• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    SSP IMEX Runge-Kutta WENO Scheme for Generalized Rosenau-KdV-RLW Equation

    2022-04-15 08:23:10MuyassarAhmatandJianxianQiu
    Journal of Mathematical Study 2022年1期

    Muyassar Ahmat and Jianxian Qiu

    School of Mathematical Sciences and Fujian Provincial Key Laboratory of Mathematical Modeling and High-Performance Scientific Computing,Xiamen University,Xiamen 361005,China.

    Abstract.In this article,we present a third-order weighted essentially non-oscillatory(WENO)method for generalized Rosenau-KdV-RLW equation.The third order finite difference WENO reconstruction and central finite differences are applied to discrete advection terms and other terms,respectively,in spatial discretization.In order to achieve the third order accuracy both in space and time,four stage third-order L-stable SSP Implicit-Explicit Runge-Kutta method(Third-order SSP EXRK method and thirdorder DIRK method)is applied to temporal discretization.The high order accuracy and essentially non-oscillatory property of finite difference WENO reconstruction are shown for solitary wave and shock wave for Rosenau-KdV and Rosenau-KdV-RLW equations.The efficiency,reliability and excellent SSP property of the numerical scheme are demonstrated by several numerical experiments with large CFL number.

    Key words:Rosenau-KdV-RLW equation,WENO reconstruction, finite difference method,SSP implicit-explicit Runge-Kutta method.

    1 Introduction

    The nonlinear wave behavior is one of the active scientific research areas during the past several decades.Numerical solution of nonlinear wave equations is significantly necessary since most of these types of equations are not solvable analytically in the case of the nonlinear terms are included.

    Many mathematical models,especially nonlinear partial differential equations describe various types of wave behavior in nature.Typically,the KdV equation(Kortewegde Vries equation)is suitable for small-amplitude long waves on the surface of the subject,such as shallow water waves,ion sound waves,and longitudinal astigmatic waves.RLW equation(Regularized Long-Wave equation)can describe not only shallow water waves,but also nonlinear dispersive waves,ion-acoustic plasma waves,magnetohydrodynamic plasma waves.The Rosenau equation[1]was proposed for explaining the dynamic of dense discrete systems since the case of wave-wave and wave-wall interactions can not be explained by the KdV and RLW equations.

    In order to further consider the nonlinear wave behavior,the viscous termuxxxoruxxtneed to be included in Rosenau equation,which leads to the achievement of Rosenau-RLW equation:

    or Rosenau-KdV equation:

    There have been many difficulties in evaluating analytical solutions of nonlinear dispersive wave equations and so on the development of numerical schemes.Even so,one derived the solitary wave solution and singular soliton solution for the Rosenau-KdV equation by the ansatz method as well as the semi-inverse variational principle[2]while the shock wave solution of this equation was determined for two particular values of the power law nonlinearity parameterp=3 andp=5 by Ebadi[3].

    Significant numerical studies have been done on the Rosenau-KdV equation[4,5].Two-level nonlinear implicit Crank-Nicolson difference scheme and three-level linearimplicit difference scheme were presented to solve two-dimensional generalized Rosenau-KdV equation by Atouani[4].Their experiment proved that both schemes were uniquely solvable,unconditionally stable and second-order convergent inL1norm,the linearized scheme was more effective in terms of accuracy and computational cost.Wang and Dai[5]proposed a conservative unconditionally stable finite difference scheme withO(h4+τ2)for the generalized Rosenau-KdV equation in both one and two dimension,wherehis spatial step andτis temporal step,respectively.

    A mass-preserving scheme which combined a high-order compact scheme and a threelevel average difference iterative algorithm was analyzed and tested for the Rosenau-RLW equation in[6].In their work,they focused on the development of the approach for solving the nonlinear implicit scheme in aim to improve the accuracy of approximate solutions.The Rosenau-RLW equation was also solved by second-order nonlinear finite element Galerkin-Crank-Nicolson method which was linearized by predictor-correction extrapolation technique in[7].An energy conservative two-level fourth-order nonlinear implicit compact difference scheme for three dimensional Rosenau-RLW equation was designed by Li[8]and an iterative algorithm was introduced to generate this nonlinear algebraical system.

    In this paper,we focus on one-dimensional generalized Rosenau-KdV-RLW equation.This model is difficult to solve numerically because of the excessive computational cost caused by high order mixed derivative term and the selective wave behavior caused by the power law nonlinearity term.In order to keep this model in a generalized setting,the Rosenau-KdV-RLW equation is written as:

    whereu(x,t)denote the profile of the wave whilexandtare the spatial and temporal variables,respectively.α>0,ε>0 are the parameters of linear and nonlinear advection terms,p≥2 is the parameter of power law nonlinearity.θ,δ,νare the parameters of KdV,RLW,Rosenau terms,respectively.

    Rosenau-KdV-RLW equation has been studied both theoretically and numerically in recent years.Ansatz approach and semi-inverse variational principle were used to determine the solitary and shock solution,and the conservation laws of the Rosenau-KdVRLW equation with power law nonlinearity were computed by the aid of multiplier approach in Lie symmetry analysis in[9]and[10].A three-level second-order accurate weighted average implicit finite difference scheme was presented by Wongsaijai[11]to solve the Rosenau-KdV-RLW equation.Wang[12]introduced a three-level linear conservative implicit finite difference scheme for solving this equation which was easy to implement and had simple computational structure.A multi-symplectic scheme and an energy-preserving scheme based on the multi-symplectic Hamiltonian formulation of the equation were tested for the generalized Rosenau-type equation in[13].These methods were implemented efficiently by the discrete fast Fourier transform with spectral accuracy in space while second-order accuracy in time.

    To the best of our knowledge,many numerical schemes are employed to simulate the solitary wave of the Rosenau-KdV and Rosenau-KdV-RLW equations.But as far as we know,there is very few numerical scheme has bees presented for the shock wave of these equations.In this paper,We’re going to fill this gap effectively.

    The Implicit-Explicit(IMEX)Runge-Kutta method is an effective time solver with the advantages of loosening the CFL restriction caused by the Explicit scheme and reducing the computational cost caused by Implicit method reasonably for PDEs which contains stiff and non-stiff terms all together,and applied generally for this type of PDEs[15–17].In order to ensure the stability stands for this type of large ODE system obtained from spatial discretization,It is much safer to use IMEX Runge-Kutta methods with strong stability preserving(SSP)properties[18–20].

    The weighted essentially non-oscillatory(WENO)method is mostly applied for hyperbolic conservation laws with the advantages of the capability to achieve high-order accuracy in smooth regions while maintaining stable,non-oscillatory property in sharp or stiff region[21–23].Here,we use the same approach for the solitary wave solution and shock wave solution of Rosenau-KdV-RLW equation.

    The advantages of finite difference WENO reconstruction[22]is exploited in wave motions,especially shock wave for Rosenau-KdV equation and Rosenau-KdV-RLW equation with power law nonlinearity parameterp=3 andp=5 as given in[3,9]to deal with stiff wave motion.Instead of using third order TVD Runge-Kutta scheme in time direction,we choose the SSP IMEX Runge-Kutta scheme[20]to avoid the strict CFL restriction and large computational cost.To be specific,we use third-order finite difference WENO scheme for advection terms of(1.3)and treat explicitly in the time direction.The rest of(1.3)is treated by high order central finite difference method in space and treated implicitly in time.

    The paper is arranged as follows.In Section 2,the third-order finite difference WENO scheme and high order finite difference method are performed.In Section 3,the thirdorder SSP IMEX Runge-Kutta scheme is given for the treatment in time.Extensive numerical results are proposed in Section 4 to illustrate the accuracy and efficiency of the present method.Concluding remarks are given in the final section.

    2 Spatial discretization

    3 The third order SSP IMEX Runge-Kutta method

    4 Numerical results

    In this section,we will discuss computational results of the scheme(3.9)on some numerical examples for the solitary wave solution and shock wave solution of Rosenau-KdV equation and Rosenau-KdV-RLW equation.

    wave velocity

    and wave amplitude

    Errors and rates of convergence in terms ofL1andL∞atT=20 forτ=CFL·hwithCFL=1 in intervalx∈[?70,100]are listed in Table 1 for Example 4.1.The third order accuracy of the numerical method is achieved as we expected in the theoretical procedure,and works well with large time step.We can observe from the left of Figure 1 that the solitary wave curve matches excellently with exact solution whenh=τ=0.1 atT=20.From the right of Figure 1,it can be seen that error mostly generates at two sides of the solidary wave.

    Figure 1:Wave graph of u(x,t)at T=20 and numerical solution of Rosenau-KdV equation with h=τ=0.1 at T=20(left)and error(right)for Example 4.1.

    Table 1:Errors and rates of convergence when CFL=1,h=τ at T=20 for Example 4.1.

    We compare theL∞errors of our scheme with the results of other three numerical schemes[11,12]under various mesh stepsh=τatT=20 in Table 2.The better computational accuracy of the present scheme can be seen with the smallest error among other schemes referred above.The solitary wave graphs atT=10,20 agree with the one atT=0 quite well.The solitary wave curve propagates with constant speed V to the right through time T in Figure 2.

    Figure 2:Numerical solution of Rosenau-KdV equation with h=τ=0.1 at T=0,10,20 for Example 4.1.]

    Table 2:Comparison of L∞errors at T=20 for Example 4.1.

    To observe the effect of power law nonlinear term to the solitary wave of Rosenau-KdV equation,we draw the wave curves forp=2,4,6,8,10 andwithh=τ=0.1 atT=20 in Figure 3,The wave amplitude and width are increasing whilepincreases.We computeL1,L∞errors forp=2,4,6,8,10 andatT=20 on three different meshes in Table 3 and also achieve third-order convergence in each case.

    Figure 3:Numerical solution of Rosenau-KdV equation with p=2,4,6,8,10,?=and h=τ=0.1 at T=20 for Example 4.1.

    Table 3:L1,L∞ errors of numerical solutions for Rosenau-KdV equation with h=τ,T=20,ε=1pfor Example 4.1.

    Next,we refer shock wave solutions of Rosenau-KdV equation from[3]which is available only for two particular values of power law nonlinearity parameterp=3,5.Our scheme simulates this wave phenomena efficiently with its essentially non-oscillatory property.

    Example 4.2.Consider Rosenau-KdV equation(1.2)with parametersδ=0,ν= ?10,α=0.05,θ=0.001,?=?5,p=5:

    and choose the initial condition to beu0(x)=Mtanh(Wx),so that the analytical shock wave solution of Rosenau-KdV equation forp=5 isu(x,t)=Mtanh[W(x?Vt)]as in[3]with

    These parameters have to be chosen carefully to make sure that the three quantities are all real.In Table 4,we show errors and rates of convergence to highlight the efficiency of the WENO reconstruction for shock wave in the case ofp=5.Figure 4 displays the shock wave atT=10 withh=τ=0.1 on the left and error on the right.As we can see there is no oscillatory nearby the stiff region.

    Table 4:Errors and rates of convergence when CFL=1,h=τ at T=10 for Example 4.2.

    Figure 4:Wave graph of u(x,t)at T=10 and numerical solution of Rosenau-KdV equation with h=τ=0.1,p=5 at T=10(left)and error(right)for Example 4.2.

    Example 4.3.Consider Rosenau-KdV equation(1.2)with parametersδ=0,ν= ?10,α=0.4,θ=0.01,?=?3,p=3:

    and choose the initial condition to beu0(x)=Mtanh2(Wx),so that the analytical shock wave solution of Rosenau-KdV equation forp=3 isu(x,t)=Mtanh2[W(x?Vt)]as in[3]with

    In Table 5,we give error and rate of convergence for shock wave whenp=3.Obviously here we achieve order that smaller than three at first,but it will converge to three eventually as the mesh is refined.Figure 5 displays the shock wave atT=10 whenh=τ=0.1 on the left and error on the right.

    Table 5:Errors and rates of convergence when CFL=1,h=τ at T=10 for Example 4.3.

    Figure 5:Wave graph of u(x,t)at T=10 and numerical solution of Rosenau-KdV equation with h=τ=0.1,p=3 at T=10(left)and error(right)for Example 4.3.

    TheL∞errors of the numerical solutions atT=10 under various mesh stepsh=τare listed in Table 6 and compare with other three types of schemes studied earlier about the same equation,which shows that our scheme has the smallest error in any cases.

    Table 6:The Comparison of L∞ errors with CFL=1,h=τ at T=10 between four different schemes for Example 4.4.

    On the left of Figure 6,the numerical wave curve totally matches with the analytical solidary solution atT=10 with meshh=τ=0.1 over the intervalx∈[?40,60]and the corresponding distribution of the error is drawn for solitary wave in the right of Figure 6.

    Figure 6:Wave graph of u(x,t)at T=10 and numerical solution of Rosenau-KdV-RLW equation with h=τ=0.1 at T=10(left)and error(right)for Example 4.4.

    As shown in Table 7, the third-order convergence of the numerical solutions is verified atT=10 for the solitary wave problem of the Rosenau-KdV-RLW equation.In Figure 7,perspective views of the traveling solutions are graphed at various time levels forh=τ=0.1.

    Table 7:Errors and rates of convergence with CFL=1,h=τ at T=10 for Example 4.4.

    Figure 7:Numerical solution of Rosenau-KdV-RLW equation with h=τ=0.1 at T=2,4,6,8,10 for Example 4.4.

    In order to observe the effect of power law nonlinear term to the solidary wave of Rosenau-KdV-RLW equation,TheL1,L∞errors and third-order convergence forp=2,4,6,8,10 andε=1/pon three different mesh are listed in Table 8.We draw the wave curves for thesepatT=10 withCFL=1,h=τ=0.1 andε=1/pin the intervalx∈[?40,60]for give further description in Figure 8.It can be observed that wave amplitude and speed decreases along withpincreases,this also fits the power law.

    Figure 8:Numerical solution of Rosenau-KdV-RLW equation with p=2,4,6,8,10,?=and h=τ=0.1 at T=10 for Example 4.4.

    Table 8:L1,L∞ errors of numerical solutions for Rosenau-KdV-RLW equation with h=τ,T=10,ε=for Example 4.4.

    Table 8:L1,L∞ errors of numerical solutions for Rosenau-KdV-RLW equation with h=τ,T=10,ε=for Example 4.4.

    L1 L∞p h 0.2 0.1 0.05 0.2 0.1 0.05 2 8.4789e-04 1.1027e-04 1.3908e-05 7.6075e-03 9.8854e-04 1.2479e-04 2.9428 2.9871 2.9440 2.9858 4 1.9237e-03 2.5823e-04 3.2477e-05 2.1641e-02 2.8915e-03 3.6262e-04 2.8971 2.9912 2.9039 2.9953 6 1.9993e-03 2.7505e-04 3.4557e-05 2.3003e-02 3.1681e-03 3.9806e-04 2.8617 2.9926 2.8601 2.9925 8 1.8389e-03 2.5682e-04 3.2327e-05 2.0847e-02 2.9226e-03 3.6689e-04 2.8400 2.9899 2.8345 2.9938 10 1.6504e-03 2.3332e-04 3.0234e-05 1.8439e-02 2.6109e-03 3.2730e-04 2.8224 2.9481 2.8202 2.9958

    Based on earlier studies on the shock solution of the Rosenau-KdV equation,the shock wave solutions for the Rosenau-KdV-RLW equation were extracted by balancing principle only forp=3 andp=5 in[9].Here we will review related formulation for wave amplitude,width,velocity mentioned in[9,10],and then simulate both cases numerically as example.

    Example 4.5.Consider Rosenau-KdV-RLW equation(1.3)with parametersδ=1,ν=?0.001,α=0.01,θ=0.001,ε=?1,p=3:

    and choose the initial condition to beu0(x)=Mtanh2(Wx),so that the analytical shock wave solution of Rosenau-KdV-RLW equation forp=3 isu(x,t)=Mtanh2[W(x?Vt)]as in[9]with

    In Table 9,the error comparisons inL∞,L1are obtained by present method for shock wave solution in the case ofp=3 of the Rosenau-KdV-RLW equation in intervalx∈[?10,10]withh=τ=0.2,0.1,0.05,0.025 respectively and the simulations are run up to timeT=10 to obtain the error norms.It can be easily found that the errors are small,and the third-order convergence of the numerical solutions are also verified.From Figure 9,we can catch the point that numerical solution fits with exact one,and numerical method approximate the exact solution even in stiff concave region successfully.

    Table 9:Errors and rates of convergence with CFL=1,h=τ at T=10 for Example 4.5.

    Figure 9:Wave graph of u(x,t)at T=10 and numerical solution of Rosenau-KdV-RLW equation with h=τ=0.1,p=3 at T=10(left)and error(right)for Example 4.5.

    Example 4.6.Consider Rosenau-KdV-RLW equation(1.3)with parametersδ=1,ν=?10,α=0.05,θ=0.001,ε=?5,p=5:

    and choose the initial condition to beu0(x)=Mtanh(Wx)so that the analytical shock wave solution of Rosenau-KdV-RLW equation forp=5 isu(x,t)=Mtanh[W(x?Vt)]as in[9]with

    The computation of error and order is completed at timet=10 whenCFL=1,h=τon various mesh in intervalx∈[?10,10]and displayed in Table 10.The numerical shock wave curve of Rosenau-KdV-RLW equation forp=5 is agree with exact solution with no oscillatory near the pointx=0 whenh=τ=0.1 atT=10 on the left of Figure 10.

    Table 10:Errors and rates of convergence with CFL=1,h=τ at T=10 for Example 4.6.

    Figure 10:Wave graph of u(x,t)at T=10 and numerical solution of Rosenau-KdV-RLW equation with h=τ=0.1,p=5 at T=10(left)and error(right)for Example 4.6.

    Example 4.7.Consider Rosenau-KdV-RLW equation(1.3)with parametersδ=?0.01,ν=0.01,α=0.01,θ=0.01,ε=1,p=3:

    and Maxwellian initial condition to beu0(x)=exp(?0.005(x?60)2).

    As a final example,we plot a high-frequency oscillatory behavior ofu(x,t)with above Maxwell initial condition in Figure 11 to illustrate the characteristic of dispersive shock wave behavior of(1.3).The steepening of the leading front repeats several times and decays until it is no longer present on the back of the wave.

    Figure 11:Wave graph of Rosenau-KdV-RLW equation at T=0,5,10 with the Maxwellian initial condition u0=exp(?0.005(x?60)2)for Example 4.7.

    5 Concluding Remark

    To solve the solitary wave and shock wave problem of Rosenau-KdV equation and Rosenau-KdV-RLW equation,we use the third-order finite difference WENO reconstruction for advection terms,and central finite difference method for other terms in spatial discretization,then we use third-order SSP IMEX Runge-Kutta method for time discretization,in which the advection terms are treated by explicitly and remaining terms are treated by implicitly.In order to verify the effectiveness of the numerical scheme,some numerical examples are given for numerical experiment.Numerical simulations show that the method is very efficient with the advantages of non-oscillatory and looselyrestricted CFL condition.

    高清在线国产一区| 99久久无色码亚洲精品果冻| 亚洲av电影在线进入| 搡老妇女老女人老熟妇| 国产精品女同一区二区软件 | 精品人妻视频免费看| 亚洲av成人精品一区久久| 亚洲熟妇熟女久久| 日韩中文字幕欧美一区二区| 亚洲av成人精品一区久久| 久久久久国内视频| 91av网一区二区| 韩国av一区二区三区四区| 一级作爱视频免费观看| av国产免费在线观看| 久久久久国产精品人妻aⅴ院| 欧美日本视频| 伊人久久精品亚洲午夜| 欧美日韩综合久久久久久 | 欧美成人免费av一区二区三区| 国产久久久一区二区三区| 国产精品电影一区二区三区| 国产在线男女| 欧美精品啪啪一区二区三区| 亚洲电影在线观看av| 欧美日本亚洲视频在线播放| 亚洲自拍偷在线| 国产主播在线观看一区二区| 精品午夜福利在线看| 最近视频中文字幕2019在线8| 国产精品爽爽va在线观看网站| 精品免费久久久久久久清纯| 亚洲性夜色夜夜综合| 亚洲国产欧洲综合997久久,| 90打野战视频偷拍视频| 免费观看人在逋| 性插视频无遮挡在线免费观看| 男插女下体视频免费在线播放| 一本一本综合久久| 免费在线观看亚洲国产| 女人被狂操c到高潮| 婷婷丁香在线五月| 一级黄片播放器| 黄色丝袜av网址大全| 国内精品久久久久精免费| 成人永久免费在线观看视频| 网址你懂的国产日韩在线| 九九在线视频观看精品| 免费在线观看影片大全网站| 亚洲成人精品中文字幕电影| 波多野结衣高清作品| 黄色视频,在线免费观看| 免费观看的影片在线观看| 久久久国产成人免费| 麻豆av噜噜一区二区三区| 亚洲久久久久久中文字幕| 99精品在免费线老司机午夜| 天天一区二区日本电影三级| 色哟哟哟哟哟哟| 欧美+亚洲+日韩+国产| 精品国产三级普通话版| 日韩欧美三级三区| 噜噜噜噜噜久久久久久91| 嫩草影院入口| 久9热在线精品视频| 老司机午夜福利在线观看视频| 国产综合懂色| 国产午夜精品论理片| 亚洲精品一卡2卡三卡4卡5卡| 国产精品亚洲一级av第二区| 免费在线观看影片大全网站| 精品人妻视频免费看| 精品久久国产蜜桃| 日韩av在线大香蕉| 免费观看的影片在线观看| 欧美黄色淫秽网站| 99热这里只有精品一区| 男女那种视频在线观看| 最近最新中文字幕大全电影3| 精品久久久久久成人av| 久久久国产成人精品二区| 97超级碰碰碰精品色视频在线观看| www.熟女人妻精品国产| 国产亚洲精品av在线| 在线天堂最新版资源| 免费看a级黄色片| www.色视频.com| 国产成年人精品一区二区| 天美传媒精品一区二区| 久9热在线精品视频| 欧美国产日韩亚洲一区| 国产精品人妻久久久久久| 三级男女做爰猛烈吃奶摸视频| 亚洲真实伦在线观看| 欧美黄色片欧美黄色片| 搡老妇女老女人老熟妇| 亚洲人与动物交配视频| 高潮久久久久久久久久久不卡| 人人妻人人看人人澡| 伦理电影大哥的女人| 成人av一区二区三区在线看| avwww免费| 淫秽高清视频在线观看| 嫁个100分男人电影在线观看| 免费看日本二区| 九色国产91popny在线| 91狼人影院| 九九在线视频观看精品| 国产真实伦视频高清在线观看 | 亚洲片人在线观看| 长腿黑丝高跟| 亚洲精品影视一区二区三区av| 一级作爱视频免费观看| 精品无人区乱码1区二区| 午夜福利成人在线免费观看| 丁香六月欧美| 国产精品一区二区三区四区免费观看 | 精品福利观看| 亚洲第一区二区三区不卡| 亚洲精品亚洲一区二区| 亚洲激情在线av| a级毛片免费高清观看在线播放| 少妇裸体淫交视频免费看高清| 精品一区二区三区视频在线| 欧美日韩亚洲国产一区二区在线观看| a级一级毛片免费在线观看| 在线观看免费视频日本深夜| 欧美在线黄色| 露出奶头的视频| 欧美成人a在线观看| 国产成人av教育| 乱码一卡2卡4卡精品| 两性午夜刺激爽爽歪歪视频在线观看| 一级黄色大片毛片| 亚洲欧美日韩无卡精品| 琪琪午夜伦伦电影理论片6080| 国产精品久久视频播放| 亚洲成人久久爱视频| 国产精品电影一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看| 国产视频一区二区在线看| 国产三级在线视频| www.999成人在线观看| 亚洲av熟女| 狂野欧美白嫩少妇大欣赏| 国产又黄又爽又无遮挡在线| 欧美乱色亚洲激情| 久久欧美精品欧美久久欧美| 美女黄网站色视频| av视频在线观看入口| 成年免费大片在线观看| 日韩欧美在线乱码| 久久久色成人| 亚洲av熟女| 99热这里只有是精品在线观看 | 男女做爰动态图高潮gif福利片| 噜噜噜噜噜久久久久久91| 精品欧美国产一区二区三| 蜜桃久久精品国产亚洲av| 一本综合久久免费| 91久久精品电影网| 亚洲,欧美精品.| 老鸭窝网址在线观看| 一级av片app| 亚洲中文日韩欧美视频| 亚洲中文字幕一区二区三区有码在线看| av国产免费在线观看| 性色av乱码一区二区三区2| 久久久久性生活片| 日韩欧美在线二视频| 内射极品少妇av片p| 午夜免费成人在线视频| 亚洲精品粉嫩美女一区| www.www免费av| 99久国产av精品| 搡老熟女国产l中国老女人| 每晚都被弄得嗷嗷叫到高潮| 国产精品免费一区二区三区在线| 最近中文字幕高清免费大全6 | 欧美成人性av电影在线观看| 日本撒尿小便嘘嘘汇集6| 亚洲欧美精品综合久久99| 老女人水多毛片| 国产老妇女一区| 亚洲片人在线观看| 久久6这里有精品| 又爽又黄无遮挡网站| 天堂av国产一区二区熟女人妻| 999久久久精品免费观看国产| 男女下面进入的视频免费午夜| 一级毛片久久久久久久久女| 在现免费观看毛片| 亚洲av不卡在线观看| netflix在线观看网站| 12—13女人毛片做爰片一| 波多野结衣高清作品| 久久久久国内视频| 99热这里只有精品一区| 伊人久久精品亚洲午夜| 国产男靠女视频免费网站| 欧美性猛交黑人性爽| 一本一本综合久久| 日本一本二区三区精品| .国产精品久久| 精品国产三级普通话版| 欧美性感艳星| 很黄的视频免费| 国产伦精品一区二区三区四那| av天堂在线播放| 国产视频一区二区在线看| 午夜a级毛片| 久久久精品欧美日韩精品| 能在线免费观看的黄片| 亚洲在线自拍视频| 一级黄色大片毛片| 免费av毛片视频| 性插视频无遮挡在线免费观看| 精品日产1卡2卡| 特级一级黄色大片| 色哟哟哟哟哟哟| 亚洲av免费在线观看| 亚洲精品久久国产高清桃花| 精品日产1卡2卡| 看十八女毛片水多多多| 精品久久久久久,| 99国产综合亚洲精品| 国产日本99.免费观看| 日韩欧美在线乱码| 中文字幕av成人在线电影| 欧美一区二区亚洲| 一进一出抽搐动态| av专区在线播放| 老熟妇仑乱视频hdxx| 色哟哟·www| 18禁黄网站禁片午夜丰满| 人人妻人人看人人澡| 国产精品久久久久久亚洲av鲁大| 国产一区二区三区在线臀色熟女| 美女 人体艺术 gogo| 国产精品人妻久久久久久| 欧美+亚洲+日韩+国产| 亚洲内射少妇av| 午夜激情福利司机影院| 中文字幕av在线有码专区| 91午夜精品亚洲一区二区三区 | 欧美精品国产亚洲| 99在线视频只有这里精品首页| 日韩大尺度精品在线看网址| 人妻夜夜爽99麻豆av| АⅤ资源中文在线天堂| 成人性生交大片免费视频hd| 99精品在免费线老司机午夜| 国产男靠女视频免费网站| 偷拍熟女少妇极品色| 国内精品久久久久久久电影| 18+在线观看网站| 村上凉子中文字幕在线| 狠狠狠狠99中文字幕| 欧美高清性xxxxhd video| 精品福利观看| eeuss影院久久| 欧美日韩乱码在线| 国产成人av教育| 亚洲中文日韩欧美视频| 久久欧美精品欧美久久欧美| 午夜亚洲福利在线播放| 亚洲精品456在线播放app | 国产精品亚洲美女久久久| 国产不卡一卡二| 欧美性感艳星| 亚洲一区高清亚洲精品| 成人国产综合亚洲| 香蕉av资源在线| 欧美色视频一区免费| 成人精品一区二区免费| 久久欧美精品欧美久久欧美| 欧美性感艳星| 人妻久久中文字幕网| 一个人看的www免费观看视频| 91麻豆精品激情在线观看国产| 免费观看的影片在线观看| 美女被艹到高潮喷水动态| ponron亚洲| 琪琪午夜伦伦电影理论片6080| 在线看三级毛片| 亚洲国产精品合色在线| 一级a爱片免费观看的视频| 99国产精品一区二区蜜桃av| 国产高清三级在线| 人妻夜夜爽99麻豆av| 午夜福利免费观看在线| 蜜桃亚洲精品一区二区三区| 国产精品一区二区三区四区免费观看 | 亚洲av成人av| 欧美成人性av电影在线观看| 欧美高清性xxxxhd video| 999久久久精品免费观看国产| 有码 亚洲区| 最新在线观看一区二区三区| 国产白丝娇喘喷水9色精品| 久久精品国产清高在天天线| 99精品久久久久人妻精品| 国产亚洲精品综合一区在线观看| 午夜免费成人在线视频| 亚洲七黄色美女视频| 亚洲第一电影网av| 成人av一区二区三区在线看| 在线观看美女被高潮喷水网站 | 小说图片视频综合网站| 美女黄网站色视频| 日韩有码中文字幕| 亚洲一区二区三区不卡视频| av欧美777| 日本一二三区视频观看| 午夜免费男女啪啪视频观看 | 非洲黑人性xxxx精品又粗又长| 中文字幕高清在线视频| 变态另类成人亚洲欧美熟女| 精品国产三级普通话版| 美女xxoo啪啪120秒动态图 | 日本黄色视频三级网站网址| 最新中文字幕久久久久| 嫁个100分男人电影在线观看| 精品国内亚洲2022精品成人| 成人av一区二区三区在线看| 搡老妇女老女人老熟妇| 乱码一卡2卡4卡精品| 日韩精品青青久久久久久| 免费人成视频x8x8入口观看| 99久久成人亚洲精品观看| 国产精品综合久久久久久久免费| av在线天堂中文字幕| 精品久久久久久久久久久久久| 亚洲精品在线美女| 听说在线观看完整版免费高清| 内地一区二区视频在线| 成人一区二区视频在线观看| 亚洲专区国产一区二区| 国产成人福利小说| av女优亚洲男人天堂| 免费av观看视频| 2021天堂中文幕一二区在线观| 免费搜索国产男女视频| 啦啦啦观看免费观看视频高清| 免费看a级黄色片| 久久午夜福利片| 窝窝影院91人妻| 亚洲精品成人久久久久久| 毛片女人毛片| 特级一级黄色大片| 一a级毛片在线观看| 桃红色精品国产亚洲av| 人人妻人人看人人澡| 午夜福利欧美成人| 国产成人影院久久av| 九色国产91popny在线| 免费看a级黄色片| 久久久久国内视频| 亚洲午夜理论影院| 久久婷婷人人爽人人干人人爱| 国产麻豆成人av免费视频| 黄色日韩在线| 有码 亚洲区| 亚洲不卡免费看| 日韩人妻高清精品专区| 欧美成人性av电影在线观看| 国产大屁股一区二区在线视频| av在线观看视频网站免费| 欧美成人一区二区免费高清观看| 看黄色毛片网站| 久久99热这里只有精品18| 亚洲人成伊人成综合网2020| 久久香蕉精品热| 偷拍熟女少妇极品色| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲精品成人久久久久久| 嫩草影院入口| 欧美潮喷喷水| 免费看a级黄色片| 亚洲五月天丁香| 欧美最黄视频在线播放免费| 国产午夜精品久久久久久一区二区三区 | 午夜老司机福利剧场| 波多野结衣巨乳人妻| 久久亚洲精品不卡| 18禁黄网站禁片午夜丰满| 婷婷亚洲欧美| 变态另类丝袜制服| 男插女下体视频免费在线播放| 欧美日本视频| 亚洲自偷自拍三级| 一级av片app| 999久久久精品免费观看国产| 天堂动漫精品| 别揉我奶头~嗯~啊~动态视频| 9191精品国产免费久久| 亚洲激情在线av| 美女高潮的动态| 欧美日韩黄片免| 久久久久久久精品吃奶| 成人欧美大片| 国产真实伦视频高清在线观看 | 亚洲av第一区精品v没综合| 国内久久婷婷六月综合欲色啪| 亚洲成人久久性| 99国产精品一区二区蜜桃av| 国产探花在线观看一区二区| 久久精品国产自在天天线| 亚洲成av人片免费观看| 国产免费男女视频| 亚洲av成人av| 99热这里只有精品一区| 91午夜精品亚洲一区二区三区 | www.www免费av| 中文资源天堂在线| 免费电影在线观看免费观看| xxxwww97欧美| 亚洲电影在线观看av| 男女之事视频高清在线观看| 啦啦啦观看免费观看视频高清| 男女做爰动态图高潮gif福利片| 一级黄片播放器| 精品国产亚洲在线| 色播亚洲综合网| 精品国内亚洲2022精品成人| 久久婷婷人人爽人人干人人爱| 狂野欧美白嫩少妇大欣赏| 亚洲第一区二区三区不卡| 国产高清有码在线观看视频| 99精品在免费线老司机午夜| www日本黄色视频网| 少妇人妻精品综合一区二区 | 亚洲av二区三区四区| or卡值多少钱| 国产在线精品亚洲第一网站| 搡老岳熟女国产| 国产美女午夜福利| 日本黄色视频三级网站网址| 日本a在线网址| 精品国内亚洲2022精品成人| 丰满的人妻完整版| 一卡2卡三卡四卡精品乱码亚洲| 99国产极品粉嫩在线观看| 亚洲精品久久国产高清桃花| 日本熟妇午夜| 女生性感内裤真人,穿戴方法视频| 国产在视频线在精品| 精品人妻视频免费看| 久久久国产成人免费| 国产精品98久久久久久宅男小说| 最近视频中文字幕2019在线8| 午夜精品一区二区三区免费看| 国产精品久久久久久人妻精品电影| 国产视频内射| 十八禁国产超污无遮挡网站| 我的老师免费观看完整版| 嫩草影院入口| 人妻制服诱惑在线中文字幕| 日本精品一区二区三区蜜桃| 日本在线视频免费播放| 少妇人妻一区二区三区视频| 久久久国产成人免费| 在线天堂最新版资源| 狠狠狠狠99中文字幕| 国产av麻豆久久久久久久| 久久中文看片网| 99久国产av精品| 午夜免费成人在线视频| 久9热在线精品视频| 小说图片视频综合网站| 久久久久久久精品吃奶| 国产免费男女视频| 丰满乱子伦码专区| 国内精品久久久久精免费| 亚洲欧美日韩无卡精品| 18禁黄网站禁片午夜丰满| 国产一区二区三区视频了| 久久亚洲真实| 天天一区二区日本电影三级| 国产精品自产拍在线观看55亚洲| 啦啦啦观看免费观看视频高清| 免费电影在线观看免费观看| 内地一区二区视频在线| 少妇人妻一区二区三区视频| 日本撒尿小便嘘嘘汇集6| 久久久久久九九精品二区国产| 一本久久中文字幕| 麻豆成人av在线观看| а√天堂www在线а√下载| 国产亚洲精品综合一区在线观看| 亚洲熟妇熟女久久| 国产大屁股一区二区在线视频| 国产主播在线观看一区二区| 如何舔出高潮| 亚洲乱码一区二区免费版| 简卡轻食公司| 欧美日韩黄片免| 午夜免费激情av| 亚洲经典国产精华液单 | 国产日本99.免费观看| 一区二区三区高清视频在线| 禁无遮挡网站| 女同久久另类99精品国产91| 99久久无色码亚洲精品果冻| 搞女人的毛片| 一级毛片久久久久久久久女| 9191精品国产免费久久| 国产av不卡久久| 十八禁国产超污无遮挡网站| 久久久久久久久大av| 国产久久久一区二区三区| www日本黄色视频网| 国产69精品久久久久777片| 成人国产一区最新在线观看| 亚洲国产色片| 国产午夜福利久久久久久| 午夜老司机福利剧场| 成年版毛片免费区| 免费高清视频大片| 亚洲欧美激情综合另类| 国产亚洲精品av在线| 99久久精品热视频| 桃红色精品国产亚洲av| 可以在线观看毛片的网站| 久久欧美精品欧美久久欧美| а√天堂www在线а√下载| 高清在线国产一区| 国产免费一级a男人的天堂| 长腿黑丝高跟| 久久久久性生活片| 激情在线观看视频在线高清| 又爽又黄无遮挡网站| 国产毛片a区久久久久| 精品一区二区免费观看| 日韩有码中文字幕| 欧美日韩国产亚洲二区| 久久这里只有精品中国| 麻豆成人午夜福利视频| 欧美乱色亚洲激情| 国产精品免费一区二区三区在线| 51国产日韩欧美| 日本熟妇午夜| 久久中文看片网| 亚洲人成伊人成综合网2020| 网址你懂的国产日韩在线| 在线观看美女被高潮喷水网站 | 亚洲 国产 在线| 国产淫片久久久久久久久 | 91麻豆精品激情在线观看国产| 中文字幕免费在线视频6| 日本五十路高清| 国产视频内射| 日韩欧美精品v在线| 夜夜夜夜夜久久久久| 亚洲乱码一区二区免费版| 免费在线观看成人毛片| 97碰自拍视频| 中文字幕精品亚洲无线码一区| 波多野结衣高清无吗| 国产成人av教育| 国产精品影院久久| 成人av在线播放网站| 日韩免费av在线播放| bbb黄色大片| 大型黄色视频在线免费观看| 久9热在线精品视频| 精品一区二区三区人妻视频| 青草久久国产| 麻豆成人av在线观看| 一本久久中文字幕| 国产极品精品免费视频能看的| 亚洲五月婷婷丁香| 国产精品亚洲一级av第二区| 欧美xxxx黑人xx丫x性爽| 国语自产精品视频在线第100页| 亚洲aⅴ乱码一区二区在线播放| 欧美日韩瑟瑟在线播放| 成人午夜高清在线视频| 国产精品国产高清国产av| 国产精品久久视频播放| 亚洲电影在线观看av| 欧美乱妇无乱码| 一进一出抽搐gif免费好疼| 亚洲人与动物交配视频| 此物有八面人人有两片| 在线免费观看不下载黄p国产 | av中文乱码字幕在线| 首页视频小说图片口味搜索| 色在线成人网| 久久草成人影院| 色噜噜av男人的天堂激情| 日本三级黄在线观看| 国产伦精品一区二区三区视频9| 在线播放国产精品三级| 色噜噜av男人的天堂激情| 别揉我奶头 嗯啊视频| 婷婷六月久久综合丁香| 一本精品99久久精品77| 亚洲av成人av| 国产激情偷乱视频一区二区| 午夜福利免费观看在线| 国产午夜精品论理片| 亚洲性夜色夜夜综合| 麻豆一二三区av精品| 乱人视频在线观看| 少妇熟女aⅴ在线视频| 色播亚洲综合网| 成年女人看的毛片在线观看| 国产欧美日韩一区二区精品| 亚洲中文字幕一区二区三区有码在线看| 欧美色视频一区免费| 大型黄色视频在线免费观看| 在线看三级毛片| 一级a爱片免费观看的视频| 欧美国产日韩亚洲一区|