• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Antibiotic Silver Particles Coated Graphene Oxide/polyurethane Nanocomposites Foams and Its Mechanical Properties①

    2022-04-16 02:59:34YANGZhiLIKunRongZHANGYuanYeHUJiaLeLITianYuanWENGZiXiangWULiXin
    結構化學 2022年3期

    YANG Zhi LI Kun-Rong ZHANG Yuan-Ye HU Jia-Le LI Tian-Yuan WENG Zi-Xiang② WU Li-Xin②

    a (College of Chemistry, Fuzhou University, Fuzhou 350108, China)

    b (CAS Key Laboratory of Design and Assembly of Functional Nanostructures,Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China)

    c (Key Lab for Sport Shoes Upper Materials of Fujian Province,Fujian Huafeng New Material Co., Ltd., Putian 351164, China)

    ABSTRACT Silver nanoparticles (AgNPs) are widely adopted in polyurethane foams (PUFs) as a type of antibacterial agent. However, due to its poor interfacial interaction, AgNPs are difficult to be dispersed in the polymer matrix uniformly, which deteriorates the enhancement effect. In this paper, silver-coated graphene nanocomposite (Ag/GO)is prepared by an enzyme reductant which is efficient and non-toxic. Compared with traditional antibacterial agent,the Ag/GO nanoparticles can be uniformly dispersed in the nanocomposite, which means that Ag/GO can be welldispersed into the polyurethane foams (PUFs). Compared with AgNPs modified PUFs, the as-prepared Ag/GO modified PUFs have a 1.85% improvement in resilience, 7.9% improvement in tensile strength, 6.52% improvement in tensile elongation, and 8.74% improvement in bacteriostats rate at a loading of 0.4%.

    Keywords: graphene, nanocomposite, polyurethane foams, antibacterials;

    1 INTRODUCTION

    Polyurethane (PU), prepared through the addition reaction between disocyanate and polyol, is a special group of segmented copolymers and is used in the field of coatings[1],adhesives[2], rubbers and foams[3,4]. Through the modification of polyol polymer chain and optimizing synthesis routes, PU can be prepared to different final products with various mechanical properties including polyurethane foams[5], cast polyurethane elastomers[6], thermoplastic polyurethanes[7],and so on. In the market of elastomers, cellular elastomers, a casted elastomer comprising isocyanate, polyol, chain extenders, and additive, domains up to about 40% of the elastomers. Because of the better resistance to compaction during wearing than ethylene vinyl acetate (EVA), cellular elastomers are used in the field of footwear as midsoles[8]. Nevertheless, the poor antibacterial for PU is still uncapable to fulfill the requirement proposed by footwear industry. As a commonly used wearable material in daily life, a better antibacterial activity and better mechanical properties were demanded.

    To solve this problem above, various antibacterial agents were developed[9-12]. Among them, silver nanoparticles(AgNPs) were most widely used due to its wide-spectrum antibiotic, high efficiency, and long-term durability[13]. Additionally, thanks to the nano effects, the addition of AgNPs usually leads to an enhancement in the mechanical properties of polymer matrix[14]. However, high specific surface area and high surface energy of AgNPs together make it easy to agglomerate while being dispersed into polymer matrix,which deteriorates both antibacterial activity and the enhancement of mechanical properties[15]. Vinayet al.[16]introduced AgNPs into auxetic PUFs, and the as-prepared materials showed an improvement in both compression strength and antibacterial properties. Zhaoet al.[17]introduced AgNPs into waterborne PUFs and found that the antibacterial property of as-prepared nanocomposites were prominently improved along with the tensile properties. Nevertheless, they also found that the tensile properties were decreased with a further increase of AgNPs loading because of the agglomeration of nano-particles. Wattanodornet al.[18]introduce AgNPs into PUFs byin situreduction method and tried to disperse the antibacterial agent uniformly in the polymer matrix. Result showed that as-prepared antibacterial foams exhibit an obvious increase in mechanical properties. Considering the literatures mentioned above, how to disperse AgNPs uniformly in the polymer matrix is what researchers are concerning about.

    With the rapid development of nanotechnology, carbon materials on nano-dimensional materials have attracted a wide concern. Recently, carbon-based nanomaterials including carbon nanotube, carbon nanofiber, and graphene play important roles in various fields including aerospace[19], biomedical[20], automotive[21], electronic[22], etc. Due to its favorable introduced chemical and physical properties, carbon nanomaterials, which are treated as a reinforcement phase,can be combined into a polymer matrix to prepare nanocomposites. The uniformly dispersed carbon nanocomposites in the polymer matrix would enhance the mechanical properties[23,24], electrical properties[25], thermal properties[26], wave absorbing[27], and electromagnetic shielding[28]. Among various carbon nanomaterials, graphene nanomaterials with a planar structure have attracted great interests whether in academia or industry[29]. Polyurethane/graphene nanocomposite also has aroused research interests in the field of polyurethane foam. Coated with graphene nanoparticles and their derivates, oil absorbent property[30], hydrophobic property[31],sound damping property[32], and electronic property[33]can be also greatly improved.

    In recent years, researchers found that AgNPs can be uniformly anchored on the graphene oxide (GO) nanosheet[34].Besides, the anchored Ag nanoparticles will construct a codispersing GO-Ag nanosystem, in which the AgNPs and GO sheet can support each other hindering their individual aggregation[35]. With the combination of the properties of GO and AgNPs, silver-coated graphene nanocomposite (Ag/GO)would exhibit a better stability in polymer matrix. Baoet al.[36]took hydroquinone as a reductant and prepared GOAgNPs successfully. As-prepared AgNPs exhibited excellent antibacterial activity forE. coli.andS. aureus.Besides that,Ag/GO nanoparticle has been reported to show a great effect in anticancer[37]and antiviral[38]. Moreover, compared with AgNPs or GO nanosheets only, Ag/GO is easier to be dispersed in the polymer matrix[35]. Though Ag/GO nanoparticles have great potential in the enhancement and functionalization of the polymer matrix, few reports about their application in polyurethane foams (PUFs) have been reported.Therefore, in this paper, we developed an efficient and nontoxic method to prepare the Ag/GO nanoparticles. Accordingly, a series of PUFs containing Ag/GO was prepared. Corresponding mechanical properties and antibacterial properties were also investigated in detail.

    2 EXPERIMENT

    2. 1 Reagents and materials

    The AgNPs (30 ± 5 nm) were obtained from InnoShines Technology Co. Ltd. The polyester polyol and methylene diphenyl diisocyanate were kindly provided by BASF China;the hydroxyl value of the polyester polyol was measured at 56 mg KOH/g. The graphite was supplied by Shanghai Macklin Biochemical Co., Ltd. Trimethylene diamine, H2SO4(98%), KNO3, KMnO4, H2O2, pepsin from the porcine stomach, and AgNO3were commercial products with analytical purity and used without further purification. Distilled water was produced in our laboratory.

    2. 2 Synthesis of GO and Ag/GO

    A modified Hummers method[39-41]was involved to prepare GO. In a typical synthesis, 3 g of graphite, 3.6 g of KNO3,and 200 mL of H2SO4were together added into a threenecked bottle with vigorous stirring in an ice bath. The mixture was reacted at 35 ℃ for 6 h. Then 250 mL distilled water was slowly added to the mixture, and kept the reaction under 5 ℃ for 10 h. After that, the mixture was poured into 80 mL H2O2and further diluted with 600 mL distilled water to stop the reaction. Finally, a yellow powder was obtained after repeatedly washing with distilled water and completely drying by lyophilization, and named as GO.

    The Ag/GO nanocomposite was prepared by pepsin as a reductant. Typically, 100 mg as prepared GO powder was dispersed in 80 mL distilled water and sonicated for 30 minutes to form a homogeneous solution. Then, 100 mg pepsin was fully dissolved into the GO solution. Afterwards, 20 mL AgNO3aqueous (1 mM) was rapidly poured into the mixture, then kept stirring for 6 h under dark at room temperature.Finally, the samples were collected by centrifugation at 10,000 rpm for 8 min with distilled water for several times and dried at 60 ℃ in a vacuum for 3 h.

    2. 3 Preparation of nanoparticles reinforced polyurethane foams

    In this study, PUFs were prepared by a two-step method.Appropriate amounts of as-prepared nanoparticles (AgNPs,Ag/GO), polyester polyol, catalysts (triethylene diamine), and distilled water were fully mixed. Followed by that, the isocyanate prepolymer was added into the mixture with vigorous stirring and poured into a steel mold for foaming and then kept post-curing for 12 h at 60 ℃.

    2. 4 Characterization

    Transmission electron microscopy (TEM) was performed on a JEM-2010 (JEOL, Japan) at 200 kV accelerating voltage.The as-prepared GO and Ag/GO was prepared by mounting a drop of the micelle solution (0.05 mL) on a copper EM grid covered with a thin film of formvar. Scanning electron microscope (SEM) (HITACHI, SU8010/ EDX, JAPAN) was employed to observe the morphologies of the nanoparticles reinforced PUF.

    The apparent density of as-prepared PUF was measured according to ISO 845. The PUFs were cut into small cubes of 1 cm3. The mass of the cubes was measured by electronic analytical balance (Mettler Toledo, MS104TS/02, China).

    The resilience of the particle reinforced PUFs was measured by ball rebound according to ISO 8307. The diameter of the iron ball was 16 mm and the dropping height was 460 mm.

    The tensile property test was performed according to ASTM D638 with a constant speed of 5 mm·min-1using a load cell of 1 kN. The results were averaged from five specimens.

    2. 5 Antibacterial test

    The turbidimetric method and inhibition zone method were used to test the antibacterial properties of AgNPs or Ag/GO reinforced PUFs. TheS. aureus(ATCC 25923) was involved in these two tests. The turbidimetric method was conducted according to ASTM D6756, the bacterial concentration was monitored by measuring the OD at 595 nm on a microplate reader (iMark, Bio-Rad Laboratories, Inc); the inhibition zone method was conducted according to ISO 20645. All the tested samples were cut into small cubes with a size of 1 cm3and then sterilized for 30 min by UV light.

    3 RESULTS AND DISCUSSION

    3. 1 Synthesis and characterization

    As schematically illustrated in Fig. 1a, an efficient and non-toxic method was proposed to prepare Ag/GO nanoparticles. In first step, modified Hummers method was involved to prepare the GO. Since pepsin can be used as an eco-friendly reducing and stabilizing agent to prepare metal nanoparticles[42], here it was involved to coat silver nanoparticles onto the GO nano-sheets. Then the uniformly coated Ag particles, as a dissolution antibacterial agent, partially dissociated Ag+cation, which can be absorbed on the bacteria’s membrane and denature it, finally ruptured the bacterial[43].

    Captured TEM pictures (Fig. 1b) show that the few-layer graphene with high transparency was prepared after oxidation and intercalation by Hummer’s method. While after being treated by pepsin, the AgNPs was uniformly coated on the GO nano-sheets, and the diameter of the coated AgNPs was measured around 20~50 nm.

    Fig. 2. Mechanical properties of PUFs with different rates of AgNPs and Ag/GO density (a), resilience (b), tensile tests (c).(d) morphology of pure PUFs (left), 0.4% AgNPs reinforced PUFs (middle), and Ag/GO reinforced PUFs (right)

    3. 2 Mechanical properties

    The mechanical property plays an important role in materials application. To study the effect on mechanical properties of the PUFs brought by the content of reinforced particles,PUFs with the different ratios (0.2%, 0.4%, 0.6%, 0.8%, and 1.0%) of AgNPs and Ag/GO were prepared.

    As shown in Fig. 2a, with the addition of both AgNPs and Ag/GO, the density increases, and the rate of increase accelerated with the loading of two nanoparticles increased. Among them,compared with the foams reinforced with Ag/GO, the density of PUFs reinforced with AgNPs is higher at each content.

    Fig. 2b shows the relation between nanoparticle content and PUFs’ resilience. From the picture, it can be concluded that the resilience of PUFs show a trend of rising at initial stage and then decreasing. Opposite with the density, the resilience of the foams reinforced with Ag/GO is always higher than that of AgNPs. The resilience of two nanoparticles reinforced PUFs reaches the maximum value, 40.2%(Ag/GO) and 39.5% (AgNPs), respectively.

    The tensile properties of different PUFs show a similar trend of resilience (Fig. 2c). With the addition of nanoparticles, both the tensile strength and elongation at break are increased firstly when the content of the reinforced particles is lower than 0.4%, and then decreases. As the same as the resilience properties, the PUF reinforced by Ag/GO is always stronger than that of AgNPs at each content. The maximum value of tensile strength and corresponding elongation at the break of AgGO and AgNPs reinforced nanocomposites are 40.25 MPa/778.1% and 39.52 MPa/730.5%, respectively.

    To further study the mechanism of the mechanical property improvement brought by the AgNPs and Ag/GO, the SEM images of pure PUF, PUFs containing 0.4% AgNPs and Ag/GO were captured and presented in Fig. 2d. For pure PUF,the cellular structure is larger compared with nanoparticles reinforced PUFs. For the AgNPs reinforced PUF, the cellular is smaller but more concentrated, and the size is uneven. For the PUFs containing 0.4% Ag/GO, the cellular structure is uniform, and each pore is connected. The added nanoparticles provide active sites when the polyurethane is reacting and forming[44]. Such active sites make PUFs easier to foam,leading to a smaller cellular generation in PUFs. However,due to the agglomeration of AgNPs, the foams of PUFs nanocomposites are concentrated, while the Ag/GO is easier to disperse, resulting in a more uniform structure along with a significant improvement of mechanical properties.

    3. 3 Antibacterial test

    To evaluate the antibacterial properties of two nanoparticles reinforced PUFs, the turbidimetric method and inhibition zone method were involved here.

    The PUFs reinforced with two different weight ratios of nanoparticles was tested by turbidimetric method, and corresponding results are shown in Fig. 3a. With the increase of antibacterial nanoparticles, the bacteriostasis rate is constantly increasing, but the increasing speed is slowing down.Thanks to the well-dispersed Ag/GO, PUFs containing Ag/GO exhibit a better antibacterial ability, no matter what the weight ratio of Ag/GO is.

    The inhibition zone method can display the antibacterial ability more intuitively. Here, the PUFs contents 0.4% AgNPs and Ag/GO were involved in this test (Fig. 3b). From the picture, it can be seen that the foam containing Ag/GO has a larger inhibition zone compared with that with AgNPs, which demonstrated that Ag/GO is a more effective antibacterial agent for PUFs than AgNPs.

    Fig. 3. (a) Bacteriostasis rate of PUFs with different rates of AgNPs and Ag/GO tested by the turbidimetric method.(b) Bacteriostasis rate of PUFs with AgNPs (left) and Ag/GO (right) at a content of 0.4% by the inhibition zone method

    4 CONCLUSION

    In summary, a facile and non-toxic method to prepared Ag/GO nanoparticles was presented in this paper. Compared with traditional antibacterial nanoparticles, Ag/GO nanoparticles can be dispersed more homogeneously in PUFs. By comparison with AgNPs, the as-prepared Ag/GO nanoparticles modified PUFs have a 1.85% improvement in resilience,7.9% improvement in tensile strength, 6.52% improvement in tensile elongation at break, and 8.74% in bacteriostats rate, at a concentration of 0.4%. These promising results provide a facile and environmentally friendly way to prepare functionalized polyurethane foams, which have high academic and application value.

    99国产综合亚洲精品| 久久久久国内视频| 婷婷丁香在线五月| 久久毛片免费看一区二区三区| 在线十欧美十亚洲十日本专区| 自拍欧美九色日韩亚洲蝌蚪91| av福利片在线| 最近最新中文字幕大全免费视频| 日韩 欧美 亚洲 中文字幕| 少妇粗大呻吟视频| 午夜91福利影院| 自拍欧美九色日韩亚洲蝌蚪91| 国产成人欧美在线观看 | 日韩大片免费观看网站| 精品人妻熟女毛片av久久网站| 亚洲国产毛片av蜜桃av| 夫妻午夜视频| 中亚洲国语对白在线视频| 日韩 欧美 亚洲 中文字幕| 飞空精品影院首页| 757午夜福利合集在线观看| 伦理电影免费视频| 亚洲人成伊人成综合网2020| 91成年电影在线观看| 亚洲少妇的诱惑av| 王馨瑶露胸无遮挡在线观看| 亚洲黑人精品在线| 久久久国产成人免费| 岛国在线观看网站| 50天的宝宝边吃奶边哭怎么回事| 最新在线观看一区二区三区| 如日韩欧美国产精品一区二区三区| 国产有黄有色有爽视频| 日韩视频一区二区在线观看| a级片在线免费高清观看视频| 久久国产精品男人的天堂亚洲| 黄色毛片三级朝国网站| 色精品久久人妻99蜜桃| 国产欧美日韩一区二区三| 亚洲中文字幕日韩| 国产精品 欧美亚洲| 久久久国产成人免费| 亚洲av日韩精品久久久久久密| h视频一区二区三区| 亚洲全国av大片| 在线观看66精品国产| 国产精品一区二区在线不卡| 十分钟在线观看高清视频www| 美女主播在线视频| 国产成人精品在线电影| av天堂在线播放| 亚洲av片天天在线观看| 免费一级毛片在线播放高清视频 | 1024视频免费在线观看| 免费在线观看完整版高清| 欧美亚洲日本最大视频资源| 777久久人妻少妇嫩草av网站| 9热在线视频观看99| 欧美成人免费av一区二区三区 | 成人特级黄色片久久久久久久 | 黄色毛片三级朝国网站| 免费在线观看黄色视频的| 日韩大码丰满熟妇| 亚洲七黄色美女视频| 久久国产精品大桥未久av| 亚洲成av片中文字幕在线观看| 欧美在线黄色| 大型黄色视频在线免费观看| 日韩一区二区三区影片| 侵犯人妻中文字幕一二三四区| 亚洲人成电影免费在线| 国产在线观看jvid| 日本五十路高清| 激情视频va一区二区三区| 热re99久久国产66热| 在线观看舔阴道视频| 脱女人内裤的视频| 成人18禁高潮啪啪吃奶动态图| 黑人欧美特级aaaaaa片| 免费av中文字幕在线| 男女高潮啪啪啪动态图| av一本久久久久| 成人影院久久| 在线播放国产精品三级| 蜜桃在线观看..| 午夜视频精品福利| 男人舔女人的私密视频| 精品亚洲成a人片在线观看| 国产高清国产精品国产三级| 国产精品美女特级片免费视频播放器 | 欧美黑人精品巨大| 国产成人系列免费观看| 在线播放国产精品三级| 日韩大片免费观看网站| 亚洲av日韩在线播放| 丝袜在线中文字幕| netflix在线观看网站| 丁香六月欧美| 女人爽到高潮嗷嗷叫在线视频| 超碰成人久久| www.熟女人妻精品国产| 精品午夜福利视频在线观看一区 | 亚洲国产av新网站| 18禁黄网站禁片午夜丰满| 别揉我奶头~嗯~啊~动态视频| 久久午夜亚洲精品久久| 精品一区二区三卡| 国产成人av激情在线播放| 国产一区二区 视频在线| 国产欧美日韩综合在线一区二区| 国产在线视频一区二区| 国产av一区二区精品久久| 国产成人系列免费观看| 久久久国产欧美日韩av| 老熟妇仑乱视频hdxx| 国产亚洲一区二区精品| 在线观看舔阴道视频| 亚洲中文日韩欧美视频| 一区二区三区国产精品乱码| 伦理电影免费视频| 18禁黄网站禁片午夜丰满| 欧美日韩福利视频一区二区| 亚洲av日韩在线播放| 免费看十八禁软件| av福利片在线| 国产成人免费观看mmmm| 最近最新免费中文字幕在线| 男人操女人黄网站| 丝袜人妻中文字幕| 欧美精品一区二区免费开放| 99热网站在线观看| 黑人猛操日本美女一级片| 久久青草综合色| 制服人妻中文乱码| 一区二区三区精品91| 久久免费观看电影| 两性夫妻黄色片| 热99久久久久精品小说推荐| 精品一品国产午夜福利视频| 在线观看人妻少妇| 国产日韩欧美视频二区| 亚洲成人免费电影在线观看| 久久久久久免费高清国产稀缺| 妹子高潮喷水视频| 另类精品久久| 男女午夜视频在线观看| 亚洲国产欧美日韩在线播放| 亚洲av成人不卡在线观看播放网| 国产男靠女视频免费网站| 婷婷成人精品国产| 黑人巨大精品欧美一区二区mp4| 亚洲熟女毛片儿| 新久久久久国产一级毛片| 国产91精品成人一区二区三区 | 日本撒尿小便嘘嘘汇集6| 中文字幕色久视频| 高清在线国产一区| 久久午夜综合久久蜜桃| 色尼玛亚洲综合影院| 久久国产亚洲av麻豆专区| a级毛片黄视频| 亚洲精品国产区一区二| 12—13女人毛片做爰片一| 一级毛片精品| 少妇猛男粗大的猛烈进出视频| 国产精品秋霞免费鲁丝片| 亚洲成a人片在线一区二区| 自拍欧美九色日韩亚洲蝌蚪91| 久久热在线av| tocl精华| 两性夫妻黄色片| 日韩有码中文字幕| 日本一区二区免费在线视频| aaaaa片日本免费| 亚洲综合色网址| av天堂久久9| 黄色怎么调成土黄色| 中文字幕最新亚洲高清| 精品第一国产精品| 精品卡一卡二卡四卡免费| 国产亚洲精品一区二区www | 电影成人av| 别揉我奶头~嗯~啊~动态视频| 天天添夜夜摸| 桃红色精品国产亚洲av| 亚洲成a人片在线一区二区| 国产在线精品亚洲第一网站| netflix在线观看网站| 黑人巨大精品欧美一区二区mp4| 日韩制服丝袜自拍偷拍| 男女午夜视频在线观看| 国产主播在线观看一区二区| 亚洲精品一二三| 一夜夜www| 午夜精品久久久久久毛片777| 777米奇影视久久| 18禁裸乳无遮挡动漫免费视频| 69精品国产乱码久久久| 亚洲av欧美aⅴ国产| 别揉我奶头~嗯~啊~动态视频| 国产亚洲午夜精品一区二区久久| 久久香蕉激情| 人人妻人人澡人人看| 操美女的视频在线观看| 国产区一区二久久| 国产精品久久电影中文字幕 | 久久精品国产亚洲av高清一级| a在线观看视频网站| 中文字幕人妻熟女乱码| 精品午夜福利视频在线观看一区 | 国产精品99久久99久久久不卡| 久久久久网色| 中文字幕高清在线视频| 亚洲国产欧美网| 成年人午夜在线观看视频| 国产在线一区二区三区精| 一本一本久久a久久精品综合妖精| 久久精品人人爽人人爽视色| 1024视频免费在线观看| 午夜老司机福利片| 国产精品久久电影中文字幕 | cao死你这个sao货| 精品一区二区三区四区五区乱码| 久久影院123| 国产aⅴ精品一区二区三区波| 久久久精品94久久精品| 国产精品欧美亚洲77777| 黄色a级毛片大全视频| 亚洲专区字幕在线| 国产精品熟女久久久久浪| 亚洲五月色婷婷综合| 国产精品影院久久| 午夜福利乱码中文字幕| 五月开心婷婷网| 国产精品久久久久久人妻精品电影 | 桃花免费在线播放| 国产aⅴ精品一区二区三区波| 在线观看舔阴道视频| 国产在视频线精品| 999精品在线视频| 精品亚洲成国产av| 国产主播在线观看一区二区| 在线天堂中文资源库| 大型av网站在线播放| av不卡在线播放| 日韩制服丝袜自拍偷拍| 亚洲视频免费观看视频| 丝袜美腿诱惑在线| 日本av免费视频播放| av片东京热男人的天堂| 国产精品一区二区免费欧美| 国产精品久久久久成人av| 亚洲全国av大片| 99精品欧美一区二区三区四区| 99精国产麻豆久久婷婷| 免费看十八禁软件| 女警被强在线播放| 国产成人啪精品午夜网站| av电影中文网址| 黄网站色视频无遮挡免费观看| 欧美日韩黄片免| 丁香欧美五月| 国产三级黄色录像| 两性夫妻黄色片| 国产区一区二久久| 亚洲色图综合在线观看| 成年人午夜在线观看视频| 好男人电影高清在线观看| 久久天堂一区二区三区四区| 中文字幕人妻丝袜制服| 老司机午夜十八禁免费视频| 久久影院123| 免费在线观看视频国产中文字幕亚洲| 精品人妻1区二区| 中文字幕人妻丝袜一区二区| 亚洲av欧美aⅴ国产| 桃花免费在线播放| www.熟女人妻精品国产| 成人永久免费在线观看视频 | 国产在线免费精品| tocl精华| 国产片内射在线| 黑人操中国人逼视频| 精品国产亚洲在线| 两个人免费观看高清视频| 国产免费现黄频在线看| 99香蕉大伊视频| 精品一区二区三区av网在线观看 | 精品人妻1区二区| 高清视频免费观看一区二区| 91精品三级在线观看| 日本a在线网址| 久久香蕉激情| 国产99久久九九免费精品| 久久久精品区二区三区| 国产又爽黄色视频| 91成年电影在线观看| 如日韩欧美国产精品一区二区三区| 十分钟在线观看高清视频www| 亚洲 欧美一区二区三区| 少妇 在线观看| 男女无遮挡免费网站观看| 俄罗斯特黄特色一大片| 一进一出抽搐动态| 成人18禁高潮啪啪吃奶动态图| 热99国产精品久久久久久7| 欧美日韩亚洲高清精品| 国产精品九九99| 女警被强在线播放| 在线播放国产精品三级| 99九九在线精品视频| 成人特级黄色片久久久久久久 | 亚洲少妇的诱惑av| 成在线人永久免费视频| 视频区图区小说| 日日摸夜夜添夜夜添小说| 动漫黄色视频在线观看| 国产91精品成人一区二区三区 | 亚洲av片天天在线观看| 91字幕亚洲| 免费高清在线观看日韩| 狂野欧美激情性xxxx| 下体分泌物呈黄色| 国产亚洲精品第一综合不卡| 在线观看免费视频网站a站| 日韩视频一区二区在线观看| 国产极品粉嫩免费观看在线| 中文字幕av电影在线播放| 12—13女人毛片做爰片一| 日本欧美视频一区| 久久av网站| 十八禁人妻一区二区| 熟女少妇亚洲综合色aaa.| 欧美性长视频在线观看| 久久久国产欧美日韩av| 99国产综合亚洲精品| av片东京热男人的天堂| 午夜日韩欧美国产| 丝瓜视频免费看黄片| 日本黄色日本黄色录像| 久久精品成人免费网站| 亚洲综合色网址| 亚洲精品成人av观看孕妇| 久久久欧美国产精品| 麻豆av在线久日| 亚洲色图 男人天堂 中文字幕| 亚洲欧美日韩高清在线视频 | av网站免费在线观看视频| 一级片'在线观看视频| 香蕉久久夜色| 午夜福利欧美成人| 桃红色精品国产亚洲av| 天堂8中文在线网| 日韩中文字幕欧美一区二区| 精品少妇黑人巨大在线播放| 99久久国产精品久久久| 久久精品亚洲熟妇少妇任你| 亚洲精品久久成人aⅴ小说| 一区二区三区精品91| 黄片播放在线免费| 成人手机av| 成人18禁高潮啪啪吃奶动态图| 一级a爱视频在线免费观看| 精品人妻在线不人妻| 汤姆久久久久久久影院中文字幕| 欧美久久黑人一区二区| 飞空精品影院首页| 精品久久久久久久毛片微露脸| 国产精品秋霞免费鲁丝片| 亚洲av成人一区二区三| 日本五十路高清| 91av网站免费观看| 777米奇影视久久| 九色亚洲精品在线播放| 91麻豆精品激情在线观看国产 | 激情在线观看视频在线高清 | 亚洲国产毛片av蜜桃av| 国产亚洲精品久久久久5区| 法律面前人人平等表现在哪些方面| 757午夜福利合集在线观看| 国产不卡一卡二| 中亚洲国语对白在线视频| 欧美久久黑人一区二区| 久久人人精品亚洲av| 99国产精品一区二区蜜桃av| 精品99又大又爽又粗少妇毛片 | 欧美乱码精品一区二区三区| 亚洲乱码一区二区免费版| 啪啪无遮挡十八禁网站| 天堂影院成人在线观看| 国产极品精品免费视频能看的| 色综合站精品国产| 首页视频小说图片口味搜索| 欧美日韩瑟瑟在线播放| 在线免费观看的www视频| 久99久视频精品免费| 欧美乱色亚洲激情| 丰满的人妻完整版| 99久久国产精品久久久| 欧美日韩瑟瑟在线播放| 在线视频色国产色| 亚洲aⅴ乱码一区二区在线播放| 久久草成人影院| 国产精品久久久久久久电影 | 美女黄网站色视频| 99精品久久久久人妻精品| 欧美一级a爱片免费观看看| 欧美一区二区精品小视频在线| 中文字幕熟女人妻在线| 狂野欧美激情性xxxx| 亚洲精品一卡2卡三卡4卡5卡| 美女高潮喷水抽搐中文字幕| 国产精品美女特级片免费视频播放器 | 国产亚洲精品久久久久久毛片| 国产高清视频在线观看网站| 操出白浆在线播放| 国产精品国产高清国产av| 国产高清视频在线观看网站| 免费看日本二区| 变态另类成人亚洲欧美熟女| 亚洲精品色激情综合| 欧美日韩福利视频一区二区| 人妻丰满熟妇av一区二区三区| 亚洲av成人不卡在线观看播放网| 久久久久久久精品吃奶| 丁香六月欧美| 男人舔女人下体高潮全视频| 国产精品美女特级片免费视频播放器 | 女同久久另类99精品国产91| 亚洲熟妇中文字幕五十中出| 欧美色欧美亚洲另类二区| 在线观看免费视频日本深夜| 天堂动漫精品| 很黄的视频免费| 亚洲精品一卡2卡三卡4卡5卡| 视频区欧美日本亚洲| 亚洲国产中文字幕在线视频| 麻豆久久精品国产亚洲av| 欧美激情在线99| 人妻丰满熟妇av一区二区三区| 亚洲乱码一区二区免费版| 90打野战视频偷拍视频| 欧美丝袜亚洲另类 | 国产毛片a区久久久久| 国产高清视频在线观看网站| 国产欧美日韩一区二区精品| 国产野战对白在线观看| 一个人免费在线观看的高清视频| 国产精品久久电影中文字幕| 国产精品综合久久久久久久免费| 免费人成视频x8x8入口观看| 可以在线观看毛片的网站| 国产不卡一卡二| 国产美女午夜福利| 成年版毛片免费区| 成人特级av手机在线观看| 欧美成人免费av一区二区三区| 我的老师免费观看完整版| 在线观看美女被高潮喷水网站 | 欧美日韩精品网址| 视频区欧美日本亚洲| svipshipincom国产片| 国产精品久久久久久亚洲av鲁大| 男女视频在线观看网站免费| 日韩大尺度精品在线看网址| 国产又色又爽无遮挡免费看| 在线观看日韩欧美| 亚洲av五月六月丁香网| 久久久久久大精品| 天堂网av新在线| 欧美av亚洲av综合av国产av| 欧美成狂野欧美在线观看| 成人永久免费在线观看视频| 男女床上黄色一级片免费看| 久久久国产成人精品二区| 色哟哟哟哟哟哟| 亚洲国产精品成人综合色| 日本在线视频免费播放| 女同久久另类99精品国产91| 国产精品女同一区二区软件 | 久久人妻av系列| 精华霜和精华液先用哪个| 国产成人aa在线观看| 亚洲人成网站在线播放欧美日韩| 在线观看美女被高潮喷水网站 | 亚洲成人免费电影在线观看| 免费观看人在逋| 日韩欧美在线乱码| 成年女人永久免费观看视频| 最近最新中文字幕大全电影3| 欧美在线黄色| aaaaa片日本免费| 三级国产精品欧美在线观看 | 不卡av一区二区三区| 哪里可以看免费的av片| svipshipincom国产片| 久久国产乱子伦精品免费另类| 操出白浆在线播放| ponron亚洲| 18禁黄网站禁片午夜丰满| 大型黄色视频在线免费观看| 亚洲人与动物交配视频| 每晚都被弄得嗷嗷叫到高潮| 麻豆av在线久日| 亚洲欧美日韩东京热| 久久久国产精品麻豆| 国产成人av激情在线播放| 国产精品av视频在线免费观看| www国产在线视频色| av天堂在线播放| 欧美日韩一级在线毛片| 全区人妻精品视频| 18禁美女被吸乳视频| 国产成人精品久久二区二区免费| 99热只有精品国产| 色av中文字幕| 无遮挡黄片免费观看| 在线观看日韩欧美| 日本黄色视频三级网站网址| 99国产精品一区二区蜜桃av| 久久精品亚洲精品国产色婷小说| 成年女人永久免费观看视频| 观看免费一级毛片| 久久精品夜夜夜夜夜久久蜜豆| 桃色一区二区三区在线观看| 老熟妇仑乱视频hdxx| 色精品久久人妻99蜜桃| 亚洲va日本ⅴa欧美va伊人久久| 90打野战视频偷拍视频| 看免费av毛片| 色吧在线观看| 欧美国产日韩亚洲一区| 国产真人三级小视频在线观看| 97超级碰碰碰精品色视频在线观看| 亚洲成人久久性| 黄片大片在线免费观看| 亚洲专区国产一区二区| а√天堂www在线а√下载| 人人妻人人看人人澡| 99在线人妻在线中文字幕| 久久人妻av系列| 久久精品夜夜夜夜夜久久蜜豆| 国产精品亚洲av一区麻豆| 每晚都被弄得嗷嗷叫到高潮| 精品久久久久久久末码| 一本综合久久免费| 九九热线精品视视频播放| 淫妇啪啪啪对白视频| 亚洲,欧美精品.| 天堂影院成人在线观看| 久久99热这里只有精品18| 法律面前人人平等表现在哪些方面| 巨乳人妻的诱惑在线观看| 97超级碰碰碰精品色视频在线观看| 日韩人妻高清精品专区| 成人性生交大片免费视频hd| 人妻夜夜爽99麻豆av| 精品一区二区三区视频在线 | 亚洲专区字幕在线| 亚洲av日韩精品久久久久久密| 成人一区二区视频在线观看| 哪里可以看免费的av片| 欧美最黄视频在线播放免费| 99在线人妻在线中文字幕| 丁香六月欧美| 免费高清视频大片| 国产在线精品亚洲第一网站| 国产蜜桃级精品一区二区三区| 特大巨黑吊av在线直播| 美女大奶头视频| 美女高潮的动态| 亚洲乱码一区二区免费版| 在线看三级毛片| 午夜福利18| xxxwww97欧美| 男人舔女人的私密视频| 久久午夜亚洲精品久久| 国产99白浆流出| 男人和女人高潮做爰伦理| 亚洲一区二区三区色噜噜| 男人的好看免费观看在线视频| 日韩中文字幕欧美一区二区| 禁无遮挡网站| 国产一区二区三区视频了| 最近在线观看免费完整版| 久久久久久九九精品二区国产| 日韩有码中文字幕| 好男人电影高清在线观看| 精品一区二区三区四区五区乱码| av天堂在线播放| 成年免费大片在线观看| 精品人妻1区二区| 国产精品亚洲av一区麻豆| 国产男靠女视频免费网站| 亚洲成a人片在线一区二区| 久久久国产欧美日韩av| 国产v大片淫在线免费观看| 亚洲自拍偷在线| 国产亚洲欧美98| 亚洲真实伦在线观看| 狂野欧美白嫩少妇大欣赏| 97碰自拍视频| xxxwww97欧美| 成人三级黄色视频| 国产精品久久电影中文字幕| 精品国产三级普通话版| 级片在线观看| 国产高清视频在线观看网站| 一级毛片精品| 久久久精品欧美日韩精品| 又黄又粗又硬又大视频| 色播亚洲综合网| 又紧又爽又黄一区二区| 欧美乱妇无乱码| 日韩人妻高清精品专区|