• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Syntheses, Crystal Structures and DNA-Binding Properties of Zn(II) and Mn(II) Complexes Based on Imidazole Derivatives and Carboxylic Acid

    2022-04-16 03:06:42GUANHuiChaoSONGXiaoTong
    結(jié)構(gòu)化學(xué) 2022年3期

    GUAN Hui-Chao SONG Xiao-Tong

    LIU Gui-Bao YUE Shu-Mei①

    (College of Chemistry, Changchun Normal University, Changchun 130032, China)

    ABSTRACT Complexes [Zn(pbm)(5-hip)3] (1), [Zn(pbm)(5-nip)3] (2), [Mn(pbm)(H3btc)2(H2O)] (3) and[Mn(pbm)(5-nip)3] (4), where H2HIPA = 5-hydroxyisophthalic acid, H2nip = 5-nitroisophthalic acid, H3btc = trimesic acid and pbm (pyridine benzene chelate material) = 2-(2-pyridyl)benzimidazole, were identified via single-crystal XRD analyses. 1, 2 and 4 pertain to the monoclinic space group C2/c, while 3 belongs to the triclinic space group P1. The interplay of CT-DNA with those complexes was delineated using ultraviolet, fluorescence, and circular dichroism (CD) spectroscopy and viscosity measurements. Complexes 1, 2, 3 and 4 interact with CT-DNA in an electrostatic or grooving mode. We wish to offer a theory-wise foundation for developing anti-tumor medicines.

    Keywords: single-crystal structures, spectroscopy, CT-DNA binding, 2-(2-pyridyl)benzimidazole;

    1 INTRODUCTION

    The researches on the designing and synthesis of metallic complexes have aroused extensive academic interest, which focus on the studies on worldwide coordination chemistry.Those derivatives of imidazole heterocyclic N-donor ligands have attracted substantial attention due to their frameworks and reactivity in the complex synthesis process as well as their magnetic and luminescent properties[1-6]. Nitrogen-containing heterocyclic metal complexes with special chemical structures and unique physicochemical features have been applied in functional materials, medicines and other fields[7-13]. At present, the antitumor activity of transition metal complexes is studied from the interaction modes between transition metal complexes and DNA. Researches on the DNA binding of metallic complexes, which is a vital and major challenge in life science, are particularly important for the exploration of DNA molecular probe and new therapeutic reagents. The interactions of metal complexes with DNA mainly include noncovalent interactions, covalent interactions and cutting action intercalation. Among them, the possible binding modes of the complexes to DNA include noncovalent interactions[14-18]. At present, substantial research about the interplay process of metallic ion metal complexes and DNA has been finished[19-22]. Sama has reported that mononuclear Cu complexes have the apparent binding ability towards CT-DNA[23]. Bian Lin adopted agarose gel electrophoresis for researching PBR322 DNA cleavage with complexes[24]. The interplay of metal compounds with DNA has been broadly researched. Zhou Qing-Huaet al.reported imidazole metal complexes. Meanwhile, the interplay of compounds and calf thymus DNA was explored[25-27]. Thus, the binding modes of metal complexes and DNA have become an academic hotspot.

    Our research team has committed to exploring the synthetic method of metallic complexes and their DNA-binding properties[28]. Qi Shuang et al. reported the success in synthesizing transition metal compounds with 2-(2-pyridyl)benzothiazole as ligands in 2018. Besides, a study revealed the binding properties exhibited by these complexes with DNA[29].

    In this research, our team reported the synthetic process and structural characterization of Zn(II) and Mn(II) complexes having 2-(2-pyridinyl)benzimidazole as a ligand. Interactions between four complexes and calf thymus DNA were investigated by means of spectroscopy (ultraviolet spectrum, fluorescence spectrum and circular dichroism spectrum)and viscometric analysis.

    2 EXPERIMENTAL

    2. 1 Materials

    All chemicals and solvents were applied without purification unless noted. Aladdin provided 5-hydroxyisophthalic acid, 5-nitroisophthalic acid, 2-(2-pyridyl)benzimidazole,trimesic acid, tris-HCl and CT-DNA. The CT-DNA was refrigerated at 2~8 °C and a TU-1901 spectrophotometer was used to measure visible and ultraviolet photoelectron absorption spectra. Besides, fluorescence was measured by a RF-5301PC spectrometer.

    2. 2 Synthetic processes of complexes 1~4

    2. 2. 1 Synthetic process of [Zn(pbm)(5-hip)3] (1)

    The mixture with ZnCl2·2H2O (0.1 mmol, 0.0197 g), DMF(4 mL), 2-(2-pyridyl)benzimidazole (0.2 mmol, 0.3900 g), H2O(2 mL), and 5-hydroxyisophthalic acid (0.1 mmol, 0.0182 g)was placed into a stainless-steel autoclave which was heated under 80 °C for seventy-two hours. When the reactor was cooled towards room temperature, the pale yellow crystals of complex 1 were obtained with 61% productivity on the basis of pbm. Anal. Calcd. (%) in C22H13N4O5Zn: H, 2.72; C, 55.23; N,11.72. Found (%): H, 2.70; C, 55.14; N, 11.43.

    2. 2. 2 Synthesis process of [Zn(pbm)(5-nip)3] (2)

    A mixture of 2-(2-pyridyl)benzimidazole (0.3900 g, 0.2 mmol) and 5-nitroisophthalic acid (0.0211 g, 0.1 mmol) was added into 5 mL water solution of ZnCl2·2H2O (0.1 mmol,0.01757 g). The mixture was put into the aforesaid reactor and heated under 160 °C for three days. The reactor was cooled towards room temperature to produce yellow crystals of complex 2 with 62% yield on the foundation of pbm. Anal.Calcd. (%) for C21H12N3O6Zn: H, 2.57; C, 53.88; N, 8.98.Found (%): H, 2.46; C, 53.54; N, 8.63.

    2. 2. 3 Synthetic process of [Mn(pbm)(H3btc)2(H2O)] (3)

    To his dismay and astonishment1 he found a Giant lying at the entrance of the wood; he was about to run off as fast as his legs could carry him, when the Giant called out: Don t be afraid, I won t harm you

    2-(2-Pyridyl)benzimidazole (0.3900 g, 0.2 mmol) and trimesic acid (0.0214 g, 0.1 mmol) were supplemented into 5 mL water of MnCl2·2H2O (0.1 mmol, 0.0197 g). The mixture was put into the aforesaid reactor and heated under 160 °C for 72 hours. The reactor was cooled to room temperature,and the colorless crystals of complex 3 were acquired with 60% yield based on pbm. Anal. Calcd. (%) for C21H14N3O7Mn: H, 2.95; C, 53.02; N, 8.84. Found (%): H,2.46; C, 52.14; N, 8.23.

    2. 2. 4 Synthetic process of [Mn(pbm)(5-nip)3] (4)

    Complex 4 was obtained in roughly the same way as complex 2. ZnCl2·2H2O (0.01757 g, 0.1 mmol) was utilized by taking the place of MnCl2·2H2O (0.0197 g, 0.1 mmol). It gained light yellow crystals of complex 4 with 62% yield on the foundation of pbm. Anal. Calcd. (%) for C20H12N4O6Mn:H, 2.61; C, 52.26; N, 12.19. Found (%): H, 2.46; C, 52.14; N,12.09.

    2. 3 X-ray crystallographic analysis

    Single-crystal XRD data for complexes 1~4 were documented via the Bruker Apex CCD diffractometer apparatus,and the graph item is monochromatism radiation with 296(2)K. Multistage technology was used for absorption correction.All structures were settled by Direct Method of SHELXS-97,and specified with the full-matrix least-squares method using the SHELXL-97 program in wings[30]. Table 1 shows the summary of experimental details, crystal data as well as refinement findings. Tables 2~5 list the selected bond lengths together with the bond angles.

    Table 1. Crystal Data and Structure Refinement for Complexes 1~4

    α/° 90 90 112.668(15) 90 β/° 105.0120(10) 113.863(2) 102.560(17) 114.0330(10)γ/° 90 90 96.464(17) 90 Volume/?3 4611.1(6) 3623.8(7) 1377(2) 3698.8(3)Z 8 8 2 8 ρcalc (g/cm3) 1.379 1.715 1.146 1.649 μ/mm-1 1.104 1.405 0.516 0.764 F(000) 1944.0 1896.0 484.0 1864.0 Crystal size/mm3 0.25 × 0.2 × 0.2 0.12 × 0.11 × 0.1 0.14 × 0.13 × 0.1 0.13 × 0.11 × 0.1 Radiation MoKα (λ = 0.71073) MoKα (λ = 0.71073) MoKα (λ = 0.71073) MoKα (λ = 0.71073)2θ range for data collection/° 3.666 to 52.744 3.642 to 62.534 3.742 to 55.59 3.622 to 56.54 Reflections collected 14728 15504 7023 13478 Independent reflections 4714 (Rint = 0.0397,Rsigma = 0.0440)4580 (Rint = 0.0178,Rsigma = 0.0195)2524 Data/restraints/parameters 4714/42/318 5730/4/292 5991/394/305 4580/0/328 Goodness-of-fit on F2 1.085 1.064 1.119 1.105 5730 (Rint = 0.0456,Rsigma = 0.0626)5991 (Rint = 0.0719,Rsigma = 0.1668)Final R indexes (I > 2σ(I)) R = 0.0534 R = 0.0562 R = 0.1353, R = 0.0347 Final R indexes (all data) R = 0.0718 R = 0.1042 R = 0.2209 R = 0.0461 wR (all data) 0.1721 0.1771 0.3940 0.1131 Largest diff. peak/hole / e·?-3 1.29/-0.39 0.87/-0.87 1.42/-1.11 0.40/-0.38

    Table 2. Selected Bond Lengths (?) and Bond Angles (°) of Complex 1

    Table 3. Selected Bond Lengths (?) and Bond Angles (°) of Complex 2

    Table 4. Selected Bond Lengths (?) and Bond Angles (°) of Complex 3

    Table 5. Selected Bond Lengths (?) and Bond Angles (°) of Complex 4

    2. 4 DNA binding studies

    DNA binding experiments included ultraviolet, fluorescent,and CD spectroscopic analyses and viscometric analyses. The level of CT-DNA should be continuously increased and was added into the mixed solution when measuring the ultraviolet spectroscopy and fluorescence spectrum. The measuring of viscosity was completed via an Ubbelohde viscometric device in the water bath sustained at 20 °C to increase the concentration of the metal complex.

    3 RESULTS AND DISCUSSION

    3. 1 Crystal structure description

    Single-crystal X-ray diffraction analyses reveal that complex 1 crystallizes in space groupC2/c. The asymmetric unit of 1 contains one central metal atom Zn, three HIPA2-anions,and one pbm ligand, as shown in Fig. 1. The Zn2+center is regarded as a typical five-coordinate environment coordinated with three oxygen atoms from three HIPA2-anions and two nitrogen atoms from a pbm ligand. The Zn-O and Zn-N bonds are various from 1.981(3) to 2.019(3) ? and from 2.071(4) to 2.275(4) ?, which can be compared to the reported complexes. The asymmetric units are linked together through bridging acid ligand with two different coordination modes from two carboxylic groups, i.e.,μ1-?1andμ2-?2bidentate bridging respectively, creating an infinite chain running along with the [101] orientation, as depicted in Fig. 2.Besides, the chelating pbm ligand with a dihedral angle of 2.016(92)° is nearly parallel to each other.

    Fig. 1. Molecular structure of complex 1 showing 50% displacement ellipsoids

    Fig. 2. Packing diagram of complex 1 in a unit cell viewed along the a axis

    The geometry of the Zn center is between the ideal square pyramidal (SP) and trigonal bipyramidal (TBP) configuration withτindex of 26.65% (τ= 0% for perfect SP andτ= 100%for ideal TBP geometry). Thus, the Zn center could be regarded as SP coordination geometry with some distortion, in which the O(1) atom acts as the apical axis, and N(1), N(2),O(4) and O(5) atoms as the low plane. The adjacent angles in the equatorial plane atoms are 82.2(2)°~93.45(19)°.

    Fig. 3. Molecular structure of complex 2 showing 50% displacement ellipsoids

    Fig. 4. Packing diagram of complex 2 in a unit cell viewed along the a axis

    Fig. 5. Molecular structure of complex 3showing 50% displacement ellipsoids

    Fig. 6. Molecular structure of complex 4 showing 50% displacement ellipsoids

    Fig. 7. Packing diagram of complex 3 in a unit cell viewed along the a axis

    Fig. 8. Packing diagram of complex 4 in a unit cell viewed along the a axis

    Complexes 3 and 4 crystallize in monoclinic space groupP1andC2/c,respectively. The asymmetric units of them contain one pbm ligand. Besides, complex 3 consists of one crystallographically unique Mn(II) atom, one pbm ligand,two carboxylic acid ligands and one coordinated water molecule. Complex 4 contains one center metal atom Mn, three nip2-anions and one pbm ligand, as shown in Figs. 5 and 6.As a typical five-coordinate environment, Mn2+coordinates with three nip2-anions, two nitrogen atoms, and three oxygen atoms in a pbm ligand. For 3, the Mn-O bonds are various from 2.180(8) to 2.237(7) ?, and the Mn-N bonds from 2.209(8) to 2.351(8) ?. For complex 4, the Mn-O bonds change from 2.0291(14) to 2.1415(15) ? and the Mn-N bonds fall in the 2.1853(14)~2.2446(15) ?. In fact, the oxygen atoms on two carboxyl groups connect two Mn(II) ions in order to form the 1D chain. In addition, neighboring one-dimensional chains are linked with a nitrogen atom to generate a two-dimensional plane (Figs. 7 and 8).

    3. 2 Characterization of the complex

    3. 2. 1 Thermal analysis

    The thermostability of complexes 1~4 was investigated by TGA measurement (Fig. 9), finished using specimens comprising substantial single crystals of complexes 1~4 in N2environment at a heating rate of 10 °C·h-1. For 1, no apparent weight loss was observed before the decomposition of the framework occurring at ca. 325 °C, with the remaining weight corresponding to the formation of ZnO. Complex 1 shows a weight loss of 83.08%. For 2, the framework decomposes at ca. 340 °C. The remaining weight corresponds to the formation of ZnO. For 3, the organic composition is decomposed completely at ca. 380 °C, and the remaining weight comes from the formation of MnO. Complex 3 shows a weight loss of 84.5%. Complex 4 experienced a two-step weight loss. The first one at about 296 °C with a weight loss from 296 to 416 °C is due to the decomposition of carboxylic acid ligand with a weight loss of 46.44% (theoretical value:46.83%). The second one between 416 and 513 °C is 35.61%,corresponding to the decomposition of nitrogen-containing ligand (theoretical value: 37.78%).

    3. 2. 2 XRD analysis

    The experimental and simulated powder XRD patterns of complexes 1~4 are shown in Fig. 10, indicating the practical powder of XRD patterns is consistent with the powder XRD patterns simulated according to the structural data, and the pure phase of the synthesized product is determined.

    Fig. 9. TG curves of complexes 1~4

    Fig. 10. Simulated and experimental XRPD patterns of complexes 1~4

    3. 3 Absorption spectral studies of DNA binding

    Ultraviolet spectroscopy plays an essential role in detecting the interaction mode between complexes with DNA[31]. Under normal circumstances, the absorption peak of the complex will show a decreased intensity, and the wavelength will exhibit an obvious red shift phenomenon after adding the DNA[32]. In the meantime, the energy level decreased after coupling leads to the weakening ofπ-π* transition and the red shift phenomenon. In addition, when molecules react with DNA in the groove mode, the wavelength is red-shifted, and the color decrease role is not distinct[33,34]. Meanwhile, with the increase of DNA concentration, the DNA helical structure is destroyed due to the combination of the complex, and its absorption spectrum is increased artificially with the rise of DNA concentration[35]. The UV-visible spectra were measured after the interaction of complexes 1~4 of DNA, as shown in Fig. 11. The picture shows that the maximum absorption peak of the complex increases with increasing the amount of DNA. The complexes have an excellent absorption band at 310 nm, but there is no blue or red shift. Hence, these complexes may have electrostatic effects on DNA.

    Fig. 11. Absorption spectra of complexes 1~4, corresponding to (a) to (d) in turn, in tris-HCl buffer (pH 7.0)in the absence and presence of increasing amount of DNA at room temperature

    3. 4 Fluorescent fluorescence measurements of DNA binding

    The interplay between the complex and CT-DNA was studied through emission titration. In complex solution with a specific concentration, the emission spectra of complexes 1~4 are shown in Fig. 12. With increasing the concentration of CT-DNA, the complex shows strong fluorescence at 395 nm when excited at 285 nm at room temperature. In addition,when the concentration of CT-DNA is increased to a certain amount, the fluorescence emission intensity increases continuously due to the environment of the metal complex changes and the different degree of the internal hydrophobic environment when the compound interacts with DNA, but the location of the emission band does not change significantly. It avoids the quenching effect of solvent water molecules and limits the fluidity of compounds at the binding site, thus reducing the relaxation vibration mode and increasing the emission intensity.

    Fig. 12. Emission spectra of complexes 1~4, corresponding to (a) to (d) in turn, in tris-HCl buffer (pH 7.0)in the absence and presence of increasing amount of DNA at room temperature

    3. 5 Viscosity studies of DNA binding

    To study the interplay of the complexes with CT-DNA,viscosity tests were carried out. This method is more convincing than the spectroscopic method, which can better indicate whether the interaction model between the complexes and DNA is in an intercalated manner[36]. If the complex is inserted into DNA and interacted with it, the distance between the base pairs will increase to allow the ligand to enter,therefore resulting in an increase in the solution viscosity.When the complex binds to DNA in a non-insertion mode,the DNA spirals away, which shortens the length and results in little change in the viscosity of DNA at different concentrations[37,38]. The viscometer was placed in a constant temperature water bath at 30.0 ± 0.1 °C. The blank solution was 15 mL tris and the flow time (t0) was determined. Then measure the flow time (t) of 15 mL CT-DNA and metal complex mixture solution through the capillary tube in different proportions ([complex]/[DNA] = 0.0~1.0). The relative viscosity was calculated according to the following formula:?=(t - t0)/t0.

    The viscosity curve of the interplay between complexes 1~4 and DNA is depicted in Fig. 13. It fluctuates up and down in a straight line, indicating that the interplay mode between the complex and DNA is electrostatic interaction or groove binding and it is very similar to the results obtained by spectral analysis.

    Fig. 13. Relative viscosity of CT-DNA upon the addition of increasing amounts of complexes 1~4 (r = 0.0~1.0). η is the viscosity of DNA in the presence of complex, and η0 is the viscosity of DNA alone

    Fig. 14. Circular dichromatic spectra of interactions between complexes 1~4 and DNA

    3. 6 Circular dichromatic (CD) spectroscopy

    CD spectroscopy is one of the methods to study the conformational change of DNA[39]. The CT-DNA has two apparent peaks in the CD spectrum. The negative peak at 246 nm is mainly caused by the right-handed helicity of DNA, and a positive peak at 272 nm is due to base stacking[40]. The interaction model of DNA and metal complex is determined by the change of peak position of the CD spectrum. If the binding model of the complex and DNA displays an insertion manner, the parts of the two peaks will change obviously. In case of electrostatic interaction or groove binding, the parts of the two peaks will not change significantly[41]. The concentration of CT-DNA is fixed at 100 μmol·L-1, and the concentration of the complex gradually increases. The reaction system is placed at room temperature for 1 h, and the circular dichroism spectrum of DNA is determined. With or without complexes 1~4, the CD spectra are shown in Fig. 14, where the negative and positive peaks at 246 and 272 nm respectively do not change significantly after interacting with DNA. The results show that complexes 1~4 only have a weak effect on the helicity and base pair stacking of DNA, and the interaction between these complexes and DNA can be determined as groove binding or electrostatic interaction.

    4 CONCLUSION

    In this study, four new complexes with 2-(2-pyridyl)benzimidazole as the main ligand were synthesized and their crystal structures were studied. The interaction between CT-DNA and the complex was studied by absorption spectrum, fluorescence spectrum, circular dichromatic spectroscopy and viscosity measurement. The results showed that the interaction mode between CT-DNA and the complex is electrostatic interaction or groove bonding. As these findings harbor certain potential implications for researches on anticancer drugs, we wish to offer some meaningful enlightenment for the exploration of anti-tumor medicines.

    欧美色视频一区免费| 亚洲欧美日韩无卡精品| 欧美性猛交╳xxx乱大交人| 麻豆乱淫一区二区| 一夜夜www| 女人被狂操c到高潮| 少妇人妻一区二区三区视频| 内射极品少妇av片p| 中国国产av一级| 人人妻人人看人人澡| 99热这里只有是精品在线观看| 国产精品日韩av在线免费观看| 国产精品av视频在线免费观看| 看免费成人av毛片| 真人做人爱边吃奶动态| 精品午夜福利视频在线观看一区| 欧美成人免费av一区二区三区| 午夜亚洲福利在线播放| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲一区高清亚洲精品| 春色校园在线视频观看| 搡女人真爽免费视频火全软件 | 中文资源天堂在线| 伦理电影大哥的女人| 黄色配什么色好看| 一个人看视频在线观看www免费| 国产精品不卡视频一区二区| 看片在线看免费视频| 极品教师在线视频| 给我免费播放毛片高清在线观看| 国产精品,欧美在线| 午夜福利在线在线| 三级男女做爰猛烈吃奶摸视频| 一级毛片aaaaaa免费看小| 久久精品影院6| 国产精品综合久久久久久久免费| 国产亚洲精品av在线| 亚洲天堂国产精品一区在线| 最近的中文字幕免费完整| 女人十人毛片免费观看3o分钟| 国产国拍精品亚洲av在线观看| 91午夜精品亚洲一区二区三区| 中文在线观看免费www的网站| 午夜激情福利司机影院| 亚洲婷婷狠狠爱综合网| 黑人高潮一二区| 色在线成人网| 国产视频一区二区在线看| 久久精品91蜜桃| 国产精品亚洲一级av第二区| 色5月婷婷丁香| 亚洲丝袜综合中文字幕| 国产大屁股一区二区在线视频| 在线播放国产精品三级| 欧美3d第一页| 中文字幕精品亚洲无线码一区| 在线观看午夜福利视频| av在线天堂中文字幕| 嫩草影院精品99| 国产一区二区激情短视频| 哪里可以看免费的av片| 最新中文字幕久久久久| 男女啪啪激烈高潮av片| 国产精品一区二区性色av| 国产精品电影一区二区三区| a级毛色黄片| 国产麻豆成人av免费视频| 两个人视频免费观看高清| av在线天堂中文字幕| 嫩草影院入口| a级毛片a级免费在线| 久久精品国产亚洲av香蕉五月| 波多野结衣高清无吗| 国产亚洲精品久久久久久毛片| 在线播放无遮挡| 午夜精品一区二区三区免费看| 校园春色视频在线观看| 日韩 亚洲 欧美在线| 欧美xxxx黑人xx丫x性爽| 亚洲av熟女| 丰满乱子伦码专区| 国产精品日韩av在线免费观看| 免费不卡的大黄色大毛片视频在线观看 | 偷拍熟女少妇极品色| 丰满人妻一区二区三区视频av| 日韩欧美精品v在线| 蜜臀久久99精品久久宅男| 99久久久亚洲精品蜜臀av| 国产女主播在线喷水免费视频网站 | 给我免费播放毛片高清在线观看| 俺也久久电影网| 欧美日韩乱码在线| 亚洲精品色激情综合| 热99在线观看视频| 亚洲精品在线观看二区| 三级国产精品欧美在线观看| 黄色一级大片看看| 亚洲无线观看免费| 亚洲人成网站在线观看播放| 十八禁国产超污无遮挡网站| 麻豆av噜噜一区二区三区| 欧美日韩乱码在线| 亚洲av一区综合| 欧美一区二区亚洲| 亚洲va在线va天堂va国产| 一区二区三区免费毛片| 露出奶头的视频| 亚洲激情五月婷婷啪啪| 国产精品1区2区在线观看.| 国产av麻豆久久久久久久| 国产黄色视频一区二区在线观看 | 99久久精品国产国产毛片| 丝袜美腿在线中文| 亚洲av一区综合| 淫秽高清视频在线观看| 日本精品一区二区三区蜜桃| 国产伦精品一区二区三区视频9| av中文乱码字幕在线| 成人毛片a级毛片在线播放| 黄色日韩在线| 少妇熟女aⅴ在线视频| 日韩一区二区视频免费看| 国产在线精品亚洲第一网站| 亚洲欧美精品综合久久99| 免费在线观看成人毛片| 国产精品一区www在线观看| 男插女下体视频免费在线播放| 免费搜索国产男女视频| 综合色丁香网| 淫秽高清视频在线观看| 国产成人福利小说| 国产精品,欧美在线| 国产精品av视频在线免费观看| 婷婷色综合大香蕉| 亚洲自拍偷在线| 欧美日本亚洲视频在线播放| 男人舔奶头视频| 欧美一区二区精品小视频在线| 亚洲第一区二区三区不卡| 搡老熟女国产l中国老女人| 小蜜桃在线观看免费完整版高清| 赤兔流量卡办理| 中文在线观看免费www的网站| 欧美一级a爱片免费观看看| 少妇的逼水好多| 欧美潮喷喷水| 色5月婷婷丁香| 少妇高潮的动态图| 欧美不卡视频在线免费观看| 成年版毛片免费区| 白带黄色成豆腐渣| 国产视频一区二区在线看| 国产精品亚洲一级av第二区| 国产亚洲精品久久久久久毛片| 在线观看免费视频日本深夜| 亚洲电影在线观看av| 欧美最新免费一区二区三区| 国内精品美女久久久久久| 身体一侧抽搐| 国内精品美女久久久久久| 亚洲av中文av极速乱| 亚洲成人中文字幕在线播放| 国产真实伦视频高清在线观看| 中文字幕av成人在线电影| 91午夜精品亚洲一区二区三区| 最好的美女福利视频网| 五月伊人婷婷丁香| 日韩中字成人| 国产精品国产三级国产av玫瑰| 欧美精品国产亚洲| 搡老妇女老女人老熟妇| 国模一区二区三区四区视频| 国产69精品久久久久777片| 成年免费大片在线观看| 桃色一区二区三区在线观看| 又黄又爽又刺激的免费视频.| 欧美激情久久久久久爽电影| 亚洲成人av在线免费| 成人特级黄色片久久久久久久| 你懂的网址亚洲精品在线观看 | 国产欧美日韩精品亚洲av| 国产一区二区激情短视频| 一级毛片电影观看 | 麻豆乱淫一区二区| 国产单亲对白刺激| 中文在线观看免费www的网站| 午夜精品一区二区三区免费看| 日韩大尺度精品在线看网址| 人妻丰满熟妇av一区二区三区| 国产伦在线观看视频一区| 白带黄色成豆腐渣| 国产一级毛片七仙女欲春2| 一进一出抽搐gif免费好疼| 此物有八面人人有两片| 亚洲五月天丁香| 午夜精品在线福利| 久久久国产成人免费| 99在线视频只有这里精品首页| or卡值多少钱| 综合色丁香网| 六月丁香七月| 日本一二三区视频观看| 国产精品嫩草影院av在线观看| 亚洲国产精品成人久久小说 | 久久天躁狠狠躁夜夜2o2o| 日本一二三区视频观看| 少妇人妻精品综合一区二区 | 18禁在线播放成人免费| 美女内射精品一级片tv| 午夜免费激情av| a级毛色黄片| 亚洲三级黄色毛片| 国产探花在线观看一区二区| 精品久久久久久久人妻蜜臀av| 日韩在线高清观看一区二区三区| 伊人久久精品亚洲午夜| 国语自产精品视频在线第100页| 日韩一本色道免费dvd| 黄片wwwwww| 精品久久国产蜜桃| 欧美成人a在线观看| 老司机影院成人| 99热全是精品| 国产色爽女视频免费观看| 少妇高潮的动态图| 人人妻,人人澡人人爽秒播| 亚洲熟妇中文字幕五十中出| 一夜夜www| 美女高潮的动态| 91在线观看av| 你懂的网址亚洲精品在线观看 | 有码 亚洲区| 我要搜黄色片| 欧美成人a在线观看| av女优亚洲男人天堂| 成人鲁丝片一二三区免费| 精品久久久久久成人av| 丝袜喷水一区| 日韩成人伦理影院| 熟女电影av网| 成人毛片a级毛片在线播放| 国产精品无大码| 99久久中文字幕三级久久日本| 欧美性猛交黑人性爽| 一个人观看的视频www高清免费观看| 一边摸一边抽搐一进一小说| 国产精品美女特级片免费视频播放器| 亚洲成a人片在线一区二区| 直男gayav资源| 精品久久久久久久人妻蜜臀av| 天天一区二区日本电影三级| av.在线天堂| 人人妻,人人澡人人爽秒播| 国产精品av视频在线免费观看| 亚洲熟妇中文字幕五十中出| 观看美女的网站| 午夜福利视频1000在线观看| 最新在线观看一区二区三区| 国产高清三级在线| 搡老熟女国产l中国老女人| 国产高清不卡午夜福利| 欧美又色又爽又黄视频| www.色视频.com| 精品久久久久久久久av| 成人午夜高清在线视频| 午夜精品在线福利| 极品教师在线视频| 成人一区二区视频在线观看| 国语自产精品视频在线第100页| 12—13女人毛片做爰片一| 婷婷色综合大香蕉| 色综合站精品国产| videossex国产| 麻豆av噜噜一区二区三区| 午夜久久久久精精品| 日韩欧美在线乱码| .国产精品久久| 免费电影在线观看免费观看| 国产精品久久久久久av不卡| 午夜精品一区二区三区免费看| 午夜福利高清视频| 亚洲av一区综合| 精品久久久久久久久久久久久| 色综合色国产| 1000部很黄的大片| 91av网一区二区| 色哟哟·www| 18禁裸乳无遮挡免费网站照片| 麻豆av噜噜一区二区三区| 国产高清三级在线| 国产精品乱码一区二三区的特点| 精品一区二区三区视频在线观看免费| 少妇人妻一区二区三区视频| 久久精品影院6| 嫩草影院入口| 久久久国产成人精品二区| 啦啦啦观看免费观看视频高清| 日韩精品中文字幕看吧| 久久精品人妻少妇| 亚洲一级一片aⅴ在线观看| 日日干狠狠操夜夜爽| 国产精品美女特级片免费视频播放器| 亚洲图色成人| 久久久a久久爽久久v久久| 亚洲无线观看免费| 精品一区二区三区人妻视频| 亚洲美女视频黄频| 少妇裸体淫交视频免费看高清| 99在线视频只有这里精品首页| 中文字幕人妻熟人妻熟丝袜美| 日本熟妇午夜| av天堂在线播放| 十八禁网站免费在线| 国产成人a∨麻豆精品| 色视频www国产| 免费一级毛片在线播放高清视频| 日韩国内少妇激情av| 日本与韩国留学比较| 亚洲熟妇熟女久久| 一级毛片我不卡| 中文字幕免费在线视频6| 精品久久久久久久人妻蜜臀av| 全区人妻精品视频| 亚洲美女视频黄频| 观看美女的网站| 秋霞在线观看毛片| 国产精品电影一区二区三区| 日本成人三级电影网站| 热99在线观看视频| 亚洲欧美日韩卡通动漫| 夜夜夜夜夜久久久久| 可以在线观看毛片的网站| 成人特级黄色片久久久久久久| 精品国产三级普通话版| 搡老妇女老女人老熟妇| 国产中年淑女户外野战色| 可以在线观看毛片的网站| 免费在线观看影片大全网站| www.色视频.com| 99国产精品一区二区蜜桃av| 欧美色欧美亚洲另类二区| 国产精品电影一区二区三区| 两个人的视频大全免费| 久久精品国产清高在天天线| 丝袜美腿在线中文| 如何舔出高潮| 日韩国内少妇激情av| 亚洲自拍偷在线| 99九九线精品视频在线观看视频| 久久久国产成人免费| 最近最新中文字幕大全电影3| 少妇高潮的动态图| 久久精品久久久久久噜噜老黄 | 联通29元200g的流量卡| 国产精品久久久久久久电影| 国产成人91sexporn| 欧美成人a在线观看| 精品99又大又爽又粗少妇毛片| 国产毛片a区久久久久| 美女免费视频网站| 在线观看美女被高潮喷水网站| 久久久久性生活片| 亚洲中文日韩欧美视频| 久久人人精品亚洲av| 日韩强制内射视频| 最近的中文字幕免费完整| 看黄色毛片网站| 一进一出抽搐gif免费好疼| 精品久久久久久久久av| 久久久色成人| 国产色婷婷99| 老熟妇仑乱视频hdxx| 国产一区二区激情短视频| 可以在线观看的亚洲视频| 成人欧美大片| 91久久精品电影网| 国产精品三级大全| 国产视频内射| 免费无遮挡裸体视频| 久久精品国产亚洲av香蕉五月| 嫩草影院入口| 国产在视频线在精品| 中文亚洲av片在线观看爽| 天堂动漫精品| 可以在线观看的亚洲视频| 亚洲av中文字字幕乱码综合| 日韩精品青青久久久久久| 成人漫画全彩无遮挡| 成人二区视频| 婷婷精品国产亚洲av| www.色视频.com| 男人的好看免费观看在线视频| 久久久久久久久久久丰满| 亚洲专区国产一区二区| 日韩三级伦理在线观看| 人妻少妇偷人精品九色| 免费一级毛片在线播放高清视频| 99国产极品粉嫩在线观看| 欧美日韩乱码在线| 极品教师在线视频| 婷婷精品国产亚洲av| 国产私拍福利视频在线观看| 一本久久中文字幕| 人妻丰满熟妇av一区二区三区| 美女免费视频网站| 国产亚洲精品久久久com| 国产白丝娇喘喷水9色精品| 国国产精品蜜臀av免费| 中文字幕精品亚洲无线码一区| 特级一级黄色大片| 国产成人91sexporn| 99热全是精品| 三级经典国产精品| 亚洲熟妇熟女久久| 蜜桃亚洲精品一区二区三区| 亚洲人成网站在线播放欧美日韩| 久久精品影院6| 欧美成人精品欧美一级黄| 欧美区成人在线视频| 久久久精品94久久精品| 中文字幕免费在线视频6| 亚洲欧美精品自产自拍| 国产精品爽爽va在线观看网站| 日本在线视频免费播放| 1000部很黄的大片| 午夜亚洲福利在线播放| 一本精品99久久精品77| 亚洲精品在线观看二区| 美女内射精品一级片tv| 成人欧美大片| 色噜噜av男人的天堂激情| 久久午夜亚洲精品久久| 亚洲欧美成人精品一区二区| 色综合亚洲欧美另类图片| 51国产日韩欧美| 波野结衣二区三区在线| 久久久久久久午夜电影| 日韩一区二区视频免费看| 一级a爱片免费观看的视频| 男人的好看免费观看在线视频| 97超碰精品成人国产| 一a级毛片在线观看| 别揉我奶头~嗯~啊~动态视频| 日韩成人伦理影院| 香蕉av资源在线| aaaaa片日本免费| 成人特级黄色片久久久久久久| 欧美性猛交黑人性爽| 校园春色视频在线观看| 日韩欧美 国产精品| 人人妻,人人澡人人爽秒播| 九九热线精品视视频播放| 亚洲国产精品久久男人天堂| 亚洲精品亚洲一区二区| 卡戴珊不雅视频在线播放| 99久久精品一区二区三区| 久久国产乱子免费精品| 国产成人影院久久av| 欧美日本视频| 国产精品免费一区二区三区在线| 久久人人爽人人片av| 亚洲色图av天堂| 丰满乱子伦码专区| 精品久久久久久成人av| 亚洲成人久久性| 亚洲aⅴ乱码一区二区在线播放| 亚洲在线自拍视频| 国产一区二区三区av在线 | 成人漫画全彩无遮挡| 精品久久久久久久久久久久久| 无遮挡黄片免费观看| 一级毛片我不卡| 国产伦在线观看视频一区| 精品乱码久久久久久99久播| 久久久久性生活片| 亚洲av二区三区四区| 十八禁网站免费在线| 精品人妻一区二区三区麻豆 | 亚州av有码| 色视频www国产| av天堂中文字幕网| 俄罗斯特黄特色一大片| 国产又黄又爽又无遮挡在线| av国产免费在线观看| 午夜激情福利司机影院| 亚洲经典国产精华液单| 欧美一区二区国产精品久久精品| 99热这里只有精品一区| 国产爱豆传媒在线观看| 一区二区三区免费毛片| 免费av观看视频| 国产精品人妻久久久影院| aaaaa片日本免费| 国产视频一区二区在线看| 听说在线观看完整版免费高清| 别揉我奶头 嗯啊视频| 99国产极品粉嫩在线观看| 中国美女看黄片| 赤兔流量卡办理| 97超视频在线观看视频| 成人二区视频| 在线观看av片永久免费下载| 欧美zozozo另类| 亚洲丝袜综合中文字幕| 草草在线视频免费看| 一进一出抽搐动态| 精品不卡国产一区二区三区| a级毛片免费高清观看在线播放| 亚洲不卡免费看| 午夜福利18| 简卡轻食公司| 亚洲专区国产一区二区| 国产一区二区三区在线臀色熟女| 亚洲第一电影网av| 美女大奶头视频| 国产欧美日韩一区二区精品| 国产精品一区二区三区四区免费观看 | 国产精品日韩av在线免费观看| 欧美另类亚洲清纯唯美| 男人舔奶头视频| 性插视频无遮挡在线免费观看| 小蜜桃在线观看免费完整版高清| 99久久精品热视频| 国产视频内射| 亚洲成人久久性| 亚洲婷婷狠狠爱综合网| 18+在线观看网站| 亚洲18禁久久av| 成人亚洲精品av一区二区| av天堂在线播放| 久久国内精品自在自线图片| 国产成人freesex在线 | 国内久久婷婷六月综合欲色啪| 亚洲成人精品中文字幕电影| 男人和女人高潮做爰伦理| 老熟妇乱子伦视频在线观看| 俄罗斯特黄特色一大片| 国产高清三级在线| 99久久精品热视频| 美女高潮的动态| 国产高清视频在线播放一区| 久久午夜福利片| 内射极品少妇av片p| 国产一区二区亚洲精品在线观看| 亚洲图色成人| 99热网站在线观看| 亚洲第一电影网av| 国产精品av视频在线免费观看| 成人亚洲精品av一区二区| 欧美一区二区精品小视频在线| 一本久久中文字幕| 日韩精品中文字幕看吧| 亚洲性夜色夜夜综合| 国产色婷婷99| 久久久久久久久大av| 欧美极品一区二区三区四区| 亚洲真实伦在线观看| 亚洲成人久久爱视频| 欧美日韩综合久久久久久| 毛片一级片免费看久久久久| 91在线观看av| АⅤ资源中文在线天堂| 久久久久久久亚洲中文字幕| 精品国产三级普通话版| 成年女人毛片免费观看观看9| 日韩一本色道免费dvd| 亚洲欧美中文字幕日韩二区| 熟女电影av网| 亚洲国产精品成人综合色| 两性午夜刺激爽爽歪歪视频在线观看| 一级毛片电影观看 | 日韩精品中文字幕看吧| 俄罗斯特黄特色一大片| 中文字幕av在线有码专区| 天堂√8在线中文| 国产又黄又爽又无遮挡在线| 国产精品av视频在线免费观看| 久久精品国产99精品国产亚洲性色| 人人妻,人人澡人人爽秒播| 可以在线观看的亚洲视频| 非洲黑人性xxxx精品又粗又长| 不卡一级毛片| 日本一二三区视频观看| 国产亚洲精品久久久久久毛片| 少妇猛男粗大的猛烈进出视频 | 国国产精品蜜臀av免费| 天堂网av新在线| 国产成年人精品一区二区| 极品教师在线视频| 村上凉子中文字幕在线| 热99re8久久精品国产| 91久久精品电影网| 能在线免费观看的黄片| 人妻夜夜爽99麻豆av| 国内精品宾馆在线| 国产亚洲精品av在线| 日韩欧美三级三区| 级片在线观看| 一进一出好大好爽视频| 免费黄网站久久成人精品| 亚洲精品日韩av片在线观看| 日本一二三区视频观看| 中文资源天堂在线| 超碰av人人做人人爽久久| 国产色爽女视频免费观看| 村上凉子中文字幕在线| 免费在线观看成人毛片| 国产一区二区三区av在线 | 禁无遮挡网站| 欧美三级亚洲精品| 久久午夜亚洲精品久久| 亚洲第一区二区三区不卡| 日本欧美国产在线视频| 日本黄大片高清| 久久久国产成人免费|