• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-humidity Sensor of a New Trinuclear Ti3-Oxo Cluster①

    2022-04-16 02:59:46SUNShiHaoZHANGQianChongYEXiaoLiang
    結(jié)構(gòu)化學 2022年3期

    SUN Shi-Hao ZHANG Qian-Chong YE Xiao-Liang

    KASHI Chivanje evulub LI Wen-Huab WANG Guan-Eb② XU Gangb

    a (College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China)

    b (State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China)

    ABSTRACT Crystalline polyoxo-titanium clusters (PTCs), as a molecular model of TiO2 nanomaterials, have attracted unprecedented attention due to their designable structure, tunable band gap, catalysis, and photochromic properties. A new trinuclear Ti3-oxo cluster, [Ti3(μ2-O)(μ3-O)(abz)6(OiPr)2]·CH3CN·H2O (Ti3), was synthesized by solvothermal method with a yield of 60% by using 4-aminobenzoic acid as ligand. Single-crystal X-ray diffraction shows that it has a [Ti3(μ2-O)(μ3-O)(abz)6(OiPr)2] trinuclear cluster structure. Ti3 crystallizes in monoclinic space group P21/c with a = 11.091(1), b = 22.837(2), c = 22.754(1) ?, β = 90.580(6)°, V = 5763.0(6) ?3, Z = 4, Dc =1.345 g·cm-3, F(000) = 2412, μ = 2.743 mm-1, R = 0.0796, and wR = 0.2260 (I > 2σ(I)). Ti3 shows typical semiconductive behavior determined by temperature-dependent conductivity test. The chemiresistive humidity sensor fabricated by Ti3 showed good performance, including high response (four orders of magnitude current change from 0 to 100% RH) and fast response time (160 s) and recovery time (26 s).

    Keywords: polyoxo-titanium clusters, semiconductor, chemiresistive sensor, humidity sensor;

    1 INTRODUCTION

    Crystalline polyoxo-titanium clusters (PTCs) are still in their infancy stage and have a large room for development compared with other well-developed polyoxometalates[1].Owing to their precise structure, PTCs are a good bridge between TiO2nanoparticles and a precise molecular model. A 3.6 nm Ti52-oxo nanocluster was found byWei-Hui Fanget al[2]. A fullerene-like polyoxotitanium cage [Ti42(μ3-O)60(OiPr)42(OH)12]6-was also synthesized by Mei-Yan Gaoet al[3]. Bandgap engineering regulated based on Ti6core has been systematically studied by Jin Xiu Liuet al[4]. Xi Fanet al.reported the first pair of isomeric titanium-oxo clusters[Ti20(μ2-O)8(μ3-O)20(PA)14(8-OQ)10] and [Ti20(μ2-O)10(μ3-O)16(μ4-O)2(PA)14(8-OQ)10] with anatase model and explored their photocatalytic activity[5]. The photochromic behavior of[Ti6(μ3-O)2(PZ)4(TAZ)2(OiPr)14] and [Ti10(μ2-O)4(μ3-O)8-(PZ)12(OiPr)8] was also studied by Xi Fanet al[6]. Up to now,studies on PTCs are mainly focused on catalysis, photochromic, structure design, and band gap control[1,2,4,6-11]. A great challenge still remains for PTCs to be a gas sensor material with fast responsibility, high sensitivity, and good stability.

    Humidity is one of the most commonly measured physical quantities. Humidity sensor has been used in hospitals, food processing, and other industries and fields[12-15]. At present,many types of humidity sensors have been developed, such as capacitance, impedance, mass-sensitive, and optical sensors.Resistance-type sensors are portable, cheap, and easy to design. Thus, this type of humidity sensor is the most popular one[16]. TiO2-based nanotubes[17], TiO2nanotubes[18], TiO2nanofibers[19], and TiO2slanted nanorod arrays[20]have been explored as humidity sense materials. Although many TiO2materials with different morphologies have been used for sensor materials, cluster-based sensors are rarely reported.Very rare titanium-oxo cluster-based sensors have been reported. Furthermore, owing to the lack of precise information of the adsorption model, exploring the sensing mechanism is still a great challenge. PTCs with a clear structure may become a good structural platform for mechanism investigation.

    In this work, the synthesis and crystal structure of a new PTC, [Ti3(μ2-O)(μ3-O)(abz)6(OiPr)2]·CH3CN·H2O (Ti3), and its application in chemiresistive humidity sensor (Habz: 4-aminobenzoic acid;iPrOH: isopropanol) were explored. This work was the first to report a chemiresistive humidity sensor of titanium-oxo clusters. The direct current (DC) chemiresistive sensor of these PTCs showed excellent humidity sensing performance, with a high response of four orders of magnitude enhanced conductivity under 100% RH and fast response time (160 s) and recovery time (26 s).

    2 EXPERIMENTAL

    2. 1 Synthesis of the materials

    All the reagents and solvents employed were purchased commercially and used as received without further treatment.Titanium isopropoxide was purchased from Adamas-beta,and 4-aminobenzoic acid was purchased from Aladdin.Acetonitrile was acquired from Sinopharm Chemical Reagent Beijing. 4-Aminobenzoic acid (0.634 g, 4.693 mmol) was dissolved in 8 mL acetonitrile, and titanium isopropoxide(312.5 μL, 1.057 mmol) was added quickly to obtain a red solution. Then, the red solution was sealed in a 25 mL glass bottle and heated at 85 °C for 3 days. After cooling to room temperature, red-rodlike crystals of Ti3 are obtained (Fig. 1a),washed with excess amount of acetonitrile, and dried under vacuum. The purity of the compounds was proven by powder X-ray diffraction (PXRD) (Fig. 1b). EA, Calcd.: H, 4.74; N,8.38; C, 51.34%. Found: H, 4.43; N, 7.75; C, 48.72%.

    Fig. 1. (a) Crystal photo of Ti3; (b) Experiment PXRD of Ti3 and simulation

    2. 2 Crystal structure determination

    The structure data of Ti3 were collected on a Rigaku Hyoix (293 K) by using graphite-monochromated GaKαradiation (λ= 1.3405 ?). A total of 31351 reflections were collected for Ti3 red crystals, of which 9873 (Rint= 0.0362)were independent in the range of 2.38°≤θ≤53.22° by using anωscan mode. The structure was solved by direct methods and refined by full-matrix least-squares onF2by using SHELX2018 package. All non-hydrogen atoms were refined anisotropically except the O from water molecule. Hydrogen atoms were geometrically generated. The finalR= 0.0796 andwR= 0.2260 (w= 1/[σ2(Fo2) + (0.1138P)2+ 4.9551P],whereP= (Fo2+ 2Fc2)/3), (Δ/σ)max= 0.008,S= 1.025, (Δρ)max= 0.695 and (Δρ)min= -0.530 e/?3. Selected bond lengths and bond angles are shown in Tables 1 and 2. The Ti-O bond lengths are from 1.821(3) to 2.046(3) ? and the bond angles fall in the 78.00(1)~127.88(8)° range.

    2. 3 Characterization

    The data of PXRD were acquired from a MiniFlex II diffractometer using CuKαradiation (λ= 1.540598 ?) at 30 kV and 15 mA. The simulated PXRD patterns of Ti3 were derived from the Mercury Version 3.9 software. UV-vis spectrum was collected on a PerkinElmer Lambda-950 UV/Vis/NIR spectrophotometer. Spectrally pure BaSO4was used as a background. The temperature-dependent I-V curves were measured by KEITH-LEY4200-SCS semiconductor characterization system. The electrode was made using silver paste and 50 μm-diameter gold wires by placing the pressed pellets of the samples between two electrodes.

    Acetonitrile suspension liquid (40 mg/mL) was made using Ti3 powders. Then, 10 μL of the abovementioned liquid was dropped onto an Al2O3-based silver platinum interdigital electrode and dried at 60 °C for 24 h in air. The devices were used for humidity sensing performance test after drying at 60 °C for 48 h. Humidity sensing characterization was conducted using a home-made system previously reported[21,22]at room temperature. Different humidity levels were controlled by mixing dry air with 100% RH moisture in a closed quartz chamber. Dry air with a flow rate of 600 mL·min-1was purged for 5 min, followed by 5 min of different humidity gases for response. A bias voltage of 5 V was applied, and the current was recorded by a Keithley 2602B source meter.

    Table 1. Selected Bond Lengths (?) for Ti3

    Table 2. Selected Bond Angles (°) for Ti3

    3 RESULTS AND DISCUSSION

    3. 1 Structure description

    Single-crystal X-ray diffraction analysis revealed that Ti3 crystallizes in monoclinic groupP21/c. As shown in Fig. 1a,each Ti atom is coordinated by six O atoms to form an isolated octahedron. These octahedra are connected by bridged O atoms to form a Ti3-oxo cluster core. The O atoms on the terminal Ti3-oxo cluster core build five chelating 4-aminobenzoic acids, one 4-aminobenzoic acid, and two isopropanols(Fig. 2a). The Ti3-oxo cluster interacts with two neighboring ones through Van der Waals interactions to form a 1Dsupramolecular chain extending along theaaxis (Fig. 2b), and such 1Dchains are stacked in thebcplane to form a 3Dstructure (Fig. 2c).

    Fig. 2. (a) Structure of the single cluster; (b) Extending along the a axis; (c) Packing model

    3. 2 Spectrum analyses

    Compared with the 4-aminobenzoic acid, the peak intensity at 1720~1706 cm-1(-C=O) was reduced for the coordination of Ti and carboxylic acid in the benzene ring.The peak at 3500~3100 cm-1for -NH remains, indicating that the amino group has not been coordinated to Ti (Fig. 3a).These results are consistent with the single-crystal structure through single-crystal X-ray diffraction. Band gaps (Fig. 3b)of Ti3 were 1.97 eV, smaller than that of pure TiO2.

    Fig. 3. (a) FT-IR spectra of Ti3 and 4-aminobenzoic acid; (b) Solid-state UV-Vis diffuse spectrum of Ti3

    3. 3 Thermal stability and semiconductive property

    Ti3 exhibited a weight loss of approximately 5.68%(theoretical value: 5.05%) from 25 to 200 °C, corresponding to the occupancy of solvent and water molecules.The residual concentration was 21.50%, which may be TiO2(theoretical value: 20.05%, Fig. 4a). The I-V curves of Ti3 were tested in the range of 30~120 ℃. As shown in Fig. 4b, the conductivity at 30 ℃ was 2.79 × 10-11S/cm,which increased to 3.78 × 10-9S/cm at 120 ℃. The values and the trend of the conductivity increasing upon raising the temperature revealed its typical semiconductive property (Fig. 4c).

    Fig. 4. (a) Thermogravimetric (TG) analysis curve;(b) I-V curves at different temperature; (c) Arrhenius plot at different temperature

    3. 4 Humidity sensing

    Humidity is the most common physical quantity used to express the content of water vapor in air. Preparing a highperformance humidity sensor remains a challenge. Several sensing devices were produced by dropping a suspension liquid of Ti3 to the interdigital electrode. As shown in Fig. 5a,the Ti3 showed humidity response in the broad RH range from 10% to 100%. The baseline current was 1 × 10-12A under dry air flow. The electrical current rapidly increased when they were exposed to humidity atmosphere, and then gradually reached a relatively stable value. The current dropped quickly back to the baseline current when the dry air was purged in. The value of response was calculated, and the sensing properties of the compound under different water concentrations were revealed. The sensor’s response value in detecting humidity is defined as the resistance ratio between dry air and humidity gas as follows[22]:

    The response of Ti3 was 1166.11 at RH 100%, which was comparable to that in other metal oxides and metalorganic framework-based humidity sensors[23-26]. The repeating dynamic response of Ti3-based sensor to rapid variations in dry air and 60% RH is shown in Fig. 5b. The result indicated that the humidity-sensing process is extremely reversible. Response time is a very important parameter of gas sensor. The response of a single cycle(RH = 60%) was normalized to evaluate the response recovery level of the sensor. The response time (tresponse)was set to 90% of the maximum current value, and the recovery time (trecovery) was set to 10% of the maximum current value (Fig. 5c). The response and recovery time for Ti3 were 160 and 26 s, respectively.

    H2O molecules are easy to adsorb/desorb on the surface of materials, especially with hydrophilic group, indicating that water is mainly gathered on the surface of sensing materials. This situation is beneficial for rapid response and recovery[27]. The mechanism of humidity sensing is mainly surface transmission mechanism. The resistance of sensing material is changed by H2O molecules, which gather on the surface of sense materials through chemical and physical adsorption. The resistance between electrode and materials was reduced by the introduction of surface H+, OH-, H3O+, and water. The grain boundary resistance and potential barrier may also be responsible. Instantaneous polarity reversal was applied on a DC circuit with an operating voltage of 1 V[28]to probe electronic and ionic contributions to the moisture-induced increase in electrical conduction (Fig. 5d). Therefore, the electronic mechanism may be the possible sensing mechanism in this work. When the DC voltage was applied onto the electrodes, the current decayed exponentially. Then, the currents finally stabilized at 0~3 orders of magnitude larger than the baseline value in accordance with different RH%values (Table 3).

    Fig. 5. (a) Response of Ti3 to different RH (10%~100%) at room temperature; (b) Response and recovery curve under 60% RH for 5 cycles;(c) Response and recovery time curve at 60% RH; (d) Curves of current vs. time of Ti3 based sensor at various RH obtained by the DC reverse polarity method

    Table 3. Value of Response under Different RH% for Ti3

    4 CONCLUSION

    In summary, a titanium-oxo cluster semiconductive [Ti3(μ2-O)(μ3-O)(abz)6(OiPr)2]·CH3CN·H2O was prepared and characterized. The compound showed typical semiconductive behavior. The corresponding DC humidity sensor based on this compound exhibited fast response and recovery, together with a high response of four orders of magnitude at 100% RH,

    5 AUTHOR CONTRIBUTIONS

    All authors listed have made a substantial, direct, and which demonstrated its great potential for quantitatively detecting humidity.intellectual contribution to the work. The authors declare that they have no conflict of interest, and they approved this manuscript for publication.

    看十八女毛片水多多多| 在线观看国产h片| 黄色毛片三级朝国网站| 韩国高清视频一区二区三区| 免费人成在线观看视频色| 久久国产精品大桥未久av| 五月伊人婷婷丁香| 在线观看美女被高潮喷水网站| 久久99热这里只频精品6学生| 国产在视频线精品| 丁香六月天网| 久久人妻熟女aⅴ| 菩萨蛮人人尽说江南好唐韦庄| 成人影院久久| 丝袜脚勾引网站| 国产欧美日韩一区二区三区在线| 国产又色又爽无遮挡免| 天天躁夜夜躁狠狠久久av| 亚洲国产av新网站| 9191精品国产免费久久| 久久久久国产精品人妻一区二区| 亚洲少妇的诱惑av| 午夜福利,免费看| 久久精品人人爽人人爽视色| 色婷婷av一区二区三区视频| av电影中文网址| av线在线观看网站| 美女脱内裤让男人舔精品视频| 亚洲,欧美,日韩| 日韩 亚洲 欧美在线| 欧美成人午夜精品| 飞空精品影院首页| videos熟女内射| 国产av一区二区精品久久| 免费大片黄手机在线观看| 狠狠婷婷综合久久久久久88av| 亚洲精品aⅴ在线观看| 国产精品偷伦视频观看了| 国产麻豆69| 欧美精品国产亚洲| 精品少妇久久久久久888优播| 最近手机中文字幕大全| 国产精品久久久av美女十八| 国产永久视频网站| 中国国产av一级| 少妇 在线观看| 日韩欧美一区视频在线观看| 2022亚洲国产成人精品| 91久久精品国产一区二区三区| 国内精品宾馆在线| 久久久精品免费免费高清| 纵有疾风起免费观看全集完整版| 成人国语在线视频| 9热在线视频观看99| 久久国产精品男人的天堂亚洲 | 亚洲综合色网址| 咕卡用的链子| 美女中出高潮动态图| 亚洲一码二码三码区别大吗| 日韩三级伦理在线观看| 亚洲人与动物交配视频| 亚洲精品美女久久久久99蜜臀 | 亚洲成人一二三区av| 免费在线观看完整版高清| 亚洲精品自拍成人| 综合色丁香网| 日韩制服丝袜自拍偷拍| 中文字幕另类日韩欧美亚洲嫩草| 国产精品国产三级国产av玫瑰| 国产精品久久久久久av不卡| 免费黄频网站在线观看国产| 亚洲一区二区三区欧美精品| 青春草亚洲视频在线观看| 侵犯人妻中文字幕一二三四区| 国产xxxxx性猛交| 男女免费视频国产| 久久影院123| 三级国产精品片| 日韩成人伦理影院| 91aial.com中文字幕在线观看| 中文字幕最新亚洲高清| 晚上一个人看的免费电影| 岛国毛片在线播放| 国产精品国产三级国产av玫瑰| 最后的刺客免费高清国语| 男女午夜视频在线观看 | 国产老妇伦熟女老妇高清| 国产色婷婷99| 亚洲精品乱码久久久久久按摩| 男女边吃奶边做爰视频| 三级国产精品片| 99国产精品免费福利视频| 哪个播放器可以免费观看大片| 天堂8中文在线网| 性色av一级| 国产毛片在线视频| 日本色播在线视频| 18禁裸乳无遮挡动漫免费视频| 精品第一国产精品| 妹子高潮喷水视频| 久久鲁丝午夜福利片| 欧美日韩精品成人综合77777| 天堂8中文在线网| 国产无遮挡羞羞视频在线观看| kizo精华| 欧美bdsm另类| 国产亚洲精品久久久com| 夜夜爽夜夜爽视频| 街头女战士在线观看网站| av在线播放精品| 高清毛片免费看| 国产高清不卡午夜福利| 在线观看三级黄色| 欧美3d第一页| 精品国产露脸久久av麻豆| 精品久久蜜臀av无| 亚洲精品中文字幕在线视频| 肉色欧美久久久久久久蜜桃| 男女高潮啪啪啪动态图| 自线自在国产av| 全区人妻精品视频| 久久人人爽av亚洲精品天堂| 精品亚洲乱码少妇综合久久| 亚洲激情五月婷婷啪啪| 国产精品久久久久久av不卡| 午夜福利乱码中文字幕| 欧美bdsm另类| 国产精品99久久99久久久不卡 | 高清在线视频一区二区三区| 久久免费观看电影| 国产成人免费无遮挡视频| 丁香六月天网| av播播在线观看一区| 国精品久久久久久国模美| 伊人久久国产一区二区| 最新的欧美精品一区二区| 另类亚洲欧美激情| 热99久久久久精品小说推荐| 成年人午夜在线观看视频| 9热在线视频观看99| 中文字幕免费在线视频6| 久久狼人影院| 久久久久久久久久久免费av| 免费人妻精品一区二区三区视频| 一区二区av电影网| 黑人欧美特级aaaaaa片| 下体分泌物呈黄色| av在线老鸭窝| 久久久久国产网址| 婷婷色麻豆天堂久久| 在线观看三级黄色| 亚洲国产最新在线播放| 欧美日韩亚洲高清精品| 久久久久久久久久成人| 蜜臀久久99精品久久宅男| 久久综合国产亚洲精品| 香蕉精品网在线| 亚洲在久久综合| 亚洲激情五月婷婷啪啪| 精品一品国产午夜福利视频| 亚洲美女搞黄在线观看| 国产免费又黄又爽又色| 成人亚洲精品一区在线观看| 成人手机av| 中文字幕最新亚洲高清| 欧美精品亚洲一区二区| 亚洲第一av免费看| 香蕉丝袜av| 免费在线观看黄色视频的| 黄片播放在线免费| 欧美成人午夜精品| 一区二区日韩欧美中文字幕 | 熟女电影av网| 18禁裸乳无遮挡动漫免费视频| 国产亚洲精品久久久com| 秋霞伦理黄片| 亚洲av成人精品一二三区| 热99国产精品久久久久久7| 中国美白少妇内射xxxbb| 国产欧美日韩综合在线一区二区| 丝袜脚勾引网站| 日韩,欧美,国产一区二区三区| 搡女人真爽免费视频火全软件| 性色avwww在线观看| av视频免费观看在线观看| 欧美日韩精品成人综合77777| 成人无遮挡网站| 久久这里有精品视频免费| 波多野结衣一区麻豆| 欧美人与性动交α欧美软件 | 两个人看的免费小视频| 国产精品久久久av美女十八| 99热国产这里只有精品6| 欧美国产精品va在线观看不卡| 人妻 亚洲 视频| 欧美日韩精品成人综合77777| 最后的刺客免费高清国语| 国产又爽黄色视频| 久久久久精品久久久久真实原创| 国产精品99久久99久久久不卡 | 久久精品aⅴ一区二区三区四区 | 中文精品一卡2卡3卡4更新| 欧美3d第一页| 美女大奶头黄色视频| 国精品久久久久久国模美| 精品国产一区二区三区四区第35| av播播在线观看一区| 亚洲欧美清纯卡通| 亚洲中文av在线| 中文精品一卡2卡3卡4更新| 亚洲国产欧美日韩在线播放| 天天躁夜夜躁狠狠久久av| 毛片一级片免费看久久久久| 国产伦理片在线播放av一区| 色哟哟·www| 香蕉精品网在线| 人成视频在线观看免费观看| 午夜91福利影院| 国产又色又爽无遮挡免| 国产一区亚洲一区在线观看| 欧美3d第一页| 国产黄色免费在线视频| 国产片特级美女逼逼视频| 久久久久国产网址| 9色porny在线观看| 亚洲丝袜综合中文字幕| 久久久久久伊人网av| 欧美成人午夜精品| 中文天堂在线官网| 大香蕉97超碰在线| 90打野战视频偷拍视频| 久久精品久久精品一区二区三区| 午夜福利乱码中文字幕| 国产欧美另类精品又又久久亚洲欧美| 成人二区视频| 观看美女的网站| 亚洲国产毛片av蜜桃av| 亚洲欧美成人综合另类久久久| 在现免费观看毛片| 国产av精品麻豆| 人人妻人人添人人爽欧美一区卜| 国产成人精品一,二区| 哪个播放器可以免费观看大片| 我要看黄色一级片免费的| 亚洲,欧美,日韩| 午夜激情久久久久久久| 丁香六月天网| 国产麻豆69| 99热这里只有是精品在线观看| 最近中文字幕2019免费版| 久久热在线av| av视频免费观看在线观看| 我的女老师完整版在线观看| 丝瓜视频免费看黄片| 这个男人来自地球电影免费观看 | 制服人妻中文乱码| 亚洲国产看品久久| 亚洲成国产人片在线观看| 国产精品久久久久久久久免| 人成视频在线观看免费观看| 热99国产精品久久久久久7| 五月开心婷婷网| 激情五月婷婷亚洲| 日本欧美视频一区| 日韩大片免费观看网站| 亚洲国产精品国产精品| 欧美bdsm另类| 欧美 日韩 精品 国产| 亚洲激情五月婷婷啪啪| 国产精品一区www在线观看| 亚洲人成77777在线视频| 黄片播放在线免费| 中国美白少妇内射xxxbb| 高清av免费在线| 亚洲少妇的诱惑av| 国产一区二区在线观看av| 亚洲成人一二三区av| 亚洲av欧美aⅴ国产| 精品久久久精品久久久| 波野结衣二区三区在线| 91精品伊人久久大香线蕉| 亚洲国产精品999| 一边亲一边摸免费视频| 国产日韩欧美亚洲二区| 亚洲av成人精品一二三区| 亚洲成人一二三区av| 一级,二级,三级黄色视频| 午夜福利影视在线免费观看| av有码第一页| 啦啦啦中文免费视频观看日本| 在线观看免费视频网站a站| 国产成人91sexporn| 亚洲成人一二三区av| 亚洲精品乱码久久久久久按摩| 一区二区三区乱码不卡18| 日本黄色日本黄色录像| 久久久久久久精品精品| 国产成人一区二区在线| 亚洲国产精品一区三区| 亚洲,欧美精品.| 多毛熟女@视频| 免费少妇av软件| 国产成人免费观看mmmm| 亚洲少妇的诱惑av| 视频区图区小说| 妹子高潮喷水视频| 国产精品无大码| 久久精品夜色国产| 久久久亚洲精品成人影院| 欧美人与性动交α欧美软件 | √禁漫天堂资源中文www| 少妇 在线观看| 99re6热这里在线精品视频| 午夜av观看不卡| 亚洲高清免费不卡视频| 老女人水多毛片| 亚洲精品日韩在线中文字幕| 丰满迷人的少妇在线观看| 18禁观看日本| 国产精品久久久久久久电影| 久久ye,这里只有精品| 中文字幕免费在线视频6| 日本黄大片高清| 青春草亚洲视频在线观看| 久久精品国产鲁丝片午夜精品| 中文字幕另类日韩欧美亚洲嫩草| 欧美国产精品一级二级三级| 亚洲国产毛片av蜜桃av| 久久久久久伊人网av| 亚洲美女搞黄在线观看| 日韩制服骚丝袜av| 亚洲国产精品国产精品| 国产成人免费观看mmmm| 国产色爽女视频免费观看| 99热网站在线观看| 涩涩av久久男人的天堂| 女人精品久久久久毛片| 国产一区有黄有色的免费视频| 人人妻人人澡人人看| 欧美亚洲日本最大视频资源| 波多野结衣一区麻豆| 欧美3d第一页| 美女主播在线视频| 中文字幕制服av| 免费观看a级毛片全部| 在线观看www视频免费| 午夜日本视频在线| 亚洲精品成人av观看孕妇| 亚洲精品视频女| 黄色视频在线播放观看不卡| 91午夜精品亚洲一区二区三区| 高清欧美精品videossex| 国产av精品麻豆| 午夜91福利影院| 国产高清不卡午夜福利| 国产在视频线精品| 满18在线观看网站| 国产精品久久久久久久久免| 亚洲一区二区三区欧美精品| 激情视频va一区二区三区| 国产黄色免费在线视频| 激情视频va一区二区三区| 一区二区三区精品91| 亚洲五月色婷婷综合| 久久免费观看电影| 麻豆精品久久久久久蜜桃| 免费高清在线观看视频在线观看| 少妇 在线观看| 午夜日本视频在线| 热re99久久精品国产66热6| 91aial.com中文字幕在线观看| 在线免费观看不下载黄p国产| 高清黄色对白视频在线免费看| 久久午夜福利片| 免费高清在线观看日韩| 99久久精品国产国产毛片| 久久人妻熟女aⅴ| 免费日韩欧美在线观看| 成人毛片60女人毛片免费| av女优亚洲男人天堂| 中文字幕人妻丝袜制服| 国产精品久久久久久精品电影小说| 成年美女黄网站色视频大全免费| 欧美 亚洲 国产 日韩一| 国产成人精品久久久久久| 99久久精品国产国产毛片| 制服丝袜香蕉在线| 狂野欧美激情性bbbbbb| 欧美亚洲 丝袜 人妻 在线| 在线观看www视频免费| 国产精品一国产av| 久久久久久久国产电影| 亚洲av.av天堂| 久久精品国产a三级三级三级| 视频区图区小说| 精品亚洲乱码少妇综合久久| 大码成人一级视频| 欧美97在线视频| 午夜久久久在线观看| 久久久精品免费免费高清| 中文字幕最新亚洲高清| 欧美日本中文国产一区发布| av国产久精品久网站免费入址| 色94色欧美一区二区| 最后的刺客免费高清国语| 免费女性裸体啪啪无遮挡网站| 婷婷色综合www| 国产免费一级a男人的天堂| 亚洲欧美中文字幕日韩二区| 一区二区三区精品91| 黄色 视频免费看| 视频区图区小说| av在线app专区| 69精品国产乱码久久久| 国产老妇伦熟女老妇高清| 99香蕉大伊视频| 女性被躁到高潮视频| 黄色配什么色好看| 一本色道久久久久久精品综合| 亚洲国产精品成人久久小说| av视频免费观看在线观看| 亚洲精品乱久久久久久| 亚洲精品国产av蜜桃| 国产精品偷伦视频观看了| 9热在线视频观看99| 日本-黄色视频高清免费观看| 一区二区三区四区激情视频| 亚洲精华国产精华液的使用体验| 桃花免费在线播放| 纯流量卡能插随身wifi吗| 亚洲精品,欧美精品| av女优亚洲男人天堂| 日韩熟女老妇一区二区性免费视频| 国产精品免费大片| 久久ye,这里只有精品| 少妇精品久久久久久久| 免费观看a级毛片全部| 内地一区二区视频在线| 亚洲一级一片aⅴ在线观看| 免费人成在线观看视频色| 成人影院久久| 性高湖久久久久久久久免费观看| 大片免费播放器 马上看| 日本-黄色视频高清免费观看| 国产精品嫩草影院av在线观看| 在线看a的网站| 侵犯人妻中文字幕一二三四区| 18在线观看网站| 国产一级毛片在线| 极品人妻少妇av视频| 国产亚洲精品第一综合不卡 | videos熟女内射| 午夜久久久在线观看| 人人妻人人爽人人添夜夜欢视频| 久久97久久精品| 在线天堂最新版资源| 欧美日韩av久久| 最新的欧美精品一区二区| 欧美 日韩 精品 国产| 香蕉精品网在线| 草草在线视频免费看| 亚洲国产毛片av蜜桃av| 狂野欧美激情性xxxx在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 丰满迷人的少妇在线观看| 国产在线免费精品| 亚洲综合精品二区| 18在线观看网站| 中文字幕免费在线视频6| 一本—道久久a久久精品蜜桃钙片| 亚洲国产欧美日韩在线播放| 成人黄色视频免费在线看| 天天躁夜夜躁狠狠躁躁| 免费不卡的大黄色大毛片视频在线观看| 丝袜在线中文字幕| 欧美人与性动交α欧美精品济南到 | 又黄又粗又硬又大视频| 精品人妻偷拍中文字幕| 成人二区视频| 日韩大片免费观看网站| 97超碰精品成人国产| 国产免费视频播放在线视频| 老司机影院毛片| 久久韩国三级中文字幕| 国产在线视频一区二区| 国产精品欧美亚洲77777| 国产亚洲精品第一综合不卡 | 蜜桃国产av成人99| 国产成人免费观看mmmm| 国产精品国产av在线观看| 久久青草综合色| 欧美日韩一区二区视频在线观看视频在线| 久久久久网色| 亚洲熟女精品中文字幕| 国产一区有黄有色的免费视频| 男女边吃奶边做爰视频| 欧美激情极品国产一区二区三区 | 日韩av不卡免费在线播放| 国产69精品久久久久777片| 亚洲美女视频黄频| 久热这里只有精品99| 久久97久久精品| 日本黄大片高清| 啦啦啦啦在线视频资源| 色婷婷av一区二区三区视频| 久久久欧美国产精品| 国产精品久久久久久av不卡| 国产精品 国内视频| 纯流量卡能插随身wifi吗| 亚洲国产欧美在线一区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 精品少妇内射三级| 天天躁夜夜躁狠狠久久av| 中文字幕亚洲精品专区| 日韩av免费高清视频| 日本黄色日本黄色录像| 女性被躁到高潮视频| 男人操女人黄网站| 夜夜爽夜夜爽视频| 人人妻人人添人人爽欧美一区卜| 亚洲成色77777| 国产 精品1| 国产欧美日韩综合在线一区二区| 午夜影院在线不卡| 精品少妇久久久久久888优播| 久久国产精品大桥未久av| 少妇 在线观看| 搡女人真爽免费视频火全软件| 国产免费又黄又爽又色| 亚洲 欧美一区二区三区| 制服丝袜香蕉在线| 香蕉精品网在线| 国产成人精品婷婷| 久久久久精品人妻al黑| 久久久久网色| 99热国产这里只有精品6| 成年女人在线观看亚洲视频| 卡戴珊不雅视频在线播放| 精品福利永久在线观看| 在线亚洲精品国产二区图片欧美| 亚洲国产欧美在线一区| 免费大片黄手机在线观看| 亚洲国产色片| 国产欧美日韩综合在线一区二区| 国产又爽黄色视频| 亚洲欧美日韩卡通动漫| 天天躁夜夜躁狠狠久久av| 自线自在国产av| 丰满乱子伦码专区| 欧美日韩综合久久久久久| 97精品久久久久久久久久精品| 久久精品国产自在天天线| 日韩精品免费视频一区二区三区 | 午夜视频国产福利| 国产精品久久久久久av不卡| 亚洲av中文av极速乱| 国产日韩欧美亚洲二区| 免费大片18禁| 亚洲国产精品一区二区三区在线| 在线观看www视频免费| 国产成人91sexporn| 中国美白少妇内射xxxbb| 高清欧美精品videossex| 亚洲熟女精品中文字幕| 日韩精品免费视频一区二区三区 | 97超碰精品成人国产| 丰满少妇做爰视频| 成人手机av| 日韩视频在线欧美| 91精品国产国语对白视频| 22中文网久久字幕| 高清在线视频一区二区三区| 人人澡人人妻人| 男女下面插进去视频免费观看 | 亚洲成国产人片在线观看| 亚洲在久久综合| 下体分泌物呈黄色| 亚洲国产精品专区欧美| 亚洲,欧美,日韩| 亚洲精品日本国产第一区| 人人妻人人澡人人看| 亚洲精品一二三| 日韩免费高清中文字幕av| 哪个播放器可以免费观看大片| 国产日韩欧美在线精品| 久久国产亚洲av麻豆专区| 丝袜人妻中文字幕| 午夜影院在线不卡| 久久国产亚洲av麻豆专区| 丝袜人妻中文字幕| 国产日韩欧美在线精品| 久久国产亚洲av麻豆专区| 18在线观看网站| 一级爰片在线观看| 亚洲欧美日韩卡通动漫| 婷婷色麻豆天堂久久| 欧美精品高潮呻吟av久久| 国产1区2区3区精品| 免费高清在线观看视频在线观看| 涩涩av久久男人的天堂| 免费观看性生交大片5| 一级,二级,三级黄色视频| 午夜福利视频在线观看免费| 亚洲欧美日韩卡通动漫| 18在线观看网站| 国产免费又黄又爽又色| 亚洲高清免费不卡视频| 黄片无遮挡物在线观看| 精品国产一区二区三区四区第35| 日日爽夜夜爽网站| 亚洲精品日韩在线中文字幕| 天天影视国产精品| 少妇猛男粗大的猛烈进出视频| 男女啪啪激烈高潮av片| 丁香六月天网|