• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      Zeros of Primitive Characters

      2022-04-15 08:23:24WenyangWangandNiDu
      Journal of Mathematical Study 2022年1期

      Wenyang Wangand Ni Du

      1Center for General Education,Xiamen Huaxia University,Xiamen 361024,China.

      2School of Mathematical Sciences,Xiamen University,Xiamen 361005,China.

      Abstract.Let G be a finite group. An irreducible character χ of G is said to be primitive if χ?G for any character? of a proper subgroup of G.In this paper,we consider about the zeros of primitive characters.Denote by Irrpri(G)the set of all irreducible primitive characters of G.We proved that if g∈G and the order of gG′in the factor group G/G′does not divide|Irrpri(G)|,then there exists ? ∈ Irrpri(G)such that ?(g)=0.

      Key words:Finite group,primitive character,vanishing element.

      1 Introduction

      LetGbe a finite group and Irr(G)be the set of all irreducible characters ofG.For an elementgofG,gis called a vanishing element if there existsχ∈ Irr(G)such thatχ(g)=0.In[3],W.Burnside proved that for any nonlinear irreducible characterχ,there always existsg∈Gsuch thatχ(g)=0,which means that there exists at least a vanishing element for any nonlinear irreducible characterχ.It is interesting to investigate when an element of a finite group can be a vanishing element.In[1],G.Chen obtained a sufficient condition to determine when an element is a vanishing element.More precisely,suppose thatg∈G?G′and the order ofgG′in the factor groupG/G′is coprime to|Irr(G)|,then there existsχ∈ Irr(G)such thatχ(g)=0.In[4],H.Wang,X.Chen and J.Zeng showed a similar sufficient condition about the Brauer characters.In[2],X.Chen and G.Chen investigated the monomial Brauer characters.An irreducible characterχofGis said to be primitive ifχ?Gfor any character?of a proper subgroup ofG.In this paper,we consider about the zeros of primitive characters.

      2 Main results and proofs

      Acknowledgments

      The project was supported by the Natural Science Foundation of China(Grant No.11771356),the Natural Science Foundation of Fujian Province of China(No.2019J01025)and the Research Fund for Fujian Young Faculty(Grant No.JAT190985).

      绥阳县| 赫章县| 双柏县| 长治县| 陇南市| 德化县| 汝南县| 乌兰浩特市| 丹阳市| 丘北县| 富裕县| 淮滨县| 广汉市| 河源市| 梧州市| 滨州市| 临西县| 个旧市| 巴青县| 利辛县| 雅江县| 麻栗坡县| 玉林市| 四平市| 鄂托克前旗| 本溪市| 介休市| 邹平县| 浙江省| 云龙县| 昌邑市| 调兵山市| 沾益县| 特克斯县| 开封县| 高台县| 曲阳县| 乡宁县| 宣汉县| 武义县| 桃园县|