• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Controllable Synthesis, Polar Behavior and Photoelectric Properties of BiOCl Microplates①

    2022-04-16 03:06:10LILiXinCHENChenLIZiHoWANGFeiFeiLIUYunYIZhiGuo
    結(jié)構(gòu)化學(xué) 2022年3期

    LI Li-Xin CHEN Chen LI Zi-Ho WANG Fei-Fei② LIU Yun YI Zhi-Guo②

    a (Key Laboratory of Optoelectronic Material and Device,Department of Physics, Shanghai Normal University, Shanghai 200444, China)

    b (State Key Laboratory of High Performance Ceramics and Superfine Microstructure,Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201800, China)

    c (Research School of Chemistry, The Australian National University, Canberra, ACT 2600, Australia)

    ABSTRACT Bismuth oxychloride (BiOCl) square microplates were prepared via a facile hydrothermal method.The X-ray diffraction patterns of the samples reveal a tetragonal BiOCl phase, and the scanning electron microscopy images show plate-like structures with large lateral size of 3~6 μm and thickness in the range of 100~300 nm. The effects of surfactant, reaction temperature and duration on the morphology of BiOCl powders are systematically investigated. The polar behavior of a BiOCl single-crystalline microplate is examined by using piezoresponse force microscopy evidenced over 80 pm displacement under 40 V bias voltage. In addition, the photoelectric performance of the BiOCl microplates is evaluated by using electrochemical workstation with three-electrode system, and large photocurrent densities (over 0.5 μA/cm2) and fast photoresponse (0.7~1.1 s) are detected by applying both 365 nm monochromatic light and sunlight illumination. The surface potential changes of BiOCl microplate under different light condition, characterized by in-situ Kelvin probe force microscopy, further verify the separation ability of the photo-induced charge carriers. These findings would be beneficial for further design photocatalytic and piezocatalytic materials.

    Keywords: bismuth oxychloride, photoelectric, microplate, hydrothermal method;

    1 INTRODUCTION

    In recent years, two-dimensional (2D) layered materials,represented by graphene, are attracting increasing attention in a variety of areas due to the unique performance in comparison to their bulk counterparts[1,2]. In addition to graphene, Bi-based 2Dlayered materials exhibit great potentials in certain fields as well, such as photoelectric units, energy conversion systems and memory devices[3-5]. Among them,bismuth oxyhalides BiOX (X = Cl, Br, I) are currently a research hotspot particularly in the field of photocatalysis and photodetectors[6-10].

    At room temperature, BiOX material exhibits a tetragonal structure, featured by alternating (Bi2O2)2+layers and double X-layers along thec-axis[11-14]. These layers are bonded by van der Waals force and provide a large space to induce electric dipoles along thec-axis. The resulted internal electric field was suggested to be the driving force for the efficient separation of the photo excitons in view of the good photocatalytic activities of BiOX compound[15,16]. Although the tetragonal structure of BiOX bulk crystal belongs to a non-polar point group 4/mmm, the point group can be reduced to 4mmpolar structure in the case of ultrathin 2Dstructures. Accordingly, piezoelectricity was assumed in 2Dstructured BiOX materials, and piezo-catalytic or piezo/photoelectric co-catalytic performance studies were carried out in several recent reports[17-21]. However, the piezoelectricity of BiOX 2Dnanomaterials hasn’t been sufficiently verified due to the small dimension and limited characterization approaches.

    One easy approach to effectively characterize the piezoelectricity of BiOX 2Dmaterials is to synthesize plate-like structures with large plane size, which will benefit the existing testing methods. Many chemical methods, such as sonochemistry[22,23], solvothermal[24], hydrolysis[25,26], precipitation[27], etc., have been applied to synthesize BiOX nanomaterials. Hydrothermal process is the most practical method to control the morphology and dimensions of the nanostructures through simply adjusting the hydrothermal temperature and duration[28], pH value[29], and surfactant[30].

    In this study, we aim to synthesize BiOCl powders with large size 2Dplate-like structures by using hydrothermal method. Through adjusting the synthesis temperature and duration, BiOCl square microplates were successfully obtained. Then, the polar response of a single BiOCl microplate was characterized by using piezoresponse force microscopy (PFM). In addition, the photoelectric performance of the BiOCl microplates was further investigated to evaluate the separation ability of the photo-induced charge carriers.

    2 EXPERIMENTAL

    2. 1 Materials and methods

    Bismuth nitrate pentahydrate Bi(NO3)3·5H2O (analytical grade, Macklin, Shanghai, China) and potassium chloride KCl (analytical grade, Aladdin, Shanghai, China) were used as raw materials. For a standard procedure, 5 mmol Bi(NO3)3·5H2O and 5 mmol KCl were dissolved into 80 mL deionized water under magnetic stirring at room temperature.A predetermined amount of surfactants sodium citrate (analytical grade, Titan, Shanghai, China), varying from 0 to 1.5 mmol, were added into the solutions to control the morphology of the resultant powders. The well-dispersed solutions were moved into a 100 mL Teflon-lined stainless-steel hydrothermal reactor after stirring for 30 mins. The hydrothermal reaction was carried out at 160 and 180 ℃ for 6 to 48 h. The resultant solid products were separated from the solution and washed with deionized water by using centrifuge, then dried at 60 ℃ for 12 h for further characterization.

    2. 2 Characterization

    The phase structure of the hydrothermal products was identified using a Bruker D8 advance X-ray diffractometer(CuKαradiation source, Bruker, Karlsruhe, Germany). The step size and dwell are 0.02° and 0.12 s, respectively. The micromorphology of the samples was observed by scanning electron microscope (SEM, JSM-6700F, 10 kV, Jeol, Japan).To prepare the samples for SEM tests, the BiOCl powders were ultrasonically dispersed with anhydrous ethanol, and then the suspension was dropped on the sample stage covered with conductive tape.

    The PFM measurements were performed in the dual AC resonance tracking (DART) PFM modes (PFM, MFP-3D,Asylum Research, USA). This technique could enhance contrast in the amplitude and phase image and reduce the topographical crosstalk while mapping the local electromechanical properties. Conductive cantilevers ASYELEC-01 with tip coatings of Ti/Ir (5/20) were used. The nominal spring constants were 2 N/m with a fundamental resonance frequency of the free tip-vibration (non-contact resonance)of approximately 70 kHz. The local piezoelectric hysteresis loop was obtained in the switching spectroscopy PFM(SS-PFM) mode and the applied ac voltage was 1 V. Before each measurement of the local piezoelectric hysteresis loop,the calibration was performed through the combination of the force curve and thermal noise method. Kelvin probe force microscopy (KPFM, SPA400, Hitachi, Japan) was also applied to measure the surface potential distribution of the BiOCl nano/microplate. The BiOCl powders were dispersed in ethanol, and then the suspension was dropped on a cleaned silicon substrate for PFM tests or on a gold-coated silicon substrate for KPFM tests.

    The light absorption ability of BiOCl powders was measured by using the diffuse reflectance spectra (DRS) mode of a UV-vis spectrophotometer (Cary 5000, Varian, USA). The photoelectric properties and electrochemical impedance spectra (EIS) of the BiOCl powders were carried out by using three-electrode system and an electrochemical workstation (CS310H, Kesite, Wuhan, China). For the threeelectrode system, an indium-tin oxide (ITO) sheet glass coated with BiOCl powders was equipped as the working electrode, a platinum wire as the counter electrode, and a saturated calomel electrode (SCE) as the reference electrode,and 0.1 M Na2SO4solution was used as electrolyte solution.365 and 405 nm monochromatic lights, and a 300 W Xenon lamp were employed as the light sources, and all the tests were performed at room temperature.

    3 RESULTS AND DISCUSSION

    3. 1 Controllable synthesis of BiOCl nano/microplates

    Herein, aiming to obtain large size 2Dstructure BiOCl,the content of sodium citrate is first adjusted from 0 to 1.5 mmol. The XRD results given in Fig. 1 show that, by varying the sodium citrate content, all the resultant BiOCl powders exhibit a pure tetragonal phase indexed by JCPDS No.85-0861. The sharp and well-shaped diffraction peaks indicate good crystallization of the BiOCl powders. Besides,the intensity of the different characteristic peaks of BiOCl can be changed by adjusting the sodium citrate content,which is influenced by the powder size and morphology. The corresponding SEM images show that the particle size is significantly reduced by adding sodium citrate. Samples A to C obtained by adding different contents of sodium citrate all show irregular and highly agglomerated powders, while sample D obtained with no surfactants presents separated plate-like square particles with uniform size. When sodium citrate was added to the reaction solution, the citrate ion(C5H7O5COO-) would be adsorbed on the surface of[Bi2O2]2+layer, thus delaying the formation and growth of the nanoparticles[31]. Therefore, under the same reaction time,the size of BiOCl without sodium citrate is larger than that of the sample with sodium citrate. Consequently, sodium citrate was removed, and the holding temperature and duration of the hydrothermal process were further optimized to obtain larger size plate-like BiOCl powders.

    Fig. 1. XRD patterns (a) and SEM images (b~e) of the BiOCl powders obtained by varying the sodium citrate content for the hydrothermal process at 160 ℃ for 12 h. Sample A: 1.5 mmol (b); Sample B: 1 mmol (c); Sample C: 0.5 mmol (d); Sample D: 0 mmol (e).The bottom XRD pattern is the standard one of JCPDS No.85-0861

    Fig. 2 shows the SEM images of BiOCl powders obtained at different hydrothermal temperature and holding time.Without adding sodium citrate, all the obtained BiOCl powders show plate-like 2Dmorphology without agglomeration.With the increase of reaction temperature, the enhanced crystallization rate of nanoparticles leads to the increase of crystallinity and particle size[28,32]. Under the same hydrothermal temperature, the powder size gradually increases with the extension of reaction time. In same reaction time,the powders synthesized at 180 ℃ show better uniformity than that at 160 ℃. The powders obtained at 180 ℃ for 48 h show larger width, however, the thickness of the plate also increases to around 500~800 nm. Therefore, in view of the uniform square plate shape with thinner thickness, the powders obtained at 180 ℃ for 12 h was applied for the characterization of piezoelectric and photoelectric performance.

    Fig. 2. SEM images of BiOCl powders obtained at different synthesis temperature and holding time. (A~D) hydrothermal reaction at 160 ℃ for 6 h (a), 12 h (b), 24 h (c), 48 h (d); (e~f) hydrothermal reaction at 180 ℃ for 6 h (e), 12 h (f), 24 h (g), 48 h (h)

    Fig. 3. PFM characterization of a single BiOCl microplate. (a) Topography image; (b) Amplitude image; (c) Phase image; (d) Local displacement and phase hysteresis loops; The amplitude (e) and phase (f) images of the microplate after polarization by ±50 V external electric fields:Negative voltages with an amplitude of 50 V were written in the center area of 1.5 × 1.5 μm2 and an equal amount of positive voltage were written in the outer square area of 3 × 3 μm2

    3. 2 Polar behavior characterization

    The polar behavior of a single BiOCl microplate was characterized by PFM (Fig. 3). The topography image (Fig. 3a)reveals the width ~3μm and thickness ~100 nm of the microplate, which is consistent with the SEM results (Fig. 2f).The dark PFM amplitude image (Fig. 3b) implies very weak piezoelectric response along direction perpendicular to the microplate surface, and the phase image (Fig. 3c) shows no obvious multi-domain patterns, which may be resulted by single domain structure or nano-polar regions. But the ferroelectric-like behavior of the BiOCl microplate is observed by the local displacement loop with typical butterfly shape and the phase hysteresis loop (Fig. 3d). The local effective piezoelectric coefficientd33,locis estimated to be around 39 pm/V by using the displacement under zero bias divided by AC voltage (1 V) applied to the PFM tip[33,34].

    External field was applied to the BiOCl microplate to evaluate the polarization switching characteristics (Figs. 3e and 3f). Negative voltages with an amplitude of 50 V were written in the center area of 1.5 × 1.5μm2(the black box area) and an equal amount of positive voltage was written in the outer square area of 3 × 3μm2(the blue box area). In comparison with the amplitude and phase images before electric polarization (Figs. 3b and 3c), the amplitude and phase images after +50 V polarization (Figs. 3e and 3f) show stronger piezoelectric response, implying the domain switching. However, after applying -50 V to the small black box area, no significant opposite domain switching is detected.

    Fig. 4. (a) UV-vis absorbance spectrum of BiOCl microplates. The inset shows the calculated bandgap (Eg); (b) Transient photocurrent responses of the BiOCl photoelectrode under periodic light on/off illumination by different light sources (200 mW/cm2). 1 V bias was applied;(c) Estimation of the photoresponse time of the BiOCl photoelectrode (extracted from Fig. 4b); (d) Electrochemical impedance spectra of BiOCl photoelectrode under dark and different illumination conditions (200 mW/cm2)

    3. 3 Photoelectric performance

    The UV-vis absorbance spectra in Fig. 4a indicate an absorption edge ~375 nm of the BiOCl microplates, revealing its UV response. The band gap (Eg) of BiOCl samples was estimated by Kubelka-Munk formula as (αhν) =A(hν-Eg)n/2,whereα,h,ν,A, andEgare the absorption coefficient,Planck constant, photon frequency, proportion constant, and band gap, respectively. The optical bandgap of BiOCl is calculated to be around 3.4 eV (inset of Fig. 4a), which is consistent with the previous reports[35-37].

    Fig. 4b presents the photocurrent response of the BiOCl photoelectrode to evaluate the separation ability of photoinduced charge carriers. The 365 and 405 nm monochromatic lights and a Xenon lamp are employed as the light sources, and the light intensity is kept as 200 mW/cm2. The BiOCl photoelectrode presents a larger photocurrent density over 0.5μm/cm2under 365 nm than under 405 nm light.This result is consistent with the light response ability of the BiOCl microplates (Fig. 4a). Due to the negligible absorption of 405 nm light, the amount of photo-induced charge carriers is much less than that excited by 365 nm light,which results in the weak photocurrent densities. Although the photocurrent of BiOCl can be enhanced by sunlight, the main contribution is from the UV part, which accounts for only ~5% of the sunlight spectrum. Accordingly, it is no doubt an effective approach to optimize the photoelectric properties by reducing the bandgap of BiOCl.

    One light on/off cycle of the photocurrent response of BiOCl is enlarged in Fig. 4c to reveal the response speed to different lights. The rising time of the photocurrent is around 1.1 s under both 365 nm and sunlight. The fast-rising time indicates a good separation efficiency of the photo-induced charge carriers for BiOCl. The decaying time for sunlight is around 0.7 s. As for 365 nm light, the photocurrent consists a fast decaying process 0.7 s. Fig. 4d gives the electrochemical impedance spectrum of BiOCl photoelectrode under different light conditions. The arc radius of BiOCl under 365 nm light illumination is much smaller than that under dark, implying that the resistance of BiOCl is effectively reduced due to the large amount of the photo-excited charge carriers.

    Fig. 5. Light-induced evolution of the surface potential distribution of a BiOCl microplate on gold-coated silicon substrate: Topography image(a) and surface potential image under dark (b), illuminated by 405 nm light (c) and 365 nm light (d) and corresponding line profiles (e)

    The surface potential distribution of a BiOCl microplate was characterized by usingin-situKelvin probe force microscopy. A gold-coated silicon substrate was used for all the tests. Fig. 5a presents the topography image of a BiOCl microplate, and Fig. 5b to 5d presents the corresponding surface potential images under dark and illuminated by 405 and 365 nm monochromatic light, respectively. The surface potential distribution of the BiOCl microplate is relatively uniform. Since the surface potential of the gold-coated silicon also shows obvious changes under different light conditions,the evolution of the surface potential for BiOCl microplate is evaluated by using the relative potential between BiOCl and the substrate. Fig. 5e presents the line profiles of the relative potentials under different light conditions. The line profile under dark indicates that the surface potential of the BiOCl microplate is approximately 100 mV lower than that of the substrate, and no significant changes are detected when illuminated by 405 nm light, which is consistent with the negligible photocurrent response to 405 nm light (Fig. 4b). Under 365 nm light illumination, the surface potential of the BiOCl microplate is largely enhanced and becomes slightly higher than that of the substrate. The obvious surface potential changes indicate the increasement of the surface charges induced by the efficient separation of the photo-excited charge carriers. The noteworthy surface protentional change under 365 nm light illumination implies a good potential of photocatalytic application of the BiOCl microplates, but is limited to the UV range of the solar spectrum.

    4 CONCLUSION

    In conclusion, 2Dstructured BiOCl microplates were successfully prepared by hydrothermal method without adding surfactants. By adjusting the reaction temperature and holding time, BiOCl powders with uniform square plate shape were obtained at 180 ℃ for 12 h. The lateral size of the plates is around 3~6μm, and the thickness falls in the 100~300 nm range. The ferroelectric-like behavior of the BiOCl microplates is observed by the local displacement loop with typical butterfly shape and the phase hysteresis loop characterized by using PFM. By employing electrochemical workstation with three-electrode system, significant photocurrent of the BiOCl microplates was obtained when illuminated by both 365 nm monochromatic light and sunlight illumination. The surface potential changes under different light illumination show great potential of photocatalytic application of the BiOCl microplates by tuning the illumination conditions.

    国产探花极品一区二区| 韩国高清视频一区二区三区| 国产精品麻豆人妻色哟哟久久| 一区二区三区乱码不卡18| 国产精品久久久久成人av| 免费黄色在线免费观看| 欧美成人精品欧美一级黄| 伊人久久国产一区二区| 国产乱人偷精品视频| 久久久久国产网址| 日韩伦理黄色片| 黄色怎么调成土黄色| 亚洲一区中文字幕在线| 一区福利在线观看| 亚洲精品aⅴ在线观看| 成人国语在线视频| 精品少妇内射三级| 国产乱人偷精品视频| 日韩熟女老妇一区二区性免费视频| 午夜av观看不卡| 国产精品一区二区在线不卡| 黄网站色视频无遮挡免费观看| 秋霞伦理黄片| 午夜福利网站1000一区二区三区| 欧美另类一区| 亚洲欧美日韩另类电影网站| 亚洲男人天堂网一区| 亚洲av国产av综合av卡| 国产精品女同一区二区软件| 超碰97精品在线观看| 熟女av电影| 亚洲精品自拍成人| 青青草视频在线视频观看| 久久人人爽人人片av| 久久狼人影院| 免费高清在线观看视频在线观看| 人人妻人人添人人爽欧美一区卜| 18禁观看日本| 99精国产麻豆久久婷婷| 欧美精品国产亚洲| 欧美国产精品va在线观看不卡| 精品亚洲成国产av| 国产精品av久久久久免费| 日韩伦理黄色片| 国精品久久久久久国模美| 国产成人欧美| 国产成人精品在线电影| 日日撸夜夜添| 美女国产高潮福利片在线看| 18禁国产床啪视频网站| 欧美bdsm另类| av电影中文网址| 黑人巨大精品欧美一区二区蜜桃| 老司机影院毛片| 日韩制服骚丝袜av| 亚洲精品日本国产第一区| 国产又爽黄色视频| 人成视频在线观看免费观看| 免费av中文字幕在线| 成年人午夜在线观看视频| 亚洲国产看品久久| 欧美亚洲 丝袜 人妻 在线| 欧美精品av麻豆av| 国产一级毛片在线| 久久久久久久久久人人人人人人| 亚洲av成人精品一二三区| 亚洲成人手机| 精品人妻一区二区三区麻豆| 狠狠婷婷综合久久久久久88av| 久久久久视频综合| 国产片特级美女逼逼视频| 男女无遮挡免费网站观看| 亚洲欧美色中文字幕在线| 日韩熟女老妇一区二区性免费视频| 人人妻人人澡人人看| 男男h啪啪无遮挡| 精品亚洲乱码少妇综合久久| 精品国产乱码久久久久久男人| 亚洲综合色惰| 国产 精品1| 国产不卡av网站在线观看| 亚洲精品,欧美精品| 久久人人爽av亚洲精品天堂| 在线观看www视频免费| 欧美人与善性xxx| 亚洲精品,欧美精品| 天美传媒精品一区二区| 免费黄频网站在线观看国产| 1024视频免费在线观看| av天堂久久9| 久久精品久久久久久久性| 国产在线视频一区二区| 中国三级夫妇交换| 中文乱码字字幕精品一区二区三区| 精品视频人人做人人爽| 午夜av观看不卡| 国产免费视频播放在线视频| 日本欧美视频一区| 国产黄频视频在线观看| 亚洲欧美一区二区三区久久| 日韩欧美一区视频在线观看| 日本午夜av视频| 毛片一级片免费看久久久久| 巨乳人妻的诱惑在线观看| 老鸭窝网址在线观看| 男女国产视频网站| 国产一级毛片在线| 久久精品国产亚洲av高清一级| 国产激情久久老熟女| 精品少妇一区二区三区视频日本电影 | 国产一区亚洲一区在线观看| 侵犯人妻中文字幕一二三四区| 亚洲男人天堂网一区| 26uuu在线亚洲综合色| av国产久精品久网站免费入址| 一个人免费看片子| 大香蕉久久成人网| 一区二区三区乱码不卡18| 美女午夜性视频免费| 老鸭窝网址在线观看| av一本久久久久| 一本大道久久a久久精品| 免费黄网站久久成人精品| 少妇被粗大的猛进出69影院| 精品人妻熟女毛片av久久网站| 久久女婷五月综合色啪小说| 观看av在线不卡| 精品第一国产精品| 秋霞在线观看毛片| 999久久久国产精品视频| 免费av中文字幕在线| 一级毛片电影观看| 春色校园在线视频观看| 一边摸一边做爽爽视频免费| 日韩电影二区| 国产精品av久久久久免费| 日韩熟女老妇一区二区性免费视频| 久久国内精品自在自线图片| 青青草视频在线视频观看| 99热全是精品| 午夜免费男女啪啪视频观看| 国产精品偷伦视频观看了| 看免费av毛片| 黑人巨大精品欧美一区二区蜜桃| av.在线天堂| 国产成人精品婷婷| 精品少妇久久久久久888优播| 中文字幕人妻熟女乱码| 日韩三级伦理在线观看| 成人18禁高潮啪啪吃奶动态图| 亚洲,一卡二卡三卡| 999久久久国产精品视频| 亚洲中文av在线| 看非洲黑人一级黄片| videossex国产| 青春草国产在线视频| 久久久a久久爽久久v久久| 人人妻人人爽人人添夜夜欢视频| 高清黄色对白视频在线免费看| 两性夫妻黄色片| 一级片'在线观看视频| 日韩欧美精品免费久久| 国产精品国产三级国产专区5o| 国产xxxxx性猛交| 欧美激情高清一区二区三区 | freevideosex欧美| 男女边吃奶边做爰视频| 欧美人与性动交α欧美软件| 亚洲伊人色综图| 免费大片黄手机在线观看| 午夜av观看不卡| 黄片播放在线免费| 在线免费观看不下载黄p国产| 免费少妇av软件| 亚洲第一区二区三区不卡| 日韩大片免费观看网站| 精品国产超薄肉色丝袜足j| 夫妻性生交免费视频一级片| 丰满迷人的少妇在线观看| 国产深夜福利视频在线观看| av在线观看视频网站免费| 亚洲婷婷狠狠爱综合网| 欧美老熟妇乱子伦牲交| xxx大片免费视频| 久久精品久久久久久久性| 国产精品av久久久久免费| 男女国产视频网站| 亚洲国产毛片av蜜桃av| 五月伊人婷婷丁香| 最近2019中文字幕mv第一页| 国产熟女欧美一区二区| 黑人欧美特级aaaaaa片| 成年女人在线观看亚洲视频| 日韩一卡2卡3卡4卡2021年| 久久久久国产精品人妻一区二区| 国产av码专区亚洲av| 伦理电影免费视频| 午夜影院在线不卡| 国产极品粉嫩免费观看在线| 少妇熟女欧美另类| 久久精品国产亚洲av高清一级| 黑人猛操日本美女一级片| 国产精品免费视频内射| 性少妇av在线| 在线观看国产h片| a级毛片黄视频| 亚洲精品aⅴ在线观看| 麻豆乱淫一区二区| 久久精品熟女亚洲av麻豆精品| 肉色欧美久久久久久久蜜桃| av免费在线看不卡| 男男h啪啪无遮挡| 亚洲图色成人| 女人久久www免费人成看片| 日韩伦理黄色片| 国产成人a∨麻豆精品| 99久久人妻综合| 亚洲人成77777在线视频| 日本wwww免费看| 亚洲欧美一区二区三区久久| 男女午夜视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| 桃花免费在线播放| 欧美人与性动交α欧美软件| 久久国产精品男人的天堂亚洲| 亚洲人成电影观看| 亚洲欧美清纯卡通| 女性生殖器流出的白浆| 观看美女的网站| 亚洲三级黄色毛片| 日韩制服骚丝袜av| 中文字幕制服av| 伊人亚洲综合成人网| 91精品伊人久久大香线蕉| 久久毛片免费看一区二区三区| 日韩伦理黄色片| 又黄又粗又硬又大视频| 热99久久久久精品小说推荐| 99香蕉大伊视频| 一级,二级,三级黄色视频| 国产亚洲欧美精品永久| 成人黄色视频免费在线看| 精品久久久精品久久久| 欧美精品高潮呻吟av久久| 亚洲成人av在线免费| 五月伊人婷婷丁香| 黑人猛操日本美女一级片| 午夜av观看不卡| 成人18禁高潮啪啪吃奶动态图| 综合色丁香网| 天天躁夜夜躁狠狠躁躁| 国产有黄有色有爽视频| 亚洲综合色网址| 免费在线观看视频国产中文字幕亚洲 | 午夜福利影视在线免费观看| 欧美97在线视频| 1024视频免费在线观看| 9色porny在线观看| 老汉色∧v一级毛片| 天天操日日干夜夜撸| 大片免费播放器 马上看| 蜜桃在线观看..| 国产一区亚洲一区在线观看| 91成人精品电影| 亚洲色图 男人天堂 中文字幕| a 毛片基地| 久久国产精品大桥未久av| 天堂8中文在线网| 精品国产一区二区三区四区第35| 国产成人免费观看mmmm| 国产深夜福利视频在线观看| 国产极品粉嫩免费观看在线| 欧美 日韩 精品 国产| 视频在线观看一区二区三区| 色婷婷久久久亚洲欧美| 精品国产乱码久久久久久男人| 亚洲色图综合在线观看| 99re6热这里在线精品视频| 高清av免费在线| 97在线人人人人妻| 99香蕉大伊视频| 人妻系列 视频| 寂寞人妻少妇视频99o| 国产精品久久久久久av不卡| 亚洲中文av在线| 国产精品女同一区二区软件| 黄片小视频在线播放| 欧美精品国产亚洲| 日本欧美视频一区| 中文字幕色久视频| 在线观看人妻少妇| 少妇人妻久久综合中文| 亚洲av在线观看美女高潮| 国产精品无大码| 国产黄色视频一区二区在线观看| 天天操日日干夜夜撸| 婷婷色综合www| 国产白丝娇喘喷水9色精品| 久久人人爽av亚洲精品天堂| 国产伦理片在线播放av一区| 青春草亚洲视频在线观看| 久久狼人影院| 2018国产大陆天天弄谢| 成年女人在线观看亚洲视频| 精品久久蜜臀av无| 涩涩av久久男人的天堂| 亚洲综合色惰| 国产野战对白在线观看| 成人国产麻豆网| 亚洲国产欧美日韩在线播放| 久久99精品国语久久久| 97人妻天天添夜夜摸| 日本-黄色视频高清免费观看| 美女福利国产在线| 国产白丝娇喘喷水9色精品| 人人妻人人添人人爽欧美一区卜| 99国产精品免费福利视频| 国产高清国产精品国产三级| 在线观看免费视频网站a站| 一本色道久久久久久精品综合| 九九爱精品视频在线观看| 欧美人与性动交α欧美精品济南到 | 午夜福利乱码中文字幕| 有码 亚洲区| 亚洲第一av免费看| 国产一区亚洲一区在线观看| 国产xxxxx性猛交| 成人国语在线视频| 国产日韩欧美在线精品| 亚洲av福利一区| 精品亚洲成国产av| 久久久久视频综合| 欧美在线黄色| 大片电影免费在线观看免费| 精品视频人人做人人爽| 免费av中文字幕在线| 成年女人在线观看亚洲视频| 免费av中文字幕在线| 亚洲精品久久成人aⅴ小说| 中文精品一卡2卡3卡4更新| 少妇精品久久久久久久| 少妇的丰满在线观看| 国产日韩欧美亚洲二区| 日韩制服骚丝袜av| 极品少妇高潮喷水抽搐| 成人国语在线视频| 巨乳人妻的诱惑在线观看| 日韩中文字幕视频在线看片| 欧美在线黄色| 国产亚洲午夜精品一区二区久久| 午夜福利一区二区在线看| 国产男女内射视频| 人妻 亚洲 视频| 高清av免费在线| 日韩电影二区| 男男h啪啪无遮挡| 伦理电影大哥的女人| 一区二区三区四区激情视频| 国产精品.久久久| 国产免费视频播放在线视频| 国产探花极品一区二区| 日本猛色少妇xxxxx猛交久久| 2021少妇久久久久久久久久久| 亚洲国产欧美网| 日韩一区二区视频免费看| 亚洲av成人精品一二三区| 亚洲精品成人av观看孕妇| 精品国产乱码久久久久久男人| 黑人欧美特级aaaaaa片| 欧美 日韩 精品 国产| 肉色欧美久久久久久久蜜桃| 丰满乱子伦码专区| 天天躁夜夜躁狠狠躁躁| 视频在线观看一区二区三区| 久久精品国产综合久久久| 纯流量卡能插随身wifi吗| 日本-黄色视频高清免费观看| 国产精品女同一区二区软件| 香蕉精品网在线| 天天躁夜夜躁狠狠久久av| 国产日韩一区二区三区精品不卡| 中文字幕制服av| 1024视频免费在线观看| 一级毛片我不卡| 国产精品av久久久久免费| 国语对白做爰xxxⅹ性视频网站| 大陆偷拍与自拍| 亚洲精品国产av成人精品| 中文字幕人妻丝袜制服| 亚洲国产色片| 国产黄色免费在线视频| 久久精品久久久久久久性| 亚洲熟女精品中文字幕| 亚洲图色成人| 久久久久国产一级毛片高清牌| 久久国产精品男人的天堂亚洲| 欧美日韩亚洲国产一区二区在线观看 | 久久久久精品久久久久真实原创| 男女午夜视频在线观看| 大片电影免费在线观看免费| 日韩视频在线欧美| 亚洲美女视频黄频| 亚洲国产欧美网| 91在线精品国自产拍蜜月| 国产日韩欧美亚洲二区| 两性夫妻黄色片| 超碰成人久久| 国产在线免费精品| 午夜老司机福利剧场| 精品国产乱码久久久久久男人| 老司机亚洲免费影院| 欧美精品人与动牲交sv欧美| 久久久精品区二区三区| 日韩伦理黄色片| 国产乱人偷精品视频| 国产精品亚洲av一区麻豆 | 十八禁网站网址无遮挡| 久久午夜福利片| 黄频高清免费视频| 久久精品夜色国产| 午夜av观看不卡| 成年av动漫网址| 精品一区二区免费观看| 在线观看一区二区三区激情| 男女国产视频网站| 日韩,欧美,国产一区二区三区| 热re99久久国产66热| 在线天堂最新版资源| 不卡av一区二区三区| 欧美精品一区二区大全| 建设人人有责人人尽责人人享有的| 日本av免费视频播放| 18禁观看日本| 大码成人一级视频| 亚洲精华国产精华液的使用体验| 啦啦啦在线免费观看视频4| 午夜福利在线免费观看网站| 国产精品嫩草影院av在线观看| 中文天堂在线官网| 成人二区视频| 99热网站在线观看| 国产精品久久久av美女十八| 黑人猛操日本美女一级片| 欧美人与善性xxx| 热re99久久国产66热| 免费观看在线日韩| 少妇人妻精品综合一区二区| 日本午夜av视频| 新久久久久国产一级毛片| 中文精品一卡2卡3卡4更新| 亚洲视频免费观看视频| 国产1区2区3区精品| 中文字幕另类日韩欧美亚洲嫩草| 少妇 在线观看| 亚洲熟女精品中文字幕| 精品亚洲成a人片在线观看| 欧美精品国产亚洲| 人人妻人人爽人人添夜夜欢视频| 亚洲国产欧美网| 亚洲一码二码三码区别大吗| 精品国产超薄肉色丝袜足j| 免费在线观看黄色视频的| av在线老鸭窝| 国产高清国产精品国产三级| videosex国产| 亚洲一区中文字幕在线| 波多野结衣一区麻豆| 亚洲少妇的诱惑av| 一级毛片电影观看| 美女高潮到喷水免费观看| 国语对白做爰xxxⅹ性视频网站| 中文天堂在线官网| 9热在线视频观看99| 国产精品 国内视频| 777久久人妻少妇嫩草av网站| 边亲边吃奶的免费视频| 国产精品人妻久久久影院| 99久久人妻综合| 人人妻人人澡人人看| 香蕉精品网在线| 久久精品亚洲av国产电影网| 97人妻天天添夜夜摸| 日本-黄色视频高清免费观看| 99九九在线精品视频| 老汉色av国产亚洲站长工具| 欧美中文综合在线视频| 丝袜喷水一区| 国产成人免费观看mmmm| 久久久久久人人人人人| 亚洲精品,欧美精品| 亚洲精品成人av观看孕妇| 成人毛片60女人毛片免费| 欧美人与性动交α欧美软件| 国产免费现黄频在线看| av国产精品久久久久影院| 亚洲男人天堂网一区| 欧美日韩视频高清一区二区三区二| 国产免费现黄频在线看| 人妻少妇偷人精品九色| 婷婷色综合大香蕉| 美女午夜性视频免费| 人人澡人人妻人| 国产精品av久久久久免费| 亚洲五月色婷婷综合| 亚洲欧美成人综合另类久久久| 精品国产一区二区三区四区第35| 亚洲精品久久午夜乱码| 欧美日韩一区二区视频在线观看视频在线| 三级国产精品片| 亚洲欧美成人综合另类久久久| 男女无遮挡免费网站观看| 天美传媒精品一区二区| 亚洲欧美精品自产自拍| 超碰97精品在线观看| 亚洲国产最新在线播放| a级毛片在线看网站| 飞空精品影院首页| 国产男人的电影天堂91| 捣出白浆h1v1| 中文乱码字字幕精品一区二区三区| 制服诱惑二区| 日本欧美视频一区| 啦啦啦中文免费视频观看日本| 熟女电影av网| 妹子高潮喷水视频| 国产精品亚洲av一区麻豆 | 精品国产乱码久久久久久男人| 久久人人爽人人片av| 日韩制服骚丝袜av| 亚洲视频免费观看视频| 日韩欧美精品免费久久| 亚洲精品,欧美精品| 精品亚洲成国产av| 青青草视频在线视频观看| 免费女性裸体啪啪无遮挡网站| 在线观看www视频免费| 久久久久视频综合| 国产在线视频一区二区| 丝袜脚勾引网站| 最黄视频免费看| 一区福利在线观看| 热re99久久国产66热| 亚洲精品视频女| 乱人伦中国视频| 欧美少妇被猛烈插入视频| 国产成人精品在线电影| 亚洲五月色婷婷综合| 色婷婷av一区二区三区视频| 亚洲国产精品999| 国产精品久久久久成人av| 男人操女人黄网站| 久久国产精品男人的天堂亚洲| 久久精品久久精品一区二区三区| 精品福利永久在线观看| www.自偷自拍.com| 国产高清国产精品国产三级| 国产熟女欧美一区二区| 婷婷成人精品国产| 国产精品秋霞免费鲁丝片| 国产一区有黄有色的免费视频| 亚洲欧洲日产国产| 熟女av电影| 免费观看性生交大片5| 精品人妻熟女毛片av久久网站| 日本av手机在线免费观看| 成人免费观看视频高清| 亚洲国产欧美网| 欧美xxⅹ黑人| 久久人人爽人人片av| 免费观看a级毛片全部| 香蕉精品网在线| 看非洲黑人一级黄片| www.自偷自拍.com| 中文字幕人妻熟女乱码| 亚洲国产精品国产精品| 国产一区二区在线观看av| 十八禁高潮呻吟视频| 啦啦啦在线观看免费高清www| 美女中出高潮动态图| 国产精品免费大片| 欧美老熟妇乱子伦牲交| 亚洲,一卡二卡三卡| 最近中文字幕2019免费版| 久久久久网色| 欧美日韩成人在线一区二区| 久久久久久人人人人人| 最近最新中文字幕免费大全7| 亚洲国产看品久久| 制服人妻中文乱码| 国产探花极品一区二区| 日日爽夜夜爽网站| 大香蕉久久网| videossex国产| 1024视频免费在线观看| 三上悠亚av全集在线观看| 亚洲国产av影院在线观看| 国产野战对白在线观看| 免费av中文字幕在线| 亚洲男人天堂网一区| 午夜福利视频精品| 肉色欧美久久久久久久蜜桃| 久久精品夜色国产| 婷婷色综合大香蕉| tube8黄色片| 国产亚洲最大av| 国产成人精品福利久久| 最近手机中文字幕大全| 午夜日本视频在线| 国产欧美日韩一区二区三区在线| 女人精品久久久久毛片| 考比视频在线观看| 日日爽夜夜爽网站| 肉色欧美久久久久久久蜜桃| 侵犯人妻中文字幕一二三四区| 午夜av观看不卡|