• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An attitude calculation algorithm based on WNN-EKF

    2022-05-05 07:54:18CHENGuangwuFANZiyanWEIZongshouLIWenyuanZHANGLinjing

    CHEN Guangwu, FAN Ziyan, WEI Zongshou, LI Wenyuan, ZHANG Linjing

    (1. Automatic Control Research Institute, Lanzhou Jiaotong University, Lanzhou 730070, China;2. Gansu Provincial Key Laboratory of Traffic Information Engineering and Control, Lanzhou 730070, China)

    Abstract: In the strapdown inertial navigation system, the attitude information is obtained through an inertial measurement unit (IMU) device, which mainly includes a triaxial gyroscope, a triaxial accelerometer and a triaxial magnetometer. However, IMU sensors have system noise and drift errors, and these errors can accumulate over time, which makes it difficult to control the attitude accuracy. In order to solve the problems of gyro drift over time and random errors generated by the surrounding environment, this paper presents an attitude calculation algorithm based on wavelet neural network-extended Kalman filter (WNN-EKF). The wavelet neural network (WNN) is used to optimize the model and compensate the extended Kalman filter’s own model error. Through the semi-physical simulation experiment, the results show that the algorithm improves the accuracy of attitude calculation and enhances the self-adaptability to the environment.

    Key words: inertial measurement unit (IMU); quaternion; attitude calculation; wavelet neural network (WNN); extended Kalman filter (EKF)

    0 Introduction

    Inertial navigation system (INS) is a self-contained positioning and attitude device that continuously measures three orthogonal linear accelerations and three angular rates. The principle of inertial navigation is based on Newton’s first and second laws of motion. By measuring vehicle acceleration and angular velocity in an inertial frame of reference, integrating it with respect to time and transforming it to the navigation frame, the components of velocity, attitude and position can be obtained. Sensors used to implement such a system are accelerometers for the measurement of the vehicle’s linear acceleration (specific force) and gyroscopes for monitoring the vehicle’s rotation (angular velocity) with respect to an inertial frame of reference[1]. Since specific force measurements contain the effect of the earth’s gravity field, a gravity model is needed to extract the vehicle’s motion acceleration from the measurements. Because they employ three translational (accelerometers) and three rotational (gyroscopes) sensors, inertial measuring units (IMU) can be used as positioning and attitude-monitoring devices[2].

    Due to its low cost, small size, easy integration and low power consumption, micro-electro-mechanical systems (MEMS) has become the first choice of inertial navigation system in recent years. The MEMS-based IMU can measure the three-axis gyro information and acceleration information of the carrier motion, besides, the carrier attitude can be obtained through the attitude calculation, and the inertial navigation can be realized. With the continuous development of MEMS technology, computer technology and consideration of low-cost factors, gyroscopes, accelerometers and magnetic sensors have been applied in more and more fields. However, the gyroscope has temperature drift characteristics so that the long-running drift is severe, and the integrated operation generates cumulative error. The accelerometer is susceptible to carrier vibration and motion acceleration, and the magnetic sensor is susceptible to ferromagnetic materials. Therefore, it is worth studying how to combine the data of three sensors to filter out external interference and get high reliability and high-precision attitude data.

    The discrete simple Kalman filter (KF) is a predictor-corrector type estimator for the linear system when an unknown variable cannot be directly measured. It should be estimated optimally from the output measurements. It provides an efficient recursive means to estimate the state of a process in a way that minimizes the mean of the squared error. The extended KF (EKF) is the nonlinear version of KF that linearizes about the estimation of the covariance and the current mean value[3]. The EKF uses a nonlinear high-gain feedback calculated in every time-step[4-6]. The EKF is one of the variants of KF, which is only valid in case of linear systems. The EKF is proposed through a linearization procedure in order to apply a KF algorithm to the nonlinear battery system. The EKF can be used to calculate the attitude[3]. Along with the rapid development of neural network technology, due to its good nonlinear mapping ability and strong self-learning ability, the application field is continuously expanded[7]. For the same learning task, the wavelet neural network (WNN) is compared to the forward neural network. Firstly, the primitives and the whole structure of the wavelet neural network are determined according to the wavelet analysis theory, which can avoid the blindness of BP neural network and other structural design. Secondly, the wavelet neural network has stronger learning ability and higher precision. The WNN has obvious advantages of a simpler structure and higher precision. For the attitude calculation algorithm and the defects of the above sensors, the wavelet neural network is combined with the Kalman filter model to perform the attitude calculation.

    1 Quaternion principle

    For the attitude, the paper describes the attitude with the pitch angle, the roll angle and the yaw angle. “North East Sky” is selected as the navigation coordinate system and “Left Front Up” as the carrier coordinate system. Since the measurement system and the carrier are fixed, the system coordinate system and the carrier coordinate system are considered to be consistent. During the movement of the system, the carrier coordinate system at each moment can coincide with the navigation coordinate system after one to three rotations. Because the result measured by the inertial measurement unit inside the measurement system is a value relative to the carrier coordinate system, it is necessary to convert the measured data to the navigation coordinate system. This process uses a pose transformation matrix from the carrier coordinate system to the navigation coordinate system.

    The attitude transformation matrix is expressed as

    (1)

    (2)

    The desired attitude angle is expressed as

    (3)

    whereγis the roll angle;φis the yaw angle;θis the pitch angle.

    The navigation coordinate system and the carrier coordinate system are regarded as a cartesian coordinate system (the axes of the coordinate system are perpendicular to each other). So the coordinate system is considered as a rigid body. When studying the angular position relationship between the two coordinate systems, one coordinate can be translated so that its origin coincides with the origin of another coordinate system, thus the spatial angular position relationship between the two sets of marks can be used as the fixed point rotation of the rigid body. According to the idea, the quaternion algorithm for attitude update can be obtained.

    The pose quaternion defined from the carrier coordinate system to the navigation coordinate system is expressed as

    Q(q0,q1,q2,q3)=q0·1+q1i+q2j+q3k,

    (4)

    whereq0,q1,q2andq3are four real numbers;i,jandkare unit vectors and are orthogonal.

    After a one-time equivalent rotation, the attitude transformation matrix can be represented by a quaternion and is expressed as

    (5)

    The quaternion pose matrix differential equation has smaller calculation because it only needs to solve four first-order differential equations, and it can meet the real-time requirements in engineering practice. However, the drift of the algorithm is more serious, so this paper introduces the WNN-EKF model to solve the attitude information based on the quaternion method.

    2 WNN-EKF algorithm

    2.1 EKF algorithm

    The classical Kalman filter algorithm is only suitable for systems that are linear and satisfy Gaussian distribution. But it is not so simple in actual engineering, such as sometimes the system is not linear, so EKF are needed. The probability distribution of the current state is a binary function with respect to the previous state and the amount of control to be performed, and superimposes a Gaussian noise, and the measured value is also a superposition of Gaussian noise on the current state. The specific expression is expressed as

    (6)

    whereg(ut,xt-1) andh(xt) can be a nonlinear function;εtis process noise;δtis observation noise.

    In order to solve the state estimation problem in nonlinear systems with the idea of classical Kalman filter,g(ut,xt-1) andh(xt) are developed with the Taylor series and are linearized, only taking their one term as first-order EKF. Subsequent work is similar to standard Kalman filtering under linear system approximation. EKF algorithm in the proposed modeled is expressed as

    X(k)=(q0(k)q1(k)q2(k)q3(k)bx(k)by(k)bz(k))T,

    (7)

    whereq0(k),q1(k),q2(k) andq3(k) are attitude quaternion;bx(k),by(k) andbz(k) are respectively gyroscope random drift vectors for the roll axis, pitch axis and yaw axis.

    The equation of state of the system is expressed as

    (8)

    whereq(k) is attitude quaternion;b(k) is respectively gyroscope random drift vectors for the roll axis, pitch axis and yaw axis;wqandwbare process noise

    The Jacobi matrix forf(X(k-1),k-1) is expressed as

    (9)

    (10)

    (11)

    whereIis identity matrix.

    The system observation is expressed as

    Z(k)=(abx(k)aby(k)abz(k)φm(k))T,

    (12)

    whereabx(k),aby(k) andabz(k) are the value of a triaxial acceleration measurement in the carrier coordinate system;φm(k) is the yaw angle obtained by projecting the output value of the magnetometer on a horizontal plane. Eq.(11) is refered as

    υ(k)=h(x(k),k)+υ(k).

    (13)

    After finding the Jacobi matrix forh(x(k),k), the system measurement matrix is expressed as

    (14)

    (15)

    Measurement noise covariance matrix is expressed as

    (16)

    whereR(k) is positive definite constant diagonal matrix.

    Kalman gain is expressed as

    K(k)=

    (17)

    State posterior estimate is expressed as

    (18)

    Variance posterior estimate is expressed as

    P(k)=

    [I-K(k)H(k)]P(k,k-1)[I-K(k)H(k)]T+

    K(k)R(k)KT(k).

    (19)

    2.2 WNN-EKF algorithm

    2.2.1 WNN structure

    WNN is a neural network model based on wavelet analysis theory. It makes full use of the better localization property of wavelet transform and combines the self-learning ability of neural network, so it has strong approximation ability. Compared with the BP network, the basis function used by the network is the orthogonal wavelet base, and the correlation redundancy between the weights is small so that the training of a certain weight does not affect other weights, so the convergence speed is high. In addition, the wavelet network is a local approximation network that is easy to adapt to new data and can avoid large extrapolation errors, moreover, its structure is also simple, and the adjustable parameters are the least, which is beneficial to shorten the training time.

    According to the characteristics of the signal, this paper uses a fusion wavelet neural network. The network body is a 3-layer network circle with a single input and single output structure[8]. The input layer is parallel input, and the hidden layer and the output layer contain neurons. The structure of the wavelet neural network is shown in Fig.1[10].

    The scaling of the wavelet function and the parameters of the neural network can be trained by network learning. In the Fig.1, the excitation functionfh(x) of the hidden layer neuron is a Morlet wavelet function and is expressed as

    fh(x)=-xcos(1.75x)exp(-x2/2)-

    1.75sin(1.75x)exp(-x2/2),

    (20)

    wherexis the input of the input layer. The excitation functionfo(x) of the output layer is expressed as

    fo(x)=cos(1.75x)exp(-x2/2),

    (21)

    wherexis the output of the hidden layer.

    Fig.1 Structure of wavelet neural network

    2.2.2 WNN-EKF algorithm

    The model uses gyroscopes and accelerometers to measure the angular velocity and acceleration on the three axes of the body, while using a magnetometer to correct the drift of the gyroscope and accelerometer. Information from the gyroscope, accelerometer and magnetometer is fused by an EKF to obtain attitude information before calibration. At the same time, the information from the three sensors and the attitude information before calibration can also be input into the WNN system for training and prediction, and calibrating attitude angle to obtain attitude information after calibration. To avoid cross-coupling of the training process, three parallel WNNs are respectively used to correspond to three attitude angles. Fig.2 shows the structure of WNN-EKF.

    Fig.2 Structure of WNN-EKF

    3 Experimental verification

    In order to verify the superiority of the WNN-EKF algorithm described in this paper, the 3DM-AHRS300A attitude reference system with integrated gyroscope, accelerometer and magnetometer was selected as the experimental platform, and static experiments and dynamic experiments were carried out, respectively. The specific performance parameters of the sensor of the azimuth reference system are shown in Table 1.

    Table 1 Performance parameters of 3DM-AHRS300A

    3.1 Static experiment of 3DM-AHRS300A attitude reference system

    The navigation attitude reference system was in a horizontal state, and was connected to the computer, then the data had been collected for 30 minutes, and the update frequency is 100 Hz. After the data’s collection was completed, the collected attitude data of the attitude reference system (the data of accelerometer, gyroscope and the magnetometer) was used to calculate the static attitude by using the traditional EKF, the BP-EKF and the WNN-EKF methods, respectively. The comparison of the data of roll angle, pitch angle and yaw angle calculated by the two methods with the reference data is shown in Fig.3.

    In the Fig.3, it can be seen that the volatility of the calculation results of the proposed method is smaller than that of the traditional EKF and the BP-EKF, and the result curve is closest to the reference curve. In order to further compare the error of the attitude calculation by the three methods, the three methods are compared with the reference values to draw the attitude error curve as shown in the Figs.4-6.

    Fig.4 shows the attitude error curve drawn by comparing the value of the traditional EKF calculation with the reference value. Fig.5 shows the attitude error curve drawn by comparing the value of the BP-EKF calculation with the reference value. Fig.6 shows the attitude error curve drawn by comparing the value of the WNN-EKF calculation with the reference value. Table 2 shows the mean of error based on Figs.4-6. It can be seen from the results that using the WNN-EKF improves the accuracy of roll angle, pitch angle and yaw angle compared with the traditional EKF and the BP-EKF.

    Fig.3 Comparison of static experimental attitude angle

    Fig.4 Error curves of traditional EKF calculation

    Fig.5 Error curves of BP-EKF calculation

    Fig.6 Error curves of WNN-EKF calculation

    Table 2 Mean of static experimental error

    3.2 Dynamic experiment of 3DM-AHRS300A attitude reference system

    In order to verify the performance of the proposed method in the dynamic attitude calculating, the dynamic experiment was designed. The attitude reference system was installed on the trolley, and the trolley moved around a 6 m×8 m rectangular field to collect the output data of the attitude reference system, and the trolley made three turns in the trolley movement.

    After the experiment, the collected data (accelerometer data, gyroscope data and magnetometer data) were simulated by the traditional EKF, the BP-EKF and WNN-EKF methods, and the data is shown in Fig.7.

    Fig.7 The comparison of dynamic experimental attitude angle

    It can be seen from the Fig.7 that the result of the WNN-EKF calculation has less volatility and the best denoising effect. In the experiment, the car made three turning processes, however, the traditional EKF algorithm is greatly affected by the external environment and its adaptive ability is poor, and the BP-EKF algorithm is closer to the reference value than the traditional EKF algorithm and has higher precision than the traditional EKF algorithm, but through the WNN-EKF algorithm to calculate, it can be seen that the attitude angle curve is relatively stable without abnormal fluctuations, and the process of three turns is tracked, and the algorithm has strong environmental adaptability. Moreover, after comparing the three algorithms, the curve representing the result of the WNN-EKF algorithm is closest to the reference curve, so the accuracy of the WNN-EKF algorithm is the highest.

    Fig.8 shows an attitude error curve drawn by comparing the value of traditional EKF calculation with a reference value. Fig.9 shows an attitude error curve drawn by comparing the value of the BP-EKF calculation with a reference value.Fig.10 shows an attitude error curve drawn by comparing the value of the WNN-EKF calculation with a reference value. Table 3 shows the mean of error based on Figs.7-9. It can be seen from the results that the WNN-EKF algorithm has smaller error and is relatively stable, which indicates that the algorithm can effectively improve the solution accuracy.

    Fig.8 Error curves of traditional EKF calculation

    Fig.9 Error curves of BP-EKF calculation

    Fig.10 Error curves of WNN-EKF calculation

    Table 3 Mean of dynamic experimental error

    4 Conclusions

    In this paper, the WNN-EKF algorithm is proposed for attitude calculation. The wavelet neural network compensates the model error of EKF itself, which effectively improves the accuracy of attitude calculation and the ability of environment adaptation. Finally, the simulation results verified the effectiveness of this method, which provides a new idea for attitude calculating and navigation positioning problems. Although wavelet neural network combined with Kalman filtering method improves the accuracy and stability of attitude calculation, with the increase of test data, the training time of neural network will be larger. Therefore, the problem of attitude calculation speed in the method described in this paper needs to be further studied and improved.

    老汉色∧v一级毛片| 级片在线观看| 别揉我奶头~嗯~啊~动态视频| 少妇人妻一区二区三区视频| 国产熟女xx| 亚洲av成人一区二区三| 国产激情偷乱视频一区二区| 波多野结衣巨乳人妻| 真人做人爱边吃奶动态| 女人爽到高潮嗷嗷叫在线视频| 欧美精品啪啪一区二区三区| av免费在线观看网站| 动漫黄色视频在线观看| 亚洲全国av大片| 免费看a级黄色片| www日本黄色视频网| 国产野战对白在线观看| 在线永久观看黄色视频| 老鸭窝网址在线观看| 国产单亲对白刺激| 熟妇人妻久久中文字幕3abv| 99re在线观看精品视频| 亚洲欧美一区二区三区黑人| 老司机福利观看| 久久精品亚洲精品国产色婷小说| 搡老岳熟女国产| 国产精品精品国产色婷婷| 国产成人aa在线观看| 欧美一级a爱片免费观看看 | 男女床上黄色一级片免费看| 午夜福利视频1000在线观看| 久久午夜综合久久蜜桃| 在线观看www视频免费| 亚洲,欧美精品.| 久久精品91无色码中文字幕| 法律面前人人平等表现在哪些方面| 两性午夜刺激爽爽歪歪视频在线观看 | 91麻豆精品激情在线观看国产| 色播亚洲综合网| 中出人妻视频一区二区| 午夜激情av网站| 欧美在线黄色| www.www免费av| 国产精品永久免费网站| 又紧又爽又黄一区二区| 深夜精品福利| 一进一出抽搐动态| 又黄又粗又硬又大视频| 亚洲成人中文字幕在线播放| 91av网站免费观看| 欧美极品一区二区三区四区| av福利片在线观看| 欧美黄色片欧美黄色片| videosex国产| 国产黄色小视频在线观看| av在线天堂中文字幕| 两个人免费观看高清视频| 国产成人av激情在线播放| 丁香六月欧美| netflix在线观看网站| 一本综合久久免费| 亚洲色图av天堂| 久热爱精品视频在线9| 免费一级毛片在线播放高清视频| 精品日产1卡2卡| 最新在线观看一区二区三区| 国产69精品久久久久777片 | 精品一区二区三区四区五区乱码| 亚洲成av人片在线播放无| ponron亚洲| 哪里可以看免费的av片| 精品无人区乱码1区二区| 亚洲午夜理论影院| 巨乳人妻的诱惑在线观看| 亚洲av熟女| 人妻久久中文字幕网| 亚洲欧美日韩东京热| av国产免费在线观看| 国产高清有码在线观看视频 | 亚洲av成人不卡在线观看播放网| 亚洲无线在线观看| 少妇的丰满在线观看| 国产伦在线观看视频一区| 久久国产乱子伦精品免费另类| 我要搜黄色片| 久久精品国产99精品国产亚洲性色| 一本大道久久a久久精品| 国产精品久久久av美女十八| 亚洲欧美一区二区三区黑人| 观看免费一级毛片| 国产精品影院久久| 久久精品国产亚洲av高清一级| 久9热在线精品视频| 精品不卡国产一区二区三区| 悠悠久久av| 国产精品九九99| 亚洲精品中文字幕一二三四区| av超薄肉色丝袜交足视频| 国产熟女午夜一区二区三区| 精品一区二区三区四区五区乱码| 两性夫妻黄色片| 久久香蕉国产精品| 久久精品夜夜夜夜夜久久蜜豆 | 一进一出好大好爽视频| 国产黄a三级三级三级人| 欧美zozozo另类| 欧美日韩一级在线毛片| 法律面前人人平等表现在哪些方面| 中文字幕av在线有码专区| 久久香蕉精品热| 精品久久久久久,| 国产成年人精品一区二区| av视频在线观看入口| 狂野欧美白嫩少妇大欣赏| 欧美中文综合在线视频| 99久久久亚洲精品蜜臀av| 亚洲中文av在线| 无人区码免费观看不卡| 国产免费男女视频| 国产av一区二区精品久久| 青草久久国产| 搡老熟女国产l中国老女人| 日韩欧美精品v在线| 国产成人精品久久二区二区91| 日本三级黄在线观看| 久久香蕉精品热| 黄色视频不卡| 日本撒尿小便嘘嘘汇集6| 一本大道久久a久久精品| 一区福利在线观看| 十八禁人妻一区二区| 免费观看精品视频网站| www.自偷自拍.com| 母亲3免费完整高清在线观看| 一本精品99久久精品77| 国产av在哪里看| 亚洲欧美一区二区三区黑人| 伦理电影免费视频| av中文乱码字幕在线| 亚洲精品中文字幕一二三四区| 国产精品永久免费网站| 每晚都被弄得嗷嗷叫到高潮| 日韩欧美免费精品| 丰满人妻熟妇乱又伦精品不卡| 国产成人精品久久二区二区免费| 亚洲片人在线观看| 久99久视频精品免费| 国产伦一二天堂av在线观看| 日韩欧美三级三区| 欧美色欧美亚洲另类二区| 亚洲av成人一区二区三| 中文字幕人成人乱码亚洲影| 青草久久国产| 成人精品一区二区免费| 婷婷六月久久综合丁香| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲欧美日韩东京热| 美女黄网站色视频| 国产精品亚洲av一区麻豆| 老司机在亚洲福利影院| 国产黄a三级三级三级人| 首页视频小说图片口味搜索| 亚洲中文字幕一区二区三区有码在线看 | 免费高清视频大片| 精品日产1卡2卡| 妹子高潮喷水视频| 精品久久久久久久毛片微露脸| 成人av在线播放网站| 好看av亚洲va欧美ⅴa在| 午夜a级毛片| 亚洲色图 男人天堂 中文字幕| 亚洲av成人一区二区三| 欧美午夜高清在线| 久久久国产成人精品二区| 欧美成人午夜精品| 一个人免费在线观看的高清视频| 中文字幕最新亚洲高清| 亚洲成人精品中文字幕电影| 免费看十八禁软件| 老司机深夜福利视频在线观看| 国产av一区二区精品久久| 精品熟女少妇八av免费久了| 在线观看66精品国产| 国产一区二区在线av高清观看| 欧美丝袜亚洲另类 | 男女下面进入的视频免费午夜| 香蕉国产在线看| 搡老熟女国产l中国老女人| 国产蜜桃级精品一区二区三区| 久99久视频精品免费| 岛国在线观看网站| 久久精品综合一区二区三区| 国内久久婷婷六月综合欲色啪| 国内少妇人妻偷人精品xxx网站 | 最近最新中文字幕大全电影3| 亚洲全国av大片| 亚洲aⅴ乱码一区二区在线播放 | 亚洲国产精品成人综合色| 伦理电影免费视频| 18禁黄网站禁片免费观看直播| 给我免费播放毛片高清在线观看| 在线十欧美十亚洲十日本专区| 丰满人妻一区二区三区视频av | 精品久久久久久久毛片微露脸| 精品久久久久久成人av| 国产高清视频在线播放一区| 夜夜爽天天搞| 国产午夜精品论理片| 国产精品久久久久久精品电影| 女警被强在线播放| 亚洲色图av天堂| 琪琪午夜伦伦电影理论片6080| 老司机福利观看| 老熟妇仑乱视频hdxx| 久久精品国产亚洲av高清一级| 日韩大尺度精品在线看网址| 国产精品av视频在线免费观看| 狂野欧美白嫩少妇大欣赏| av免费在线观看网站| 露出奶头的视频| svipshipincom国产片| 午夜福利高清视频| 日韩高清综合在线| 色老头精品视频在线观看| 日韩三级视频一区二区三区| 亚洲第一电影网av| 一级a爱片免费观看的视频| 亚洲成av人片免费观看| 国产精品国产高清国产av| 国产三级黄色录像| 国产成人av激情在线播放| 国产一区在线观看成人免费| 日韩精品免费视频一区二区三区| 成年免费大片在线观看| 99久久久亚洲精品蜜臀av| 欧美黑人巨大hd| 制服人妻中文乱码| 看黄色毛片网站| 又紧又爽又黄一区二区| 久久人人精品亚洲av| 床上黄色一级片| 俄罗斯特黄特色一大片| 好男人在线观看高清免费视频| 免费一级毛片在线播放高清视频| 亚洲电影在线观看av| 色噜噜av男人的天堂激情| 亚洲aⅴ乱码一区二区在线播放 | 久久亚洲精品不卡| 国产精品久久久久久人妻精品电影| 色综合欧美亚洲国产小说| 搞女人的毛片| av国产免费在线观看| 男女视频在线观看网站免费 | 少妇被粗大的猛进出69影院| 18美女黄网站色大片免费观看| 国产高清videossex| 日本 av在线| 欧美国产日韩亚洲一区| 一二三四在线观看免费中文在| 19禁男女啪啪无遮挡网站| 亚洲专区国产一区二区| 久久久水蜜桃国产精品网| 精品久久蜜臀av无| 欧美性猛交黑人性爽| 免费看日本二区| 男女床上黄色一级片免费看| 亚洲成a人片在线一区二区| 熟女电影av网| 久久伊人香网站| 国产av在哪里看| 又黄又粗又硬又大视频| 88av欧美| 久久热在线av| 在线永久观看黄色视频| 国产99久久九九免费精品| 一a级毛片在线观看| 可以在线观看的亚洲视频| 在线a可以看的网站| 国产久久久一区二区三区| 久久久久久免费高清国产稀缺| 欧美成人性av电影在线观看| 久久国产乱子伦精品免费另类| 国产亚洲av嫩草精品影院| 亚洲精品粉嫩美女一区| aaaaa片日本免费| 国产99白浆流出| 日韩大尺度精品在线看网址| 美女大奶头视频| 热99re8久久精品国产| 亚洲,欧美精品.| 一卡2卡三卡四卡精品乱码亚洲| 久久欧美精品欧美久久欧美| bbb黄色大片| 少妇熟女aⅴ在线视频| 亚洲自偷自拍图片 自拍| 精品国产乱码久久久久久男人| www.www免费av| 久99久视频精品免费| 色尼玛亚洲综合影院| 亚洲美女黄片视频| 亚洲无线在线观看| 亚洲国产日韩欧美精品在线观看 | www.精华液| 中文亚洲av片在线观看爽| 亚洲精品美女久久av网站| 日韩欧美在线二视频| 欧美三级亚洲精品| 听说在线观看完整版免费高清| svipshipincom国产片| 日本 欧美在线| 国产精品野战在线观看| 亚洲熟妇中文字幕五十中出| 欧美又色又爽又黄视频| 国产欧美日韩一区二区精品| 亚洲精品在线美女| 最新美女视频免费是黄的| 搡老岳熟女国产| 女同久久另类99精品国产91| 麻豆国产97在线/欧美 | 一个人观看的视频www高清免费观看 | 一进一出抽搐gif免费好疼| 嫩草影院精品99| 黑人操中国人逼视频| 又黄又粗又硬又大视频| 国产三级中文精品| 色综合站精品国产| 欧美日韩亚洲国产一区二区在线观看| 久久热在线av| 精品电影一区二区在线| 国产精品免费一区二区三区在线| 操出白浆在线播放| 成人国产一区最新在线观看| 露出奶头的视频| 99国产精品99久久久久| 久久精品人妻少妇| 麻豆成人av在线观看| 亚洲精品久久成人aⅴ小说| 高清在线国产一区| 男人舔女人的私密视频| 国产成人av教育| 香蕉丝袜av| 日韩大尺度精品在线看网址| 深夜精品福利| 国产精品免费视频内射| 欧美黑人巨大hd| 99久久无色码亚洲精品果冻| 91大片在线观看| 国产av在哪里看| 午夜久久久久精精品| 手机成人av网站| 国产精品久久久久久亚洲av鲁大| 91麻豆精品激情在线观看国产| 又大又爽又粗| 天堂影院成人在线观看| 国产精品亚洲一级av第二区| 亚洲欧美一区二区三区黑人| 婷婷亚洲欧美| 1024视频免费在线观看| 国产精品免费一区二区三区在线| 久久草成人影院| 亚洲欧美日韩无卡精品| 精品欧美一区二区三区在线| 国产亚洲av嫩草精品影院| 婷婷亚洲欧美| 啪啪无遮挡十八禁网站| 一边摸一边做爽爽视频免费| 久久精品成人免费网站| 欧美成人午夜精品| 精品欧美国产一区二区三| 香蕉av资源在线| 精品久久久久久久久久久久久| 国产蜜桃级精品一区二区三区| 日本三级黄在线观看| 欧美黑人精品巨大| 亚洲第一电影网av| 99精品欧美一区二区三区四区| 99热这里只有是精品50| aaaaa片日本免费| 午夜福利在线在线| 女人被狂操c到高潮| 人人妻人人澡欧美一区二区| 久久久国产成人精品二区| 国产在线观看jvid| av免费在线观看网站| 精品免费久久久久久久清纯| 国语自产精品视频在线第100页| 免费搜索国产男女视频| 熟女电影av网| 人人妻人人看人人澡| 99精品欧美一区二区三区四区| 精品久久久久久久久久免费视频| 女生性感内裤真人,穿戴方法视频| 精品国内亚洲2022精品成人| 90打野战视频偷拍视频| 国产午夜精品论理片| 日本免费a在线| 亚洲片人在线观看| 人妻久久中文字幕网| 久久亚洲精品不卡| 日本一本二区三区精品| 亚洲中文av在线| 99久久99久久久精品蜜桃| 亚洲九九香蕉| 国内精品一区二区在线观看| 久久久精品大字幕| 国产精品一区二区三区四区久久| 成人一区二区视频在线观看| 听说在线观看完整版免费高清| 中文资源天堂在线| а√天堂www在线а√下载| 岛国视频午夜一区免费看| 校园春色视频在线观看| 国产私拍福利视频在线观看| 精品国产乱子伦一区二区三区| 国产欧美日韩精品亚洲av| 日日摸夜夜添夜夜添小说| 久久久精品国产亚洲av高清涩受| ponron亚洲| 在线看三级毛片| 国产成人系列免费观看| 国产av一区在线观看免费| 18禁国产床啪视频网站| 国产精品综合久久久久久久免费| av片东京热男人的天堂| 在线视频色国产色| 在线播放国产精品三级| 亚洲18禁久久av| 亚洲av中文字字幕乱码综合| 婷婷丁香在线五月| 99re在线观看精品视频| 久久热在线av| 91成年电影在线观看| 搞女人的毛片| 这个男人来自地球电影免费观看| 天堂√8在线中文| 日韩欧美国产在线观看| 国产av不卡久久| 亚洲av成人一区二区三| 国产av一区在线观看免费| 国产不卡一卡二| 日本三级黄在线观看| 亚洲av美国av| 男女午夜视频在线观看| 午夜福利成人在线免费观看| 亚洲av美国av| 亚洲午夜理论影院| 97人妻精品一区二区三区麻豆| netflix在线观看网站| 性色av乱码一区二区三区2| 成人高潮视频无遮挡免费网站| 叶爱在线成人免费视频播放| 色老头精品视频在线观看| 在线观看午夜福利视频| 免费在线观看影片大全网站| 国产区一区二久久| 亚洲精品久久成人aⅴ小说| 九色国产91popny在线| av有码第一页| 欧美日韩瑟瑟在线播放| 毛片女人毛片| 日韩免费av在线播放| 亚洲免费av在线视频| 国产主播在线观看一区二区| 精品国产乱子伦一区二区三区| 亚洲无线在线观看| 亚洲国产精品合色在线| 91国产中文字幕| 黄色 视频免费看| 中文字幕精品亚洲无线码一区| 亚洲成人精品中文字幕电影| 国产人伦9x9x在线观看| 床上黄色一级片| 黑人操中国人逼视频| 狠狠狠狠99中文字幕| 欧美精品亚洲一区二区| 久久九九热精品免费| 免费在线观看影片大全网站| 国产成人欧美在线观看| 国产精品久久久人人做人人爽| 精品一区二区三区av网在线观看| 一个人免费在线观看的高清视频| 成年版毛片免费区| 别揉我奶头~嗯~啊~动态视频| 久久人人精品亚洲av| 欧美国产日韩亚洲一区| 国产亚洲欧美在线一区二区| 亚洲国产精品合色在线| 欧美成人性av电影在线观看| 一本综合久久免费| 国产一区二区在线av高清观看| 99热这里只有精品一区 | 精品久久久久久久久久久久久| www日本黄色视频网| 久久久久性生活片| 每晚都被弄得嗷嗷叫到高潮| 久久久久九九精品影院| 亚洲精品一卡2卡三卡4卡5卡| 亚洲无线在线观看| 啦啦啦观看免费观看视频高清| 丰满人妻一区二区三区视频av | 人妻夜夜爽99麻豆av| 十八禁人妻一区二区| 亚洲欧美精品综合一区二区三区| 搡老妇女老女人老熟妇| 国产1区2区3区精品| 女生性感内裤真人,穿戴方法视频| 人妻丰满熟妇av一区二区三区| 精品国产美女av久久久久小说| 欧美日韩亚洲国产一区二区在线观看| 日韩欧美精品v在线| 国产精品亚洲av一区麻豆| 午夜福利18| 无人区码免费观看不卡| 国产又色又爽无遮挡免费看| 欧美大码av| 五月玫瑰六月丁香| 老司机深夜福利视频在线观看| 午夜免费激情av| 久久欧美精品欧美久久欧美| 高清在线国产一区| 精品久久久久久久毛片微露脸| 国产精品99久久99久久久不卡| 麻豆国产av国片精品| 神马国产精品三级电影在线观看 | 在线永久观看黄色视频| 黄色a级毛片大全视频| 在线观看美女被高潮喷水网站 | 我要搜黄色片| 精品国产超薄肉色丝袜足j| 最新在线观看一区二区三区| 日韩欧美三级三区| 无限看片的www在线观看| 午夜福利视频1000在线观看| 亚洲成人精品中文字幕电影| 国产精品一区二区免费欧美| 精品国产乱码久久久久久男人| 成人特级黄色片久久久久久久| 成年免费大片在线观看| 美女高潮喷水抽搐中文字幕| 女人爽到高潮嗷嗷叫在线视频| 久久精品91无色码中文字幕| 国产亚洲精品久久久久久毛片| 麻豆国产av国片精品| 国产野战对白在线观看| 午夜久久久久精精品| 一个人免费在线观看的高清视频| 岛国在线观看网站| 国产精品美女特级片免费视频播放器 | av中文乱码字幕在线| 久久午夜综合久久蜜桃| 少妇裸体淫交视频免费看高清 | 视频区欧美日本亚洲| 欧美最黄视频在线播放免费| 国产欧美日韩精品亚洲av| 欧美乱码精品一区二区三区| 日本一二三区视频观看| 在线观看免费视频日本深夜| 日日干狠狠操夜夜爽| 中文亚洲av片在线观看爽| 久久这里只有精品19| 国产野战对白在线观看| 夜夜躁狠狠躁天天躁| 亚洲七黄色美女视频| 身体一侧抽搐| 亚洲男人的天堂狠狠| 国产一区二区激情短视频| 亚洲av五月六月丁香网| 狂野欧美白嫩少妇大欣赏| 他把我摸到了高潮在线观看| 看黄色毛片网站| 高清毛片免费观看视频网站| 午夜影院日韩av| 高潮久久久久久久久久久不卡| 90打野战视频偷拍视频| 欧美精品亚洲一区二区| 亚洲成a人片在线一区二区| 深夜精品福利| 亚洲午夜精品一区,二区,三区| 亚洲国产精品成人综合色| 精品不卡国产一区二区三区| tocl精华| 此物有八面人人有两片| www国产在线视频色| 亚洲国产看品久久| 欧美国产日韩亚洲一区| 亚洲av美国av| 国产av麻豆久久久久久久| 欧美性猛交黑人性爽| 一本大道久久a久久精品| 色播亚洲综合网| 亚洲熟女毛片儿| 亚洲成a人片在线一区二区| 18禁国产床啪视频网站| 亚洲欧美日韩东京热| 国产麻豆成人av免费视频| 免费电影在线观看免费观看| 757午夜福利合集在线观看| 国产成人一区二区三区免费视频网站| 美女黄网站色视频| 国产精品国产高清国产av| 很黄的视频免费| 99热只有精品国产| 又黄又爽又免费观看的视频| 女警被强在线播放| 精品乱码久久久久久99久播| 亚洲一区中文字幕在线| 在线看三级毛片| 天堂√8在线中文| 三级男女做爰猛烈吃奶摸视频| 欧美丝袜亚洲另类 | 制服诱惑二区| 日韩 欧美 亚洲 中文字幕| 9191精品国产免费久久| 一本久久中文字幕| 在线观看一区二区三区|