• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Greatest Common Divisor of Certain Set of Binomial Coefficients

    2022-04-15 09:03:28XiaoJiaqiYuanPingzhiLinXucan

    Xiao Jiaqi Yuan Pingzhi Lin Xucan

    (School of Mathematical Science,South China Normal University,Guangzhou 510631,China)

    Abstract In this paper,we prove that if n ≥4 and a ≥0 are integers satisfying,thenwhere,and the product in the right hand side runs through all primes p such that n=pm+b(n,p),m ∈N and 0 ≤b(n,p)≤a.As an application of our result,we give an answer to a problem in Hong[3].

    Key words Binomial coefficient Greatest common divisor

    1 Introduction

    and proposed the following interesting problem:

    Problem 1.1Letn ≥2 be an integer andb(n)be defined as above.Find the explicit formula for

    In 1859,Kummer[6]got the following result.

    Theorem 1.1For any integers 0≤k ≤nand any primep:

    For any primep,we denote the sum of the standard base-pdigits ofnbyσp(n),i.e.σp(n):=ifn=withr ≥0 andaibeing integers such thatar >0 and 0≤ai ≤p-1 for all integersiwith 0≤i ≤r.

    The main purpose of this paper is to give an answer to the above mentioned problem of Hong.We give an explicit formula for the greatest common divisor of the set of the binomial coefficients,wherekruns over all the integers betweenaandn-a.Letn ≥4 be a positive integer.For any primep ≤n,letpm,m ∈N be the largest prime power ofpwhich is less than or equal ton,and letb(n,p)=n-pm,thenn=pm+b(n,p),m ∈N.The main result of this paper is as follows.

    Theorem 1.2Letn ≥4 anda ≥0 be integers with.Then

    where the product runs through all primespsuch thatn=pm+b(n,p),m ∈N and 0≤b(n,p)≤a.

    By the result of[11],we know thatb(n)≤,n=pm+b(n)for some positive integerm.Moreover,pis the only prime withn=pm+b(n,p),m ∈N and 0≤b(n)≤b(n,p).Therefore,as an immediate consequence of Theorem 1.2,we have the following result,which gives an answer to the above problem of Hong.

    Corollary 1.1For any integern >0,letb(n)≥0 be the smallest integerbsuch that the binomial coefficients,whereb <k <n-b,has a(non-trivial)common divisor.Thenn=pm+b(n)for some primepand positive integerm,and

    Remark 1.1It is easy to check that

    The arrangement of the paper is follows:In the Section 2,we prove several preliminary lemmas.Then we use these lemmas to prove Theorem 1.2 in Section 3.

    2 Preliminaries

    In this section,we prove some lemmas that are needed in the proof of Theorem 1.2.The following Lemma is essential in the sequel.

    Lemma 2.3Letn ≥2,abe positive integers witha <n/2 and letpbe a prime.Ifn=pm+b(n,p),m ∈N and 0≤b(n,p)≤a,thenσp(k)+σp(n-k)≥p+σp(b(n,p))for every positive integerkwitha <k <n-a.

    ProofBy the assumptions,we have

    3 Proof of Theorem 1.2

    In this section,we prove Theorem 1.2.

    where the product runs through all primespsuch thatn=pm+b(n,p),m ∈N and 0≤b(n,p)≤a.This completes the proof of Theorem 1.2.

    铜川市| 日喀则市| 瑞金市| 丰原市| 山东| 修文县| 巴青县| 黄龙县| 西贡区| 隆化县| 宣恩县| 崇左市| 巩义市| 临夏市| 余姚市| 辽中县| 齐河县| 资中县| 延津县| 旺苍县| 荣成市| 韶关市| 介休市| 雅安市| 琼结县| 郸城县| 临颍县| 赤壁市| 清丰县| 遂川县| 沁阳市| 渝北区| 镇坪县| 甘孜| 横山县| 嘉兴市| 建始县| 安龙县| 岢岚县| 称多县| 汾西县|