• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An improved Vibe algorithm for illumination mutations

    2022-05-05 07:54:28LIANGJinchengWANGXiaopengWANGQingsheng

    LIANG Jincheng, WANG Xiaopeng, WANG Qingsheng

    (School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)

    Abstract: The visual background extractor(Vibe) algorithm can lead to a large area of false detection in the extracted foreground target when the illumination is mutated. An improved Vibe method based on the YCbCr color space and improved three-frame difference is proposed in this paper. The algorithm detects the illumination mutation frames accurately based on the difference between the luminance components of two frames adjacent to a video frame. If there exists a foreground moving target in the previous frame of the mutated frame, three-frame difference method is utilized; otherwise, Vibe method using current frame is used to initialize background. Improved three-frame differential method based on the difference in brightness between two frames of the video changes the size of the threshold adaptively to reduce the interference of noise on the foreground extraction. Experiment results show that the improved Vibe algorithm can not only suppress the “ghost” phenomenon effectively but also improve the accuracy and completeness of target detection, as well as reduce error rate of detection when the illumination is mutated.

    Key words: moving target detection; visual background extractor (Vibe) algorithm; YCbCr color space; three-frame difference method

    0 Introduction

    Moving target detection[1]is a process that extracts the part of the interested image sequence. The performance of the detection has an impact on target recognition and target tracking accuracy. The current moving target detection methods contain frame difference method[2], optical flow method[3]and background difference method[4]. The frame difference method detects a moving target by calculating the difference between two consecutive frames and using a threshold determination, which is simple. But the contour of the detection target is incomplete, and contains “holes” inside. The optical flow method detects moving targets through the motion state vector of each pixel. However, it is difficult to apply widely in practice because of the high computational complexity, high hardware requirements and poor real-time performance. The background difference method constructs a background model to differ the image sequence from the current background model. The foreground and background of a moving target are distinguished by a threshold. Visual background extractor (Vibe) algorithm[5], which is a pixel-level background modeling method with the advantages of fast initialization of the background model, optimal sample decay and high computational efficiency, is an effective background differential method. However, in complex background conditions such as background perturbations (water surface ripples, leaf shaking, etc.) and noise interference (wind, rain, etc.), the Vibe algorithm has a high false detection rate.

    In recent years,many improved algorithms have been proposed. In Ref.[6], small target discarding and void filling strategies are applied to remove noise. This algorithm improves the accuracy and recognition rate. In Ref.[7], an improved Vibe algorithm is proposed to address the difficulty of adapting to complex background environments with fixed thresholds. This algorithm introduces the maximum inter-class variance method to improve the accuracy and integrity of target detection by changing the fixed pixel thresholds to dynamic thresholds. Ref.[8] addresses the problem of inaccurate detection of foreground moving targets due to noise and interference in the video. The proposed algorithm dynamically adjusts the update period and update method of the model according to the complexity of the scene, so that the model can effectively eliminate the effects of vignettes and background noise.

    Although those improved Vibe algorithms show some adaptability in complex background environments, it is difficult to detect moving targets completely and accurately under mutated illumination, and the detected foreground often contains large areas of false detection. In this paper, an improved Vibe algorithm based on YCbCr color[9]space is proposed with precise positioning of illumination mutation frames in YCbCr color space by judging the difference between the luminance components of two frames adjacent to a video frame. Also the luminance components is used to change the threshold adaptively in improved three-frame difference method. If a foreground moving target exists in the previous frame of the mutated frame, three-frame difference method is utilized; otherwise, Vibe[10-14]method using current frame is used to initialize background. As a result, “ghost” phenomenon, which is false detection during frame initialization, can be suppressed.

    1 Vibe algorithm

    Vibe algorithm does not require any prior knowledge of the scene during background initialization. The initialization of background where each pixel is used to create its own set of samples (samples in each set are collected probabilistically from pixels in pixel vicinity), can be done by using the first frame. Here,M(x) is defined as the background sample of pixelxwhere each pixel hasNsamples, andviis the 8-neighborhood random sample for pixelx. The set is defined as

    M(x)={v1,v2,…,vN-1,vN}i∈[1,N].

    (1)

    When foreground segmentation is applied, the Vibe algorithm distinguishes between foreground and background pixels by comparing the similarity between the current pixel and the corresponding pixel sample set in the background initialization. Firstly, set current pixelxasv(x); secondly, make a circleSR(v(x)) centered atxwith radiusR; finally, set the threshold asUmin. Fig.1 shows a schematic representation of the foreground extraction with Vibe algorithm on the 2D color space (C1,C2) component.

    In Fig.1, pixelx is judged to be the background pixel if the number of samples of pixelxinSR(v(x)) is larger than the thresholdUmin; otherwise it is judged to be the foreground.

    (2)

    wherebgis the background image, andfgis the foreground image.

    Fig.1 Two-dimensional color space diagram with Vibe algorithm

    During background update, Vibe algorithm uses random subsampling. Only if a pixel is determined as background in the foreground detection, then each sample in the alternative background is updated with a probability of 1/φ(φis the time sampling factor). Spatial information neighborhood spreading mechanism is used to spread background information to neighboring pixels and the background model of the pixelxis updated randomly with the same probability while updating the background model of its neighboring pixels.

    2 Improved Vibe algorithm

    2.1 Precise detection of illumination mutation frames

    If there exists an illumination mutation in the video, thenYcomponent corresponded to the two frames before and after the mutation will also change. When dealing with the illumination mutation, the change ofYcomponent is used to describe the illumination mutation, and thus accurate judgment of illumination mutation of the video frame can be achieved. However, images are generally obtained in RGB color space, so that the conversion between RGB and YCbCr are required, which is

    (3)

    Suppose that there aresframes (t=1,2,3,…,s) in a video andKpixels (i=1,2,3,…,K) in each frame. The brightness of each pixel isY(i) and the average of all pixels in an image isYt_mean. It can be expressed as

    (4)

    This paper considers average brightness values of two adjacent video frames. The absolute difference between the average brightness values of frametand framet-1 isY(t), which represents the image brightness variation scale of two adjacent frames. At this point, thresholdYthis introduced. IfY(t)≥Yth, then illumination mutation is occurred, and vice versa.

    |Yt-1_mean-Yt_mean|=Yt.

    (5)

    2.2 Improved three-frame difference method

    Three-frame difference[15-19]is an improved frame difference algorithm which allows complete extraction of moving targets when the target moves too fast. Assume that there are three video framest-1,tandt+1 areFt-1,FtandFt+1, and grayscales of pixels in the three frames areFt-1(x,y),Ft(x,y) andFt+1(x,y). As shown in Fig.2,RtandRt+1are the difference results ofFt-1andFtas well asFtandFt+1, respectively.

    Rt(x,y)=|Ft(x,y)-Ft-1(x,y)|.

    (6)

    Binary images of the moving targets is extracted according to thresholdT.PtandPt+1are obtained by

    (7)

    (8)

    The conventional three-frame difference method applies fixed thresholdT. IfTis too large, some information of the target may be blocked. IfTis too small, noise may not be suppressed. Also, the fixedTis not able to accommodate the illumination mutation.

    Improved three-frame difference method is introduced based onYtand weightsτ, which can change the threshold adaptively. When the light change is small,τYtis close to 0. When the change is too large,τYtis significantly large. In this algorithm,τ=0.25.τis derived from the experiment. The selection criterion is top reserving the characteristics of the foreground targetand eliminating the influence of noise on the extraction of foreground pixels. The formula is

    (9)

    The thresholdT1andT2of the differences between framest-1,tand framest,t+1 shown in Eq.(9) is controlled byY(t) andY(t+1). Binary differential imagesPtandPt+1are obtained byT1andT2.

    (10)

    (11)

    In Fig.2, Fig.2(a) is the 60th frame of the Canoe video, and Fig.2(b) is the binary image acquired by the conventional three-frame difference method. In Fig.2(b), false detection appears widely in the foreground due to the changes of the water surface ripples. Fig.2(c) shows the binary image acquired by improved three-frame difference method with adaptive threshold according to luminance. The algorithm is performed well and adapts to the changes in the water surface area, and the false detection rate of foreground is reduced.

    Fig.2 Improved three-frame differential detection results

    The flowchart of improved Vibe algorithm is shown in Fig.3.

    The improved Vibe algorithm is achieved by the specific steps.

    Step 1: Calculate the difference of YCbCr spatial luminance component for the current frame of the input video according to Eqs.(3)-(5), and compare it with the threshold, if an illumination mutation occurs, perform the step 3, otherwise perform step 2.

    Step 2: Foreground extraction is performed according to the conventional Vibe algorithm when illumination mutation is not detected in the current frame.

    Step 3: When an illumination mutation is detected in the current frame, and if the foreground pixel exists in the previous frame, step 4 is performed, otherwise perform step 5.

    Step 4: Use improved three-frame difference method to extract the foreground target according to Eqs.(9)-(11).

    Step 5: The Vibe algorithm is used for background initialization and foreground extraction of the current frame, as a result, accurate detection and extraction of the foreground under illumination mutations can be achieved.

    Fig.3 Flowchart of improved Vibe algorithm

    3 Results and discussion

    To verify the accuracy and validity of the algorithm for foreground detection under illumination mutations and the ability to suppress “ghost” phenomenon, three videos are used to validate the algorithm in this paper. The parameters set for the experiments are number of samples collectedN=20, minimum number of matches #min=2, distance thresholdR=20, frame sampling frequencyφ=16, thresholdYth=20, The Intel?CorTMi5-4200U CPU@1.60 GHz 2.300 GHz/memory 8.00 GB hardware platform was used in the experiment, and the simulation experiment was carried out under the MTALAB R2012b environment. Lightingswitch and two self-captured videos are tested.

    The first experiment is validated by using lightingswitch. As shown in Fig.4(a) and (b), illumination mutation caused by target rapid approach to the camera in a dark environment is located in the 327th and 328th frames. The second experiment is conducted with a video captured indoors by using the camera. Illumination mutation caused by the light switch is occurred in 107th and 108th frames. The mutation frames are shown in Fig.4(c) and (d). Presence of foreground pixels are detected.

    Fig.4 Illuminated mutation frames with foreground targets

    Fig.4(a) and (b) are two frames before and after the light mutation of lightingswitch. Fig.4(c) and (d) are two frames before and after the illuminated mutation from the second set of video images.

    Experiments are conducted by conventional Vibe algorithm, three-frame difference method and improved Vibe algorithm. Visual results are shown in Fig.6. In the results of the Vibe algorithm, the foreground target can no longer be distinguished due to the effect of illumination. Foreground targets can be identified in the results of the three-frame difference method with large areas of noise and false detection. The improved Vibe algorithm can clearly identify the foreground target and suppress false detection, which is better than the conventional Vibe algorithm and the three-frame difference method.

    Fig.5(a) and (e) are the original frame images with illumination mutation. Fig.5(b) and (f) are the results of Vibe algorithm. Fig.5(c) and (g) are the results of three-frame difference method. Fig.5(d) and (h) are the results of improved Vibe algorithm.

    Fig.5 Foreground detection renderings containing foreground images

    The third experiment is conducted with another self-captured video.There is no foreground targets exists in the image when the illumination mutation occurs. Fig.6(a) and (b) are the two frames detected by this algorithm with illumination mutation which are frames 20 and 21.

    Fig.6 Illuminated mutation frame detection images without foreground targets

    Comparison experiments are conducted by using conventional Vibe algorithm, three-frame difference method and the algorithm in this paper. Results are shown in Fig.7. After illumination mutation, the three-frame difference method only detects an incomplete moving target contour of frames 23 and 24. False detection appears in the result of conventional Vibe algorithm widely. Improved Vibe algorithm can detect the moving targets precisely and completely. When the moving target appears completely in the image, comparison results of the three algorithms in frame 32 proves that the improved Vibe algorithm performs better than conventional Vibe algorithm and three-frame difference method.

    Fig.7 Foreground detection map for illumination mutation frames without foreground images

    Fig.7(a), (e) and (i) are the frames 23, 24 and 32 of the third set of videos. Fig.7(b), (f) and (j) are the processing results of three-frame difference. Fig.7(c), (g) and (k) are the processing results of Vibe algorithm. Fig.7(d), (h) and (l) are the processing results of improved Vibe.

    When the current frame has lighting mutation, if foreground pixel exists in the previous frame, improved three-frame difference method is used for foreground extraction. If the Vibe algorithm is used for background initialization and foreground extraction of the current frame, “ghost” phenomenon is appeared in the foreground detection.

    Fig.8(a), (b), (c) and (d) are the original images in frames 328-331 of the video. Fig.8(e), (f), (g) and (h) are the results of frames 328-331 of the video by the improved three-frame difference method. Fig.8(i), (j), (k) and (l) are the results of frames 328-331 of the video by initializing the background of the current frame by using conventional Vibe algorithm.

    Fig.8 shows that when an illumination mutation phenomenon is detected and foreground pixel is existed in the frame just before the mutated frame, the foreground target can be detected in real time and extracted completely by using improved three-frame difference method. However, if a foreground target is detected by using the Vibe algorithm for initial model processing, “ghost” phenomenon appears in the foreground target. Fig.8(e) shows that when a illumination mutation is detected in frame 328, the foreground can be extracted accurately by using the improved three-frame difference method. However, one frame is required for background initialization to initialize the current frame by using Vibe. Phenomenon of “ghost” occurs with Vibe initialization modeling in the followed three frames of frame 328, and it is difficult to eliminate “ghost”. Foreground target can be accurately extracted by using improved three-frame difference in this paper.

    Fig.8 Experimental results for ghost elimination

    Relevant performance metrics are used to quantify the performance of the algorithms.

    (12)

    (13)

    (14)

    whereDTPis the number of correctly detected foreground pixels;DFPis the number of incorrectly detected pixels;DTNis the number of pixels in the foreground that are not identified as background;DPCCis the overall percentage of correct classification, expressed as the percentage of all pixels that were correctly detected as foreground and background pixels;DFPRdenotes the false alarm rate, which represents the percentage of false foreground pixels detected as a percentage of the overall pixel count;DFNRis the false-negative rate, indicating the proportion of foreground pixels that are missed as background pixels.

    Three videos are tested and calculated by using three different methods for moving target detection under illumination mutation conditions and the results are averaged and the data are shown in Table 1.DFPRandDFNRof the Vibe algorithm and the three-frame difference method are high due to illumination mutation, resulting in lower foreground detection accuracy. For overall evaluation criterionDPCC, it can be shown that the results of the algorithm detection in this paper are excellent among all indicators. As can be seen from the data in Table 2, although the algorithm in this paper adds steps compared with conventional Vibe algorithm, the execution time of the proposed algorithm is only a little bit longer than the conventional Vibe algorithm with a few seconds. There is little difference in real-time performance

    Table 1 Comparison of indicators of three algorithms

    Table 2 Processing time of three algorithms for video

    4 Conclusions

    An improved Vibe algorithm based on YCbCr color space and improved three-frame difference method is proposed to solve the problem of foreground target false detection by using conventional Vibe algorithm in the presence of illumination mutation. It can realize precise positioning of illumination mutation frames in YCbCr color space by comparing the difference between the luminance components of two frames adjacent with a video frame with threshold. Different processing methods for subsequent frames depend on whether there exists foreground pixels in the previous frame of the mutated frame; “ghost” phenomenon can be suppressed. Experimental results show that the proposed algorithm is able to detect moving targets under illumination mutation accurately. The improved Vibe algorithm reduces the false detection rate effectively and improves the adaptability of the algorithm under illumination conditions.

    国产一级毛片在线| 黄色欧美视频在线观看| 一本久久精品| 国产伦一二天堂av在线观看| 国产成年人精品一区二区| 色吧在线观看| 久久这里只有精品中国| 一级毛片久久久久久久久女| 日本黄色片子视频| 十八禁国产超污无遮挡网站| 校园春色视频在线观看| 亚洲精品日韩av片在线观看| 成年女人看的毛片在线观看| 你懂的网址亚洲精品在线观看 | 亚洲不卡免费看| 成人鲁丝片一二三区免费| 美女高潮的动态| 午夜精品国产一区二区电影 | 最近最新中文字幕大全电影3| 黄色欧美视频在线观看| 中国美白少妇内射xxxbb| 少妇熟女aⅴ在线视频| 黄色日韩在线| 欧美一区二区精品小视频在线| 久久欧美精品欧美久久欧美| 国产av不卡久久| 禁无遮挡网站| 国产av一区在线观看免费| 大香蕉久久网| avwww免费| 岛国在线免费视频观看| 色尼玛亚洲综合影院| 白带黄色成豆腐渣| 少妇丰满av| 国产黄色小视频在线观看| 麻豆精品久久久久久蜜桃| 国产在线男女| 村上凉子中文字幕在线| 黄色视频,在线免费观看| 韩国av在线不卡| 亚洲精华国产精华液的使用体验 | 亚洲av不卡在线观看| 色5月婷婷丁香| 亚洲精品日韩在线中文字幕 | 国产白丝娇喘喷水9色精品| 五月伊人婷婷丁香| 好男人视频免费观看在线| 免费黄网站久久成人精品| 日韩,欧美,国产一区二区三区 | 两个人视频免费观看高清| 蜜桃亚洲精品一区二区三区| 国产免费男女视频| 国产精品久久久久久精品电影| 18禁在线无遮挡免费观看视频| 精品99又大又爽又粗少妇毛片| 九草在线视频观看| 亚洲一级一片aⅴ在线观看| 插阴视频在线观看视频| 可以在线观看毛片的网站| 一区二区三区高清视频在线| 床上黄色一级片| 国产精品久久久久久精品电影小说 | 国产欧美日韩精品一区二区| av在线观看视频网站免费| 激情 狠狠 欧美| 精品无人区乱码1区二区| 精品久久久久久久人妻蜜臀av| 国产爱豆传媒在线观看| 久久综合国产亚洲精品| 久久精品国产99精品国产亚洲性色| 欧美日韩国产亚洲二区| 国产中年淑女户外野战色| 亚洲久久久久久中文字幕| 网址你懂的国产日韩在线| 亚洲欧美日韩无卡精品| av卡一久久| 在线播放国产精品三级| 久久鲁丝午夜福利片| 一本一本综合久久| 免费看美女性在线毛片视频| 免费搜索国产男女视频| 午夜福利在线观看吧| 一本一本综合久久| 内地一区二区视频在线| 嘟嘟电影网在线观看| 欧美3d第一页| 老司机福利观看| 性欧美人与动物交配| 国产又黄又爽又无遮挡在线| 精品一区二区免费观看| 国产精品一区二区在线观看99 | 麻豆国产97在线/欧美| 综合色av麻豆| 91在线精品国自产拍蜜月| 毛片女人毛片| 成人av在线播放网站| 欧美成人免费av一区二区三区| 日韩一区二区视频免费看| 日韩,欧美,国产一区二区三区 | 边亲边吃奶的免费视频| 3wmmmm亚洲av在线观看| 亚洲自拍偷在线| 直男gayav资源| 国内久久婷婷六月综合欲色啪| 波多野结衣巨乳人妻| 亚洲第一区二区三区不卡| 日韩三级伦理在线观看| 成年免费大片在线观看| 变态另类成人亚洲欧美熟女| a级毛片免费高清观看在线播放| 插阴视频在线观看视频| 亚洲最大成人手机在线| 小说图片视频综合网站| 老熟妇乱子伦视频在线观看| 九草在线视频观看| 中文字幕av成人在线电影| 国产一区二区在线观看日韩| 国产一区亚洲一区在线观看| 嫩草影院新地址| 麻豆成人午夜福利视频| 嘟嘟电影网在线观看| 精品国内亚洲2022精品成人| 99久久九九国产精品国产免费| 欧美+亚洲+日韩+国产| 国产精品av视频在线免费观看| 国产成人福利小说| 午夜福利在线观看吧| 内地一区二区视频在线| 人妻制服诱惑在线中文字幕| 亚洲18禁久久av| 熟女人妻精品中文字幕| 成人永久免费在线观看视频| 亚洲美女视频黄频| 麻豆国产av国片精品| 午夜免费男女啪啪视频观看| 久久久成人免费电影| 麻豆国产av国片精品| 国产伦理片在线播放av一区 | 一边摸一边抽搐一进一小说| 国产精品人妻久久久久久| av免费观看日本| 亚洲婷婷狠狠爱综合网| 亚洲欧美成人精品一区二区| 亚洲美女视频黄频| 国产日本99.免费观看| 色综合色国产| 国产精品久久久久久精品电影| 99在线视频只有这里精品首页| 国产精品不卡视频一区二区| 国产精品国产三级国产av玫瑰| 简卡轻食公司| .国产精品久久| 久久人人爽人人爽人人片va| 婷婷色av中文字幕| 亚洲中文字幕一区二区三区有码在线看| 色哟哟·www| 干丝袜人妻中文字幕| 波野结衣二区三区在线| 精品午夜福利在线看| 51国产日韩欧美| 成人高潮视频无遮挡免费网站| 亚洲av男天堂| 日韩一区二区三区影片| 国产极品精品免费视频能看的| 国产一区二区三区在线臀色熟女| 观看免费一级毛片| www日本黄色视频网| 禁无遮挡网站| 岛国毛片在线播放| 九色成人免费人妻av| 国产v大片淫在线免费观看| 国产精品久久久久久久电影| 国产精品爽爽va在线观看网站| 国产91av在线免费观看| 国产极品天堂在线| 日韩高清综合在线| 人人妻人人看人人澡| 欧美bdsm另类| 简卡轻食公司| 99视频精品全部免费 在线| 亚洲精品国产成人久久av| 欧美极品一区二区三区四区| 午夜福利在线在线| 99久国产av精品国产电影| 欧美高清成人免费视频www| 国内揄拍国产精品人妻在线| 麻豆精品久久久久久蜜桃| 三级男女做爰猛烈吃奶摸视频| 天堂√8在线中文| 久久久国产成人精品二区| 国产精品免费一区二区三区在线| 久久久久网色| 变态另类成人亚洲欧美熟女| 免费大片18禁| 啦啦啦观看免费观看视频高清| 亚洲激情五月婷婷啪啪| 在线观看午夜福利视频| 久久久欧美国产精品| 国内揄拍国产精品人妻在线| 欧美色欧美亚洲另类二区| 在线a可以看的网站| 国产一区二区亚洲精品在线观看| 国产大屁股一区二区在线视频| 日韩一本色道免费dvd| 色播亚洲综合网| 十八禁国产超污无遮挡网站| 26uuu在线亚洲综合色| 亚洲欧美日韩高清专用| 国产精品一区二区在线观看99 | 日韩精品青青久久久久久| 亚洲aⅴ乱码一区二区在线播放| 成人美女网站在线观看视频| 欧美日韩精品成人综合77777| 国产片特级美女逼逼视频| 中文资源天堂在线| 一边亲一边摸免费视频| 国产综合懂色| 欧美bdsm另类| 狂野欧美白嫩少妇大欣赏| 免费人成在线观看视频色| 久久精品国产亚洲av天美| 久久韩国三级中文字幕| 韩国av在线不卡| 欧美一级a爱片免费观看看| 婷婷亚洲欧美| 久久这里只有精品中国| 99国产精品一区二区蜜桃av| 午夜激情福利司机影院| 国产精品不卡视频一区二区| 在线a可以看的网站| 我的女老师完整版在线观看| av卡一久久| 蜜桃久久精品国产亚洲av| 99久久九九国产精品国产免费| 最新中文字幕久久久久| 亚洲av一区综合| 男人狂女人下面高潮的视频| 黄色配什么色好看| av国产免费在线观看| 亚洲国产精品成人久久小说 | 久久6这里有精品| 日韩一区二区视频免费看| www.色视频.com| 日本黄色片子视频| 国产精品一区二区性色av| 卡戴珊不雅视频在线播放| 18+在线观看网站| 99热只有精品国产| 亚洲精品乱码久久久v下载方式| 久久久午夜欧美精品| 18禁裸乳无遮挡免费网站照片| 成人一区二区视频在线观看| 波多野结衣高清无吗| 成人国产麻豆网| 亚洲,欧美,日韩| 永久网站在线| 久久精品国产亚洲av香蕉五月| 深爱激情五月婷婷| 99热全是精品| 97超碰精品成人国产| 国产精品福利在线免费观看| 久久精品国产清高在天天线| 亚洲精品国产av成人精品| 国内久久婷婷六月综合欲色啪| 黄色配什么色好看| 国产一区二区在线观看日韩| 日本av手机在线免费观看| 亚洲欧美精品综合久久99| 少妇熟女aⅴ在线视频| 热99在线观看视频| 日日摸夜夜添夜夜爱| 又爽又黄无遮挡网站| 国产白丝娇喘喷水9色精品| 丰满人妻一区二区三区视频av| 极品教师在线视频| 免费看a级黄色片| 久久久国产成人免费| 女同久久另类99精品国产91| 少妇猛男粗大的猛烈进出视频 | 床上黄色一级片| 乱码一卡2卡4卡精品| 久久精品国产自在天天线| 韩国av在线不卡| 亚洲成人久久性| 日韩欧美精品免费久久| 看十八女毛片水多多多| 一区二区三区四区激情视频 | 午夜福利在线观看吧| 精品少妇黑人巨大在线播放 | 狂野欧美白嫩少妇大欣赏| av.在线天堂| 欧美zozozo另类| 日韩在线高清观看一区二区三区| 国产一区二区亚洲精品在线观看| 国产精品野战在线观看| 亚洲av成人av| 成人综合一区亚洲| 亚洲熟妇中文字幕五十中出| 国内精品久久久久精免费| 亚洲综合色惰| 日韩欧美国产在线观看| 免费av毛片视频| 成熟少妇高潮喷水视频| 26uuu在线亚洲综合色| 免费看av在线观看网站| 最好的美女福利视频网| 国产中年淑女户外野战色| 91久久精品电影网| 老司机影院成人| 欧美区成人在线视频| 欧美在线一区亚洲| 国产精品乱码一区二三区的特点| 免费大片18禁| 欧美激情国产日韩精品一区| 天美传媒精品一区二区| 免费看光身美女| 18禁在线播放成人免费| 伦精品一区二区三区| 日韩欧美一区二区三区在线观看| 高清毛片免费观看视频网站| 亚洲不卡免费看| 国产伦精品一区二区三区四那| www.av在线官网国产| 日韩欧美一区二区三区在线观看| 毛片一级片免费看久久久久| 乱码一卡2卡4卡精品| 免费观看在线日韩| 99久久精品热视频| 99久国产av精品国产电影| 看黄色毛片网站| 婷婷色综合大香蕉| 日韩av在线大香蕉| 国产综合懂色| 日韩欧美 国产精品| 久久久久久国产a免费观看| 国产视频内射| 欧美日韩综合久久久久久| 村上凉子中文字幕在线| 狂野欧美白嫩少妇大欣赏| 一进一出抽搐gif免费好疼| 在现免费观看毛片| 欧美精品一区二区大全| 好男人视频免费观看在线| 免费无遮挡裸体视频| 久久6这里有精品| 亚洲最大成人中文| 免费人成视频x8x8入口观看| 免费av不卡在线播放| 色播亚洲综合网| 国产精品国产高清国产av| 一个人免费在线观看电影| 成人永久免费在线观看视频| а√天堂www在线а√下载| 日日摸夜夜添夜夜添av毛片| 偷拍熟女少妇极品色| 中国美白少妇内射xxxbb| 嫩草影院精品99| 18+在线观看网站| a级毛片a级免费在线| 国产探花在线观看一区二区| 色综合站精品国产| 免费av观看视频| 久久久久久国产a免费观看| 国产伦精品一区二区三区四那| 国产av不卡久久| 联通29元200g的流量卡| 九色成人免费人妻av| 国产精品电影一区二区三区| 久久久成人免费电影| 嘟嘟电影网在线观看| 波多野结衣高清无吗| 亚洲欧洲日产国产| 91aial.com中文字幕在线观看| 免费看美女性在线毛片视频| 精品人妻一区二区三区麻豆| ponron亚洲| 亚洲av第一区精品v没综合| 国产 一区 欧美 日韩| 精品一区二区三区人妻视频| 亚洲内射少妇av| 精品无人区乱码1区二区| 高清午夜精品一区二区三区 | 中文在线观看免费www的网站| 在线观看av片永久免费下载| 亚洲欧美日韩卡通动漫| 男人狂女人下面高潮的视频| 国产精品一区二区性色av| a级毛片免费高清观看在线播放| 亚洲精品456在线播放app| 精品熟女少妇av免费看| 欧美性感艳星| 国产色爽女视频免费观看| 欧美一区二区精品小视频在线| 99国产精品一区二区蜜桃av| 真实男女啪啪啪动态图| 国产爱豆传媒在线观看| 免费搜索国产男女视频| 成人美女网站在线观看视频| 2021天堂中文幕一二区在线观| 春色校园在线视频观看| 伊人久久精品亚洲午夜| 国产 一区精品| 国产熟女欧美一区二区| 听说在线观看完整版免费高清| 精品久久久久久久久久久久久| 国产免费一级a男人的天堂| 99久久无色码亚洲精品果冻| 免费av观看视频| 色吧在线观看| 日韩亚洲欧美综合| 天天一区二区日本电影三级| 亚洲国产欧美人成| 最后的刺客免费高清国语| 寂寞人妻少妇视频99o| 国产精品,欧美在线| 人妻少妇偷人精品九色| 免费av观看视频| 久久国产乱子免费精品| 国产成人a∨麻豆精品| 午夜免费男女啪啪视频观看| 国产伦精品一区二区三区视频9| 欧美成人精品欧美一级黄| 久久99蜜桃精品久久| 能在线免费观看的黄片| 亚洲第一区二区三区不卡| 天天躁日日操中文字幕| 干丝袜人妻中文字幕| 国产探花极品一区二区| 国产一区二区亚洲精品在线观看| 真实男女啪啪啪动态图| 国产成年人精品一区二区| 男女那种视频在线观看| 久久久久久久久久黄片| 99久久人妻综合| 18禁黄网站禁片免费观看直播| 久久精品夜色国产| 成人毛片a级毛片在线播放| 男人和女人高潮做爰伦理| 熟女电影av网| 在线观看午夜福利视频| 日韩,欧美,国产一区二区三区 | 精品久久久久久久久亚洲| 一进一出抽搐动态| 人人妻人人澡人人爽人人夜夜 | 村上凉子中文字幕在线| 日本一二三区视频观看| 老熟妇乱子伦视频在线观看| 青青草视频在线视频观看| 日韩一区二区视频免费看| 国产一区亚洲一区在线观看| 国产在视频线在精品| 国内揄拍国产精品人妻在线| 免费看日本二区| 亚洲精品久久久久久婷婷小说 | 亚洲高清免费不卡视频| 国产精品一区二区性色av| 少妇熟女欧美另类| 搡女人真爽免费视频火全软件| 亚洲人成网站高清观看| 乱人视频在线观看| 免费av不卡在线播放| 国产老妇伦熟女老妇高清| 国产极品天堂在线| 日本在线视频免费播放| 亚洲精品粉嫩美女一区| 两性午夜刺激爽爽歪歪视频在线观看| videossex国产| 国产精品综合久久久久久久免费| 久久草成人影院| 色吧在线观看| 亚洲欧美成人精品一区二区| 天天躁日日操中文字幕| ponron亚洲| 国产一级毛片在线| 亚洲av免费在线观看| 国产午夜精品一二区理论片| 免费搜索国产男女视频| 99久久久亚洲精品蜜臀av| 成人鲁丝片一二三区免费| 日韩制服骚丝袜av| 免费人成在线观看视频色| 日本免费a在线| 国语自产精品视频在线第100页| 一本一本综合久久| 国产一区二区三区av在线 | 亚洲精品国产成人久久av| 欧美激情久久久久久爽电影| 老司机影院成人| 国产午夜精品久久久久久一区二区三区| 色尼玛亚洲综合影院| 国产精品三级大全| 色综合色国产| 人妻少妇偷人精品九色| 看非洲黑人一级黄片| 别揉我奶头 嗯啊视频| 天堂√8在线中文| 亚洲在久久综合| 春色校园在线视频观看| 久久人人精品亚洲av| 亚洲天堂国产精品一区在线| 久久精品综合一区二区三区| 免费无遮挡裸体视频| 国产淫片久久久久久久久| 自拍偷自拍亚洲精品老妇| av黄色大香蕉| 我要看日韩黄色一级片| 欧美区成人在线视频| 精品无人区乱码1区二区| 热99在线观看视频| 午夜视频国产福利| 欧美激情在线99| 国产女主播在线喷水免费视频网站 | 色综合站精品国产| 一个人看的www免费观看视频| 麻豆国产av国片精品| 亚洲成人中文字幕在线播放| 国产在线精品亚洲第一网站| 少妇裸体淫交视频免费看高清| 高清午夜精品一区二区三区 | 丰满的人妻完整版| kizo精华| 18禁裸乳无遮挡免费网站照片| 国产极品天堂在线| 老师上课跳d突然被开到最大视频| or卡值多少钱| 九九在线视频观看精品| 麻豆精品久久久久久蜜桃| 91麻豆精品激情在线观看国产| 亚洲欧美成人精品一区二区| 亚洲va在线va天堂va国产| 最好的美女福利视频网| 男女那种视频在线观看| 国产黄色小视频在线观看| 一级黄色大片毛片| 桃色一区二区三区在线观看| 我的女老师完整版在线观看| 国产伦在线观看视频一区| 男人的好看免费观看在线视频| 久久99精品国语久久久| 国产91av在线免费观看| 免费不卡的大黄色大毛片视频在线观看 | 久99久视频精品免费| 国产成人精品久久久久久| 男人和女人高潮做爰伦理| 边亲边吃奶的免费视频| 亚洲人与动物交配视频| 久久久午夜欧美精品| 国产69精品久久久久777片| 18禁黄网站禁片免费观看直播| 国产91av在线免费观看| 免费av毛片视频| 日韩视频在线欧美| 国产精品爽爽va在线观看网站| 少妇熟女aⅴ在线视频| 久久久久九九精品影院| 我的老师免费观看完整版| 少妇人妻精品综合一区二区 | 亚洲av第一区精品v没综合| 国产精品一区二区三区四区免费观看| 亚洲高清免费不卡视频| 日本黄色视频三级网站网址| 午夜爱爱视频在线播放| 大型黄色视频在线免费观看| 青春草国产在线视频 | 国产成人a∨麻豆精品| 你懂的网址亚洲精品在线观看 | 国产精品伦人一区二区| 草草在线视频免费看| 天堂影院成人在线观看| 国产一区亚洲一区在线观看| av专区在线播放| 美女xxoo啪啪120秒动态图| 亚洲三级黄色毛片| 亚洲av一区综合| 中文亚洲av片在线观看爽| 最近的中文字幕免费完整| 黄片wwwwww| 午夜精品一区二区三区免费看| 18禁在线播放成人免费| .国产精品久久| 麻豆成人午夜福利视频| 国产亚洲5aaaaa淫片| 精品99又大又爽又粗少妇毛片| 国产精品一及| 久久久精品大字幕| 激情 狠狠 欧美| 国产成人freesex在线| 最近手机中文字幕大全| 日产精品乱码卡一卡2卡三| 精品99又大又爽又粗少妇毛片| 五月玫瑰六月丁香| 久久久久免费精品人妻一区二区| 久久6这里有精品| 寂寞人妻少妇视频99o| 性欧美人与动物交配| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 中文资源天堂在线| 国产精品久久视频播放| 不卡一级毛片| 免费看av在线观看网站| 久久精品国产清高在天天线| 欧美高清成人免费视频www| 午夜福利在线观看吧| 欧美+亚洲+日韩+国产| 九九爱精品视频在线观看| 国产成人精品婷婷| 国产成人freesex在线| 免费观看的影片在线观看| 99国产极品粉嫩在线观看| 内地一区二区视频在线| 精品午夜福利在线看| 欧美人与善性xxx| 亚洲欧美清纯卡通| av在线观看视频网站免费| 直男gayav资源|