high reflection greater than 99%) closing to the input end of the fiber, and a rear cavity mirror which is Fresnel reflection putting at the output end of the fiber.

    Fig.8 Structure of Er3+/Yb3+ co-doped microstructure fiber laser

    Fig.9 MOF cross section microscopic image

    Fig.10 shows the laser output spectrum of the fiber and fiber cone. The center wavelength of the excitation spectrum of the MOF laser is 1 550.2 nm and 1 546.9 nm, respectively. The taper causes the excitation center wavelength of the laser shifting to short waves. The reason for this phenomenon is that the lasing wavelength of a fiber laser is related to the fiber length and the excitation threshold. The fiber length has less change after tapering, but the intracavity loss of the excitation light in the fiber core increases, which increases the laser’s excitation threshold. Meanwhile, an increase in the excitation threshold corresponds to a short wavelength lasing wavelength. Therefore, the fiber taper technology moves the laser’s lasing wavelength toward the short-wave direction.

    Fig.10 Laser spectra of fiber(a) and fiber cone(b)

    The Er3+/Yb3+co-doped MOF and its cone with a length of 30 cm were pumped with 980 nm LD. Fig.11 is the relationship curve between output power and pump power. The laser output of fiber can be observed when the pumping power of the fiber is 239 mW. When the pumping power reaches 581 mW, the maximum laser output power is 55.7 mW. According to the measured data, a linear fit was performed in the above threshold range, and the slope efficiency of the fiber was 10.29%. The maximum output power of fiber cone under the same conditions is 50.12 mW, the slope efficiency is 9.70%, and the maximum output power is reduced by about 10%. This is because after taper drawing, the hole spacing becomes smaller, and the confinement loss of all modes increases. The disappearance of high-order modes and the rise in the confinement loss of the base mode are the main reasons for reducing laser output power.

    Fig.11 Laser output power characteristic curve of fiber and fiber cone

    At the output end of the Er3+/Yb3+co-doped MOF, the knife-edge method was used to measure the laser output beam quality of fiber and fiber cone. The results are shown in Fig.12. The quality factorM2of the fiber and fiber cone is 3.45 ± 0.03 and 1.16 ± 0.01. Taper makes the output beam quality factorM2of the laser smaller than before, and the laser output has a good single-mode.

    Fig.12 Laser output beam quality M2 of fiber(a) and fiber cone(b)

    4 Conclusion

    The waveguide structures of a large-mode-field double-cladding MOF and its cone were designed by the full vector finite element method. The Er3+/Yb3+co-doped optical fiber and fiber cone with composition 45Bi2O3-29GeO2-15Ga2O3-10Na2O-1CeO2were prepared by using the cluster drawing method and the fused biconical taper technology. The core diameters of fiber and its cone were 70 μm and 17.5 μm. The mode field areas were about 3 014.8 μm2and 206.47 μm2, the inner cladding duty cycled/Λof fiber and fiber cone were both 0.25. The optimal numerical aperture of the inner cladding of the MOF cone is 0.75, which can significantly improve the coupling efficiency of the pump light. The laser characteristics of fiber and its cone were studied under 980 nm LD. Results show that the taper makes the center wavelength of the excitation spectrum of the MOF laser drift from 1 550.2 nm to 1 546.9 nm. The slope efficiency of fiber and fiber cone can reach 10.29% and 9.70%, respectively. The output laser beam quality factorM2is significantly reduced from 3.45 ± 0.03 to 1.16 ± 0.01. This research provides a new approach for preparing large-mode-field, high-power laser fiber materials.

    Response Letter is available for this paper at:http://cjl.lightpublishing.cn/thesisDetails#10.37188/CJL. 20220010.

    猜你喜歡
    工程系晉中鵬飛
    晉中國(guó)家農(nóng)高區(qū)無(wú)花果采摘正當(dāng)時(shí)
    晉中市委統(tǒng)戰(zhàn)部調(diào)研晉中國(guó)家農(nóng)高區(qū)(山西農(nóng)谷)
    加快培育百億企業(yè) 建好晉中國(guó)家農(nóng)高區(qū)
    Quality Control for Traditional Medicines - Chinese Crude Drugs
    為了避嫌
    雜文月刊(2019年18期)2019-12-04 08:30:40
    懲“前”毖“后”
    21世紀(jì)(2019年10期)2019-11-02 03:17:02
    舉賢
    21世紀(jì)(2019年9期)2019-10-12 06:33:44
    晉中:率先出臺(tái)提升鄉(xiāng)村治理能力“25條”
    電子信息工程系
    機(jī)電工程系簡(jiǎn)介
    a 毛片基地| 在线观看美女被高潮喷水网站| 久久午夜福利片| 国产精品久久久久久精品古装| 国产一区有黄有色的免费视频| 在线精品无人区一区二区三| 18在线观看网站| xxx大片免费视频| av国产久精品久网站免费入址| 亚洲精品中文字幕在线视频| 国产成人一区二区在线| 制服诱惑二区| 国产亚洲午夜精品一区二区久久| 欧美日韩av久久| 久久人人爽人人片av| 热re99久久精品国产66热6| 国产爽快片一区二区三区| av线在线观看网站| 久久久久久久久久人人人人人人| 日韩不卡一区二区三区视频在线| 大片免费播放器 马上看| 999精品在线视频| 欧美激情 高清一区二区三区| 一级片免费观看大全| 爱豆传媒免费全集在线观看| 丝袜脚勾引网站| 少妇精品久久久久久久| 国产av精品麻豆| 久久久久精品久久久久真实原创| 久久精品国产综合久久久 | 制服诱惑二区| 中文字幕av电影在线播放| 激情视频va一区二区三区| 另类亚洲欧美激情| 久久99精品国语久久久| 在线观看国产h片| 久久精品夜色国产| 久久久精品免费免费高清| 制服丝袜香蕉在线| 国产激情久久老熟女| 国内精品宾馆在线| 久久精品熟女亚洲av麻豆精品| 免费女性裸体啪啪无遮挡网站| 桃花免费在线播放| 日韩欧美精品免费久久| 又黄又爽又刺激的免费视频.| 夫妻性生交免费视频一级片| 亚洲成国产人片在线观看| 99九九在线精品视频| 欧美成人午夜免费资源| 中文字幕另类日韩欧美亚洲嫩草| 亚洲综合色网址| 国产精品久久久久成人av| av在线app专区| 亚洲av电影在线进入| 国产麻豆69| 久久韩国三级中文字幕| 久久精品国产a三级三级三级| 大香蕉久久网| 十分钟在线观看高清视频www| 日韩欧美精品免费久久| 乱码一卡2卡4卡精品| 欧美最新免费一区二区三区| 国产欧美另类精品又又久久亚洲欧美| 亚洲国产精品成人久久小说| 久久久欧美国产精品| 一级片免费观看大全| 国产精品欧美亚洲77777| 水蜜桃什么品种好| 精品少妇黑人巨大在线播放| 日韩不卡一区二区三区视频在线| 18禁在线无遮挡免费观看视频| 亚洲图色成人| 熟女电影av网| 国产精品人妻久久久影院| 春色校园在线视频观看| 日韩一区二区视频免费看| 日韩一本色道免费dvd| √禁漫天堂资源中文www| 午夜激情av网站| 午夜免费观看性视频| 美女大奶头黄色视频| 国产亚洲午夜精品一区二区久久| 最近2019中文字幕mv第一页| 91精品三级在线观看| 国产 一区精品| 黄色怎么调成土黄色| 飞空精品影院首页| 日本-黄色视频高清免费观看| 国产精品国产三级国产av玫瑰| 一级毛片我不卡| 精品亚洲成a人片在线观看| 美女脱内裤让男人舔精品视频| 色婷婷av一区二区三区视频| 国产老妇伦熟女老妇高清| 久久精品熟女亚洲av麻豆精品| 久久久亚洲精品成人影院| 国国产精品蜜臀av免费| 飞空精品影院首页| 午夜福利在线观看免费完整高清在| 亚洲伊人久久精品综合| 国产片特级美女逼逼视频| 午夜福利乱码中文字幕| 国产一区二区三区av在线| 啦啦啦中文免费视频观看日本| 夜夜爽夜夜爽视频| 国产免费一级a男人的天堂| 一级片'在线观看视频| a级毛片黄视频| 久久韩国三级中文字幕| 久久久久精品久久久久真实原创| 97在线视频观看| 满18在线观看网站| 亚洲国产精品999| 乱码一卡2卡4卡精品| 国产精品国产三级国产专区5o| 国产精品女同一区二区软件| 草草在线视频免费看| 一级,二级,三级黄色视频| 日韩,欧美,国产一区二区三区| 国产免费又黄又爽又色| 成人二区视频| 日韩 亚洲 欧美在线| 亚洲av免费高清在线观看| 嫩草影院入口| 狂野欧美激情性xxxx在线观看| 久久这里只有精品19| 满18在线观看网站| 成年人免费黄色播放视频| 久久久精品免费免费高清| 国产色爽女视频免费观看| 成人综合一区亚洲| 国产又爽黄色视频| 国产亚洲一区二区精品| 日韩欧美精品免费久久| 午夜福利视频精品| 午夜免费鲁丝| 少妇的逼好多水| 一级片'在线观看视频| 亚洲综合色网址| 女人精品久久久久毛片| 久久精品国产自在天天线| 免费高清在线观看视频在线观看| 亚洲精品美女久久av网站| 巨乳人妻的诱惑在线观看| 三上悠亚av全集在线观看| 国产亚洲一区二区精品| 亚洲精品中文字幕在线视频| 麻豆精品久久久久久蜜桃| 亚洲国产色片| 春色校园在线视频观看| 下体分泌物呈黄色| 欧美精品亚洲一区二区| 一级黄片播放器| 晚上一个人看的免费电影| 久热久热在线精品观看| 999精品在线视频| 三上悠亚av全集在线观看| 乱人伦中国视频| 午夜福利视频在线观看免费| 又黄又爽又刺激的免费视频.| 少妇被粗大的猛进出69影院 | 在线精品无人区一区二区三| 亚洲在久久综合| 尾随美女入室| 在线天堂中文资源库| 人妻一区二区av| 亚洲成色77777| 最近中文字幕2019免费版| 男女下面插进去视频免费观看 | 视频中文字幕在线观看| 国产日韩一区二区三区精品不卡| 啦啦啦在线观看免费高清www| 极品人妻少妇av视频| 日韩三级伦理在线观看| 亚洲av电影在线观看一区二区三区| 亚洲综合色网址| 一级片'在线观看视频| 香蕉国产在线看| 精品福利永久在线观看| 午夜福利在线观看免费完整高清在| 精品人妻偷拍中文字幕| 亚洲欧美精品自产自拍| 你懂的网址亚洲精品在线观看| 国产成人精品福利久久| 亚洲久久久国产精品| 国产精品久久久av美女十八| 麻豆乱淫一区二区| 亚洲精品国产av成人精品| av国产精品久久久久影院| 久久影院123| 亚洲综合色网址| 日韩中文字幕视频在线看片| www.色视频.com| 人人妻人人澡人人看| 亚洲天堂av无毛| 日韩不卡一区二区三区视频在线| 色婷婷av一区二区三区视频| 日韩大片免费观看网站| 看非洲黑人一级黄片| 99香蕉大伊视频| 亚洲熟女精品中文字幕| 久久99蜜桃精品久久| 成人黄色视频免费在线看| 精品国产乱码久久久久久小说| 91国产中文字幕| 中文欧美无线码| 黄片无遮挡物在线观看| freevideosex欧美| 日韩人妻精品一区2区三区| 日产精品乱码卡一卡2卡三| 汤姆久久久久久久影院中文字幕| 最新中文字幕久久久久| 色婷婷av一区二区三区视频| 国产一区亚洲一区在线观看| 又粗又硬又长又爽又黄的视频| 搡老乐熟女国产| 久久综合国产亚洲精品| 最近中文字幕高清免费大全6| 黑人猛操日本美女一级片| 亚洲精品色激情综合| av天堂久久9| 午夜福利影视在线免费观看| 国产片特级美女逼逼视频| 在线免费观看不下载黄p国产| 妹子高潮喷水视频| 亚洲图色成人| 久久婷婷青草| 女人久久www免费人成看片| 国产 一区精品| 日韩av在线免费看完整版不卡| 国产女主播在线喷水免费视频网站| 超色免费av| 亚洲欧美成人综合另类久久久| 国产欧美日韩综合在线一区二区| 五月玫瑰六月丁香| 制服人妻中文乱码| xxxhd国产人妻xxx| 精品久久久精品久久久| 下体分泌物呈黄色| 女的被弄到高潮叫床怎么办| 巨乳人妻的诱惑在线观看| 亚洲国产日韩一区二区| 看十八女毛片水多多多| 精品人妻偷拍中文字幕| 中文字幕人妻熟女乱码| 有码 亚洲区| 大片免费播放器 马上看| 秋霞在线观看毛片| 涩涩av久久男人的天堂| 久热这里只有精品99| 国产在线免费精品| 欧美精品人与动牲交sv欧美| 香蕉国产在线看| 色吧在线观看| 精品第一国产精品| 亚洲综合精品二区| 纯流量卡能插随身wifi吗| 国产不卡av网站在线观看| 国产有黄有色有爽视频| 1024视频免费在线观看| 黑人高潮一二区| 日本av手机在线免费观看| www日本在线高清视频| 亚洲av日韩在线播放| 亚洲在久久综合| 日韩在线高清观看一区二区三区| 老司机影院成人| 免费观看av网站的网址| 国产成人aa在线观看| 久久久精品94久久精品| 在线天堂最新版资源| 国产精品.久久久| 亚洲精品久久久久久婷婷小说| 国产一区二区在线观看日韩| 青春草亚洲视频在线观看| 妹子高潮喷水视频| 国产av一区二区精品久久| 满18在线观看网站| 久久久久久伊人网av| 在线观看三级黄色| 黄色毛片三级朝国网站| 麻豆精品久久久久久蜜桃| 考比视频在线观看| 男女免费视频国产| 国产精品人妻久久久影院| 美国免费a级毛片| 99久久人妻综合| 色94色欧美一区二区| 观看av在线不卡| 久久综合国产亚洲精品| 丰满饥渴人妻一区二区三| 国产精品国产av在线观看| 亚洲av日韩在线播放| 国产国拍精品亚洲av在线观看| 99九九在线精品视频| 国产爽快片一区二区三区| av有码第一页| 日韩中字成人| 国精品久久久久久国模美| 婷婷色av中文字幕| 宅男免费午夜| 国产精品成人在线| 国产精品女同一区二区软件| 秋霞在线观看毛片| 国产精品不卡视频一区二区| 最新的欧美精品一区二区| 成人漫画全彩无遮挡| 久久精品久久久久久久性| 欧美激情 高清一区二区三区| 久久99蜜桃精品久久| 中国国产av一级| 麻豆乱淫一区二区| 欧美激情 高清一区二区三区| 汤姆久久久久久久影院中文字幕| 国产激情久久老熟女| 国产精品嫩草影院av在线观看| 久久精品国产鲁丝片午夜精品| 五月开心婷婷网| 欧美亚洲 丝袜 人妻 在线| 黄片播放在线免费| 香蕉精品网在线| 免费看不卡的av| 欧美日韩成人在线一区二区| 国产综合精华液| 国产无遮挡羞羞视频在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 香蕉丝袜av| 男人操女人黄网站| 国产免费视频播放在线视频| 蜜桃国产av成人99| 久久这里有精品视频免费| 亚洲精品日韩在线中文字幕| 国产高清国产精品国产三级| 99热6这里只有精品| 秋霞伦理黄片| 亚洲av国产av综合av卡| 亚洲国产精品一区三区| a级毛色黄片| 十八禁网站网址无遮挡| 婷婷色综合大香蕉| 少妇猛男粗大的猛烈进出视频| 国产爽快片一区二区三区| 亚洲成人av在线免费| 亚洲精品国产色婷婷电影| 亚洲成人一二三区av| 久久狼人影院| 久久免费观看电影| 美女xxoo啪啪120秒动态图| 亚洲五月色婷婷综合| 人人妻人人爽人人添夜夜欢视频| 视频区图区小说| 国产免费一区二区三区四区乱码| 老女人水多毛片| 男女下面插进去视频免费观看 | 国产爽快片一区二区三区| 最近中文字幕2019免费版| 伊人亚洲综合成人网| 99热国产这里只有精品6| 咕卡用的链子| 精品一区二区三卡| 永久免费av网站大全| 成人18禁高潮啪啪吃奶动态图| 久热久热在线精品观看| 亚洲经典国产精华液单| 日日撸夜夜添| 97人妻天天添夜夜摸| 人妻一区二区av| av片东京热男人的天堂| 一级毛片我不卡| 午夜福利乱码中文字幕| 亚洲精品乱码久久久久久按摩| 校园人妻丝袜中文字幕| 97在线人人人人妻| 国产女主播在线喷水免费视频网站| 久久久久视频综合| 中文乱码字字幕精品一区二区三区| 成人午夜精彩视频在线观看| 国产精品国产三级专区第一集| 免费观看性生交大片5| 伊人久久国产一区二区| 中文天堂在线官网| av天堂久久9| 久热久热在线精品观看| 国产一区二区激情短视频 | 99久国产av精品国产电影| 一级爰片在线观看| 只有这里有精品99| 国产精品久久久久久av不卡| 日本91视频免费播放| 国产免费一级a男人的天堂| 国国产精品蜜臀av免费| 黄色 视频免费看| 国产av码专区亚洲av| 国产国拍精品亚洲av在线观看| 一级黄片播放器| 看免费成人av毛片| 我的女老师完整版在线观看| 一二三四在线观看免费中文在 | 男女边摸边吃奶| 成人18禁高潮啪啪吃奶动态图| 黄色 视频免费看| 国产成人精品久久久久久| 黄片播放在线免费| 老熟女久久久| 亚洲精品自拍成人| 久久韩国三级中文字幕| 夜夜爽夜夜爽视频| 国产精品一二三区在线看| 亚洲国产精品999| 日韩伦理黄色片| 免费日韩欧美在线观看| 尾随美女入室| 色婷婷av一区二区三区视频| 人妻少妇偷人精品九色| 免费看光身美女| 亚洲伊人久久精品综合| 黄色视频在线播放观看不卡| 不卡视频在线观看欧美| 一本—道久久a久久精品蜜桃钙片| av女优亚洲男人天堂| 99re6热这里在线精品视频| 中国三级夫妇交换| 激情视频va一区二区三区| 老司机影院毛片| 亚洲欧洲精品一区二区精品久久久 | 欧美国产精品一级二级三级| 国产无遮挡羞羞视频在线观看| 中文字幕人妻丝袜制服| 多毛熟女@视频| 亚洲图色成人| 1024视频免费在线观看| 王馨瑶露胸无遮挡在线观看| 亚洲精品久久成人aⅴ小说| 少妇被粗大猛烈的视频| 精品第一国产精品| 亚洲欧美色中文字幕在线| 国产一区二区三区av在线| 丝袜美足系列| 尾随美女入室| 五月玫瑰六月丁香| 亚洲国产成人一精品久久久| 一级片免费观看大全| 精品卡一卡二卡四卡免费| 熟女av电影| 搡女人真爽免费视频火全软件| 最近2019中文字幕mv第一页| 伦理电影大哥的女人| 亚洲精品国产色婷婷电影| 国产乱人偷精品视频| 这个男人来自地球电影免费观看 | 天天躁夜夜躁狠狠躁躁| 成人毛片60女人毛片免费| 欧美性感艳星| 亚洲第一av免费看| 亚洲熟女精品中文字幕| 曰老女人黄片| 大陆偷拍与自拍| 综合色丁香网| 久久毛片免费看一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 亚洲内射少妇av| 9191精品国产免费久久| 亚洲欧美成人精品一区二区| 久久久久精品久久久久真实原创| 国产精品久久久久久av不卡| 欧美老熟妇乱子伦牲交| 亚洲精品乱久久久久久| 亚洲国产欧美日韩在线播放| 久久国产精品大桥未久av| 国产视频首页在线观看| 亚洲图色成人| av播播在线观看一区| 国产精品嫩草影院av在线观看| 色94色欧美一区二区| 观看美女的网站| 久久精品aⅴ一区二区三区四区 | 18禁国产床啪视频网站| 色吧在线观看| 国产欧美日韩一区二区三区在线| 美女大奶头黄色视频| 一级毛片我不卡| 久久久久国产网址| 搡老乐熟女国产| 久久婷婷青草| av又黄又爽大尺度在线免费看| 久久人人97超碰香蕉20202| 午夜日本视频在线| 日本欧美国产在线视频| 国产在线免费精品| 成人18禁高潮啪啪吃奶动态图| 美女中出高潮动态图| 精品久久久久久电影网| 热re99久久精品国产66热6| 国产免费福利视频在线观看| 热re99久久国产66热| 日韩成人伦理影院| 少妇的逼好多水| 欧美精品高潮呻吟av久久| 亚洲国产av新网站| 热re99久久精品国产66热6| 亚洲精品自拍成人| 色婷婷久久久亚洲欧美| 精品国产露脸久久av麻豆| 热re99久久国产66热| 国产探花极品一区二区| 制服人妻中文乱码| 国产av一区二区精品久久| 午夜激情久久久久久久| 新久久久久国产一级毛片| 国产国语露脸激情在线看| 黄网站色视频无遮挡免费观看| 午夜福利网站1000一区二区三区| 好男人视频免费观看在线| 亚洲在久久综合| 男女高潮啪啪啪动态图| 巨乳人妻的诱惑在线观看| 亚洲一级一片aⅴ在线观看| 免费黄网站久久成人精品| 午夜av观看不卡| 国产黄色视频一区二区在线观看| 永久免费av网站大全| 亚洲精品国产av成人精品| 久久精品人人爽人人爽视色| 久久人人爽av亚洲精品天堂| 人妻 亚洲 视频| 又粗又硬又长又爽又黄的视频| av在线老鸭窝| 久久久久国产精品人妻一区二区| 九色亚洲精品在线播放| 美女视频免费永久观看网站| 少妇人妻 视频| 午夜影院在线不卡| 18禁裸乳无遮挡动漫免费视频| 国产亚洲精品第一综合不卡 | 青春草视频在线免费观看| 9色porny在线观看| 不卡视频在线观看欧美| 在线观看免费高清a一片| 日本-黄色视频高清免费观看| 黄色视频在线播放观看不卡| 亚洲天堂av无毛| 涩涩av久久男人的天堂| 亚洲精品国产色婷婷电影| videosex国产| a级毛片黄视频| 天天躁夜夜躁狠狠久久av| 欧美 日韩 精品 国产| 国产一区亚洲一区在线观看| 深夜精品福利| 9191精品国产免费久久| 中文天堂在线官网| 亚洲精品成人av观看孕妇| 少妇被粗大猛烈的视频| 美女中出高潮动态图| 看免费av毛片| 大话2 男鬼变身卡| 国产一级毛片在线| xxx大片免费视频| 久久久久国产网址| 下体分泌物呈黄色| 日韩伦理黄色片| 日韩精品免费视频一区二区三区 | 日韩一区二区视频免费看| 亚洲色图综合在线观看| 成人毛片60女人毛片免费| 丝袜在线中文字幕| 中国三级夫妇交换| a级片在线免费高清观看视频| 一区二区三区四区激情视频| 免费女性裸体啪啪无遮挡网站| 国产亚洲一区二区精品| 七月丁香在线播放| 亚洲欧美成人精品一区二区| 性色avwww在线观看| 久久99精品国语久久久| 日本91视频免费播放| 青青草视频在线视频观看| 亚洲av日韩在线播放| 晚上一个人看的免费电影| 国产男人的电影天堂91| 久久久久国产网址| 国产成人aa在线观看| 国产精品秋霞免费鲁丝片| 久久毛片免费看一区二区三区| 国产免费一区二区三区四区乱码| 日韩av在线免费看完整版不卡| 免费黄网站久久成人精品| 色哟哟·www| 久久精品人人爽人人爽视色| a 毛片基地| 搡女人真爽免费视频火全软件| 两个人免费观看高清视频| av在线播放精品| 亚洲激情五月婷婷啪啪| 十八禁高潮呻吟视频| 欧美性感艳星| 亚洲欧美精品自产自拍| 久热久热在线精品观看| 少妇的逼好多水| 久久精品人人爽人人爽视色| 韩国av在线不卡| 色吧在线观看| 亚洲在久久综合| av女优亚洲男人天堂| 成人国产麻豆网| 国产精品人妻久久久久久| 午夜福利影视在线免费观看| 亚洲色图 男人天堂 中文字幕 | 精品一区二区三区四区五区乱码 | 我的女老师完整版在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产精品久久久久久av不卡| 日韩人妻精品一区2区三区| 国产乱人偷精品视频|