• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Metal Sulfide Ag2S: Fabrication via Zone Melting Method and Its Thermoelectric Property

    2022-04-12 10:48:14JINMinBAIXudongZHANGRulinZHOULinaLIRongbin
    關(guān)鍵詞:電性能旭東硫化物

    JIN Min, BAI Xudong, ZHANG Rulin, ZHOU Lina, LI Rongbin

    Metal Sulfide Ag2S: FabricationZone Melting Method and Its Thermoelectric Property

    JIN Min1, BAI Xudong2, ZHANG Rulin1, ZHOU Lina1, LI Rongbin1

    (1. School of Materials Science, Shanghai Dianji University, Shanghai 201306, China; 2. School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China)

    Metal sulfide Ag2S is an attractive semiconductor due to its excellent physical and chemical property that enable it with wide applications in fields of catalysis, sensing, optoelectronics in past years. In present work,18 mm× 50 mmAg2S ingot was successfully prepared using zone melting method and its thermoelectric (TE) behavior was investigated. Ag2S has standard monoclinic P21/c space group (-Ag2S phase) below 450 K and transfer to cubic structure (-Ag2S phase) over this temperature. Ag2S is a-type semiconductor as the Seebeck coefficientis always negative due to the Ag interstitial ions in the material that can provide additional electrons.is about -1200 μV·K–1near room temperature, declines to -680 μV·K–1at 440 K and finally decreases to ~-100 μV·K–1at-Ag2S state. The electrical conductivity () of-Ag2S is almost zero. However, the value sharply jumps to ~40000.5 S·m–1as the material just changes to-Ag2S at 450 K and then gradually deceases to 33256.2 S·m–1at 650 K. Hall measurement demonstrates that carrier concentrationHof Ag2S is suddenly increased from the level of ~1017cm–3to ~1018cm–3during phase transition. Total thermal conductivityof-Ag2S is ~0.20 W·m–1·K–1but is ~0.45 W·m–1·K–1of-Ag2S. Ultimately, a maximum=0.57 is achieved around 580 K that means Ag2S might be a promising middle-temperature TE material.

    Ag2S; zone melting; thermoelectric material; phase transition

    During the past years, metal sulfide Ag2S has attracted much attention due to its excellent physical and chemical properties that enable it with various applica-tions in fields of catalysis, sensing, optoelectronics and so on[1–6]. For example, Dong,[7]reports Ag2S-nanowire is an ideal candidate for making nano tem-perature and photoelectric sensors as its photocondu-ctivity is always positive under 532 or 1064 nm laser radiation. Du,[8]declares Ag2S Quantum Dots may act as nontoxic carrier for potentialbioimaging. Zhang,[9]confirms that the Ag2S Quantum Dots indeed open up the possibility ofanatomical imaging and early stage tumor diagnosis owing to their high emission efficiency in NIR-II imaging window. Besides, Ag2S is also found suitable for solar cell and infrared sensitivity device fabrication attribute to its semiconductor chara-cter which has a ~1.0 eV band gap[10]. Recently, it is announced that Ag2S exhibits a fantastic room-temperature ductile behavior. Its compression deformation can reach 50%, the bending variable surpassing 20%, and the stretching variable up to 4.2%. These shape variables are far more than known ceramic and semiconductor mate-rials, and are equivalent to the mechanical properties of some metals. Consequently, Ag2S provides a possi-bility is quest of producible inorganic semiconductors/ceramics for flexible electronic devices[11].

    In order to develop more interesting functions of Ag2S, the authors focus on its potential thermoelectric (TE) behavior according to the concept of Seebeck-Peltier effect[12]. The TE device can supply green and reliable energy by direct conversion of heat into electricity. Thus, it is expected to have wide applications in power generation. The efficiency of a thermoelectric material is usually evaluated by the dimensionless figure of merit,=(2)/. Whereis Seebeck coefficient,is absolute temperature,is electrical conductivity andis thermal conductivity[13]. From the view of this formula, it is obvious that the TE material with ultra-low thermal condu-ctivity is one of a significant factor for high. Based on this recognition, the TE behavior of Ag2S is worthy of study as it has very small thermal conductivity. Wang,[14]have fabricated Ag2S cera-mic using a solution method and the thermal trans-port analysis indicates that its total thermal conductivity is 0.4– 0.6 W·m–1·K–1in range of 300–600 K, which is lower than most solid TE materials. Ultimately, a maxi-mum=0.55 (580 K) is obtained which implies that Ag2S is a promising middle-temperature TE material. In pre-sent work, a zone melting method which has the advan-tage of purifying materials is introduced for Ag2S com-pound fabrication. Its electrical/thermal transport prope-rties are systematically investigated and the final figure of meritis demonstrated.

    1 Experimental

    1.1 Ag2S preparation

    99.999% high purity Ag and S elements were used as start materials for Ag2S synthesis, they were weighed in accordance with the standard stoichiometric ratio and the total weight was about 60.5 g. The start materials were loaded into a18 mm quartz ampoule and then sealed with a vacuum less than 10–2Pa, after that, the quartz ampoule was placed into a 1000 ℃rocking furnace. After Ag and S totally melted, the rocking system worked at a rate of 20 r/min for 30 min to enhance Ag2S synthesis homogeneity. Ultimately, Ag2S compound was obtained as the furnace was cooled to room tem-perature naturally. Subsequently, the synthesized Ag2S raw material with the same ampoule was put into a home-made zone melting furnace. The ampoule was supported by a Al2O3pedestal and a pair of thermal-couples was installed near the bottom for temperature indication. Fig. 1(a) shows the schematic diagram of the zone melting furnace which was heated by a couple of Si-Mo heaters to form a narrow high temperature zone. Fig. 1(b) is the temperature profile along vertical direction, the temperature gradient for Ag2S solidification was about 30–35 ℃/cm. The furnace temperature was controlled at 920 ℃. After Ag2S raw material was melted, the quartz ampoule was lowered down at the speed of 3.0 mm/h until all solution was exhausted. The parameters for Ag2S solidification are summarized in Table 1.

    Table 1 Parameters for Ag2S fabrication

    Fig. 1 Schematic diagram of the zone melting furnace (a) and temperature profile along vertical direction (b)

    1.2 Characterization

    The densitywas measured by Archimedes principle. Phase structure of the material was analyzed by X-ray diffraction (XRD, Bruker D8, Germany) using Cu Kα radiation (=0.15406 nm) at room temperature. The morpholo-gical and chemical composition were investigated using Scanning Electron Microscope (SEM, JSM-6610, JEOL Ltd.) and Energy Dispersive Spectro-scopy (EDS, JED-2300T) equip-ment. The Seebeck coe-fficient and electrical conductivity were measured simul-taneously (ULVAC-RIKO ZEM-3) from 300 to 650 K. The thermal diffusivitywas tested by laser flash method (Netzsch, LFA-457, Ger-many). The total thermal conductivitywas obtained using=··p,wherepis specific heat capacity.

    2 Results and discussion

    The as-grown Ag2S ingot (18 mm× 50 mm) is easily separated from quartz ampoule and displays bright meta-llic luster, as Fig. 2 shows. Such phenomenon indi-cates that Ag2S has none reaction with quartz ampoule during the whole process. Its density is measured to be 7.20 g/cm3that is nearly 100% close to the theoretical value 7.23 g/cm3. Fig. 3(a) is the XRD pattern of Ag2S powder, it is observed that all diffraction peaks are matched well to those of standard-Ag2S monoclinic P21/c space group (PDF#14-0072) at room temperature. The lattice para-meters,andare calculateda general structure analysis system, and the values are 0.4251, 0.6962 and 0.7873 nm, respectively. EDS mea-sure-ment implies the atom percent of Ag is 67.2% and S is 32.8% in matrix that agrees well with the standard stoichiometric comp-osition of Ag2S, as Fig. 3(b) shows.

    Fig. 2 Ag2S ingot prepared by zone melting method

    Fig. 3 XRD pattern (a) and EDS map (b) of Ag2S

    During SEM testing, it is interesting that some micro size particles oozed from the material. Fig. 4(a) shows the original Ag2S surface under 25 kV voltage. However, in a very short time, numerous white particles came up and then gradually grew up for about 30 s, as Fig. 4(b,c) demonstrating. Thereafter, the particle sizes are kept stable. EDS analysis reveals the particle compo-sition is 100% Ag. This result is mainly attributed to the special liquid-like character of Ag2S. As previous literature[15]reported, Ag ions are weakly bonded to the neighbour atoms in silver chalcogenides Ag2M (M=S, Se, Te) semiconductors, and apt to migrate from one site to another if there is sufficient energy force on them. For example, the external heat or voltage are both able to drive Ag ions movement. Therefore, it is easy to understand the high energy electron beam in SEM system plays a significant role causing the deposition of Ag. In fact, similar metal element deposition is also noticed in other type of liquid-like materials, such as Cu2Se, Cu2S, Ag8SnSe6and so on[16–18].

    As for thermoelectric property evaluation, sample 1# for electrical transport measurement is cut parallel to Ag2S solidification direction, and sample 2# for thermal transport testing is processed along perpendicular orien-tation, as the insert in Fig. 5(a) shows. Here, we should note that such sample processing modes are widely adopted in other zone melting thermoelectric materials, such as Bi2Te3, SnSe,[19-20]. In Fig. 5(a), the relationship of temperature with Seebeck coefficientis displayed. It is found that negativethat means Ag2S is a-type semiconductor. This conductive behavior might be due to the Ag interstitial ions in crystal structure that act as donor impurities providing additional electrons[14]. Near room temperature,is about –1200 μV·K–1. As the temperature increased to 440 K,linearly deceased to –680 μV·K–1. However, when temperature conti-nu-ously increased to 450 K,undergoes a sharp decline and the value is around –100 μV·K–1. This dramatic change is mainly attributed to the phase transition of Ag2S. Below 450 K, the material has an-Ag2S mono-clinic structure. Nevertheless, it would transfer to-Ag2S body centered cubic structure as temperature surpasses 450 K. After that,maintains a relative stable state regardless the increasing of temperature to 650 K. Fig. 5(b) shows the dependence of conductivityon temperature. It is amazing that theof-Ag2S is almost zero before 450 K. However, thevalue sharply jumps to ~40000.5 S·m–1as the material just finishes phase tran-sition. Then,gradually deceases to 33256.2 S·m–1near 650 K. Fig. 5(c) exhibits power factortem-perature that calculated from=2. It is observed that theof-Ag2S is much poor because of its weak conductive property. As for-Ag2S,is practically a constant ~6 μW·cm–1·K–2in temperature range of 450–650 K.

    Fig. 4 SEM images of original Ag2S surface (a), Ag particles on Ag2S matrix (b) and enlarged morphology of the surface (c)

    Fig. 5 Relationship of Seebeck (a), electrical conductivity σ (b) and power factor PF (c) with temperature

    In order to better understand the electrical transport behavior of Ag2S, the Hall properties are also characte-rized. Fig. 6(a) shows the temperature dependence of carrier concentrationH. Near room temperature, theHvalue is on level of ~1017cm–3. Then, as temperature is increased to the threshold of phase transition,His climbed to ~1018cm–3. This phenomenon is mainly due to the increase of carrier concentration from valence band to conduction band when temperature is added. As expected, when Ag2S is transformed from monoclinic to body centered cubic structure,His increased suddenly to ~1019cm–3near 450 K. Later, a growing number of carriers are generated in-Ag2S, andHrises to a highest ~1020cm–3level at 650 K. Fig. 6(b) is the carrier mobilityHdiagram varied with temperature. Similar to carrier concentration,Hhas a dramatic jump during phase transition. Besides, it is noticedHis alwaysdeclined when it is in-Ag2S and-Ag2S states, respectively. The maximumH= 161.6 cm2·V–1·s–1hap-pens at the moment as Ag2S finishes phase transition.

    Fig. 6 Carrier concentration nH (a) and mobility μH (b) vs temperature

    As for thermal transport property, the relationship of total thermal conductivitywith temperature is given in Fig. 7. When Ag2S is in monoclinic structure,is 0.20 W·m–1·K–1at room temperature and is 0.21 W·m–1·K–1near 400 K. Here it is necessary to mention that the thermal conductivity is deduced from the measured thermal diffusion coefficient and then approximately calculated through Dulong-Petit law. Thus, there may be certain errors to the accurateof the material. However, the result indicates that the thermal conductivity of-Ag2S is indeed ultralow and very stable. In-Ag2S, 2 S atoms and 6 Ag atoms form weak chemical bonds along (100) plane. Thus,-Ag2S would show low phonon vibration frequency because of the weak binding force of S to Ag[11]. As a result, the low-frequency optical branch dominated by Ag atoms can strongly scatter lattice phonons which have similar frequency. This is the key reason why-Ag2S has ultra-low thermal conductivity. When-Ag2S turns to-Ag2S,is quickly increased and keeps steady between 450–600 K and the value is ~0.45 W·m–1·K–1. It should be noted that the sulfur element might have slight volatilization during experi-ment. However, the effect of possible sulfur loss on thermoelectric properties is negligible, as the Ag2S hardly allows stoichiometric deviation of 2∶1 according to the Ag-S phase diagram. Even though any sulfur loss takes place, the excessive Ag would precipitate on the sample surface to maintain Ag2S composition stability.

    Fig. 7 Relationship between κ and temperature

    Fig. 8 Dependence of ZT with temperature

    Ultimately, the temperature dependence ofis displayed in Fig. 8. Due to the extremely weak electrical transport property,-Ag2S has very smallalthough its thermal transport is quite low. Nevertheless, theof-Ag2S is about 0.35 at 450 K and reaches 0.57 near 600 K. The presentmaximumis comparable to that of Ag2S fabricated by melting method (=0.55, 580 K)[14], and is on the same level compared with other Ag-based materials, such as Ag2Se, Ag2Te, CuAgSe and so on[21-23]. This result verifies that such metal sulfide Ag2S is a potential low-temperature thermoeletric material. In the future, Ag2S with element doping is suggested to do help for thermoelectric property improvement.

    3 Conclusions

    A18 mm×50 mmAg2S ingot was fabricated using zone melting method. It undergoes a phase transition from-Ag2S monoclinic P21/c space group to-Ag2S body centered cubic structure near 450 K, which has remark influence on its electrical and thermal properties. Ag2S is a-type semiconductor as the Seebeck constantis always negative. Theof-Ag2S is much poor because of the weak conductive behavior, but the value would suddenly jump to ~6 μW·cm–1·K–2when phase transition happens. Theof-Ag2S and-Ag2S are ~0.20 W·m–1·K–1and ~0.45 W·m–1·K–1, respectively. Finally, Ag2S displays a largest= 0.57 near 580 K that means it might be a potential middle-temperature TE material.

    [1] AlZAHRANI A A, ZAINAL Z, TALIB Z A,. Study the effect of the heat treatment on the photoelectrochemical performance of binary heterostructured photoanode Ag2S/ZnO nanorod arrays in photoelectrochemical cells., 2020, 1002: 187–199.

    [2] ALHARTHI S S, ALZAHRANI A, RAZVI M A N,. Spectroscopic and electrical properties of Ag2S/PVA nanoco-mposite films for visible-light optoelectronic devices., 2020, 30: 3878–3885.

    [3] XIE Y, YOO S H, CHEN C,. Ag2S quantum dots-sensitized TiO2nanotube array photoelectrodes., 2012, 177(1): 106–111.

    [4] KONDRATENKO T S, SMIRNOV M S, OVCHINNIKOV O V,. Nonlinear optical properties of hybrid associates of Ag2S quantum dots with erythrosine molecules., 2020, 200: 163391.

    [5] YOU J C, ZHAN S B, WEN J,. Construction of hetero-junction of Ag2S modified yttrium manganate visible photocatalyst and study on photocatalytic mechanism., 2020, 217: 164900.

    [6] VOGEL R, HOYER P, WELLER H. Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3particles as sensitizers for various nano-porous wide-bandgap semiconductors., 1994, 98(12): 3183–3188.

    [7] DONG Z M, SUN H S, XU J,. Preparation of macroscopical long Ag2S nanowire clusters characteristics., 2011, 60(7): 676–680.

    [8] DU Y P, XU B, FU T,. Near-infrared photoluminescent Ag2S quantum dots from a single source precursor., 2010, 132(5): 1470–1471.

    [9] ZHANG Y, HONG G S, ZHANG Y J,. Ag2S quantum dot: a bright and biocompatible fluorescent nanoprobe in the second near-infrared window., 2012, 6(5): 3695–3702.

    [10] HWANG I, SEOL M, Kim H,. Improvement of photocurrent generation of Ag2S sensitized solar cell through co-sensitization with CdS., 2013, 103(2): 023902–1–4.

    [11] SHI X, CHEN H Y, HAO F,. Room-temperature ductile inorganic semiconductor., 2018, 17(5): 421–426.

    [12] CHEN Z W, ZHANG X Y, LIN S Q,. Rationalizing phonon dispersion for lattice thermal conductivity of solids., 2018, 5(6): 888–894.

    [13] JEFFREY S G, AGNE M T, RAMYA G. Thermal conductivity of complex materials., 2019, 6(3): 380–381.

    [14] WANG T, CHEN H Y, QIU P F,. Thermoelectric properties of Ag2S superionic conductor with intrinsically low lattice thermal conductivity., 2019, 68(9): 18–26.

    [15] CHEN H Y, YUE Z M, REN D D,. Thermal conductivity during phase transitions., 2019, 31(6): 1806518.

    [16] LU P, LIU H L, YUAN X,. Multiformity and fluctuation of Cu ordering in Cu2Se thermoelectric materials., 2015, 3(13): 6901–6908.

    [17] ZHANG Y B, WANG Y W, XI L L,. Electronic structure of antifluorite Cu2X (X=S, Se, Te) within the modified Becke- Johnson potential plus an on-site Coulomb U., 2014, 140(7): 074702.

    [18] JIN M, LIN S Q, LI W,. Fabrication and thermoelectric properties of single-crystal argyrodite Ag8SnSe6., 2019, 31: 2603–2610.

    [19] JIANG J, CHEN L D, BAI S Q,. Thermoelectric properties of p-type (Bi2Te3)(Sb2Te3)1–xcrystals preparedzone melting., 2005, 277(1–4): 258–263.

    [20] WANG X, XU J T, LIU G Q,. Texturing degree boosts thermoelectric performance of silver-doped polycrystalline SnSe., 2017, 9(8): 426.

    [21] WANG X B, QIU P F, ZHANG T S,. Compound defects and thermoelectric properties in ternary CuAgSe-based materials., 2015, 3(26): 13662–13670.

    [22] DAY T, DRYMIOTIS F, ZHANG T S,. Evaluating the potential for high thermoelectric efficiency of silver selenide., 2013, 1(45): 7568–7573.

    [23] PEI Y Z, HEINZ N A, SNYDER G J. Alloying to increase the band gap for improving thermoelectric properties of Ag2Te., 2011, 21(45): 18256–18260.

    區(qū)熔法制備金屬硫化物Ag2S及其熱電性能研究

    金敏1, 白旭東2, 張如林1, 周麗娜1, 李榮斌1

    (1. 上海電機(jī)學(xué)院 材料學(xué)院, 上海 201306; 2. 上海理工大學(xué) 材料科學(xué)與工程學(xué)院, 上海 200093)

    金屬硫化物Ag2S具有優(yōu)異的物理化學(xué)性能, 在催化、傳感及光電子等領(lǐng)域具有廣闊的應(yīng)用空間。本工作利用一種區(qū)熔技術(shù)制備了尺寸為18 mm×50 mm的Ag2S并對(duì)其潛在熱電性能進(jìn)行了研究。Ag2S在450 K以下具有標(biāo)準(zhǔn)的-Ag2S單斜P21/c結(jié)構(gòu), 450 K以上發(fā)生相變成為立方-Ag2S相。Ag2S在300~650 K范圍始終具有負(fù)的Seebeck系數(shù)而呈現(xiàn)型半導(dǎo)體特征, 這主要是因?yàn)椴牧现写嬖贏g間隙離子而提供了多余電子。Ag2S的Seebeck系數(shù)在室溫下約為-1200 μV·K–1, 440 K時(shí)降為-680 μV·K–1, 當(dāng)轉(zhuǎn)變?yōu)?Ag2S后則大幅降至~-100 μV·K–1。-Ag2S的電導(dǎo)率幾乎為零, 然而在剛發(fā)生-Ag2S相變(450 K)時(shí), 電導(dǎo)率突然增加至~40000.5 S·m–1, 而后隨著溫度持續(xù)升高, 其值在650 K降低為33256.2 S·m–1?;魻枩y(cè)試表明Ag2S的載流子濃度H在相變時(shí)可從~1017cm–3迅速增加到~1018cm–3量級(jí)。-Ag2S和-Ag2S的總熱導(dǎo)率幾乎是常數(shù), 分別為~0.20和~0.45 W·m–1·K–1。最終Ag2S在580 K獲得最大值0.57, 說(shuō)明它是一種很有發(fā)展?jié)摿Φ闹袦責(zé)犭姴牧稀?/p>

    Ag2S; 區(qū)熔; 熱電材料; 相轉(zhuǎn)變

    TQ174

    A

    2020-11-16;

    2020-12-03;

    2021-03-01

    Shanghai Natural Science Foundation (19ZR1419900)

    JIN Min (1982–), male, professor. E-mail: jmaish@aliyun.com

    金敏(1982–), 男, 教授. E-mail: jmaish@aliyun.com

    1000-324X(2022)01-0101-06

    10.15541/jim20200653

    猜你喜歡
    電性能旭東硫化物
    開學(xué)第一天
    給春天開門
    CoO/rGO復(fù)合催化劑的合成、表征和電性能研究
    胡旭東
    心聲歌刊(2019年1期)2019-05-09 03:21:36
    蠟筆畫
    大洋多金屬硫化物自然氧化行為研究
    Zr摻雜對(duì)CaCu3Ti4O12陶瓷介電性能的影響
    連續(xù)流動(dòng)法測(cè)定沉積物中的酸揮發(fā)性硫化物
    Li2S-P2S5及Li2S-SiS2基硫化物固體電解質(zhì)研究進(jìn)展
    鎢酸錳催化氧化脫除模擬油硫化物
    变态另类丝袜制服| 超碰av人人做人人爽久久| 国产野战对白在线观看| 亚洲成人免费电影在线观看| 变态另类成人亚洲欧美熟女| 小说图片视频综合网站| 国产毛片a区久久久久| 伊人久久精品亚洲午夜| 色综合婷婷激情| 亚洲国产日韩欧美精品在线观看| 国产成人a区在线观看| 亚洲av成人精品一区久久| 天堂网av新在线| 啦啦啦韩国在线观看视频| 国产精品永久免费网站| 亚洲国产精品久久男人天堂| 婷婷丁香在线五月| 亚洲不卡免费看| 天堂影院成人在线观看| 欧美高清性xxxxhd video| 99久久成人亚洲精品观看| 真实男女啪啪啪动态图| 精品一区二区三区av网在线观看| 国产探花在线观看一区二区| 日日摸夜夜添夜夜添小说| 高清在线国产一区| 欧美高清性xxxxhd video| 日韩欧美在线二视频| 国产精品亚洲av一区麻豆| 国产单亲对白刺激| 人妻久久中文字幕网| 亚洲av电影不卡..在线观看| av女优亚洲男人天堂| 99精品久久久久人妻精品| 桃色一区二区三区在线观看| 美女高潮的动态| 国产v大片淫在线免费观看| 蜜桃亚洲精品一区二区三区| 色av中文字幕| 成人亚洲精品av一区二区| 久久久久精品国产欧美久久久| 国产综合懂色| 国产精品98久久久久久宅男小说| 麻豆一二三区av精品| 91九色精品人成在线观看| 欧美激情国产日韩精品一区| 欧美+日韩+精品| 久久精品国产亚洲av涩爱 | 亚洲最大成人手机在线| 精品熟女少妇八av免费久了| 成人av在线播放网站| 午夜激情欧美在线| 亚洲成a人片在线一区二区| 又爽又黄无遮挡网站| 91麻豆av在线| 一本精品99久久精品77| 亚洲在线观看片| a级一级毛片免费在线观看| 免费一级毛片在线播放高清视频| 中文字幕高清在线视频| 欧美日本视频| 内射极品少妇av片p| 国产乱人伦免费视频| 欧美日韩综合久久久久久 | 国产在线精品亚洲第一网站| 精品久久久久久久久久免费视频| 亚洲人成网站高清观看| 国产欧美日韩精品一区二区| netflix在线观看网站| 国产探花极品一区二区| 国产毛片a区久久久久| 在线a可以看的网站| 全区人妻精品视频| 亚洲av成人不卡在线观看播放网| 久久久久亚洲av毛片大全| 国产真实伦视频高清在线观看 | 香蕉av资源在线| 99在线人妻在线中文字幕| 舔av片在线| 日本免费a在线| 一区二区三区免费毛片| 成人性生交大片免费视频hd| xxxwww97欧美| 欧美国产日韩亚洲一区| 亚洲男人的天堂狠狠| 观看免费一级毛片| 成人精品一区二区免费| 日韩国内少妇激情av| 国产极品精品免费视频能看的| 91字幕亚洲| 深夜a级毛片| 3wmmmm亚洲av在线观看| 十八禁网站免费在线| 99国产综合亚洲精品| 国产精品久久视频播放| 久久午夜亚洲精品久久| 美女 人体艺术 gogo| 校园春色视频在线观看| 久久精品国产亚洲av天美| 国产精品人妻久久久久久| 成人国产综合亚洲| 亚洲专区国产一区二区| 波多野结衣高清无吗| eeuss影院久久| 美女黄网站色视频| 我要看日韩黄色一级片| 免费搜索国产男女视频| 日韩亚洲欧美综合| 日本黄色片子视频| 黄色丝袜av网址大全| 久久久久久久亚洲中文字幕 | 国产精品一及| av在线天堂中文字幕| 18美女黄网站色大片免费观看| 18禁黄网站禁片午夜丰满| 蜜桃亚洲精品一区二区三区| 又黄又爽又刺激的免费视频.| 日韩大尺度精品在线看网址| 少妇熟女aⅴ在线视频| 精品一区二区三区视频在线观看免费| 午夜福利18| 国产精品一及| 午夜亚洲福利在线播放| 亚洲五月婷婷丁香| 久久久久性生活片| 亚洲天堂国产精品一区在线| 韩国av一区二区三区四区| 网址你懂的国产日韩在线| 亚洲一区二区三区色噜噜| 97人妻精品一区二区三区麻豆| 国产精品一及| 制服丝袜大香蕉在线| 国产精品嫩草影院av在线观看 | 一a级毛片在线观看| 亚洲av免费在线观看| 一个人免费在线观看电影| 免费观看的影片在线观看| 日本黄色片子视频| 99精品在免费线老司机午夜| 在线十欧美十亚洲十日本专区| 在线观看av片永久免费下载| 男女做爰动态图高潮gif福利片| 亚洲无线在线观看| 一个人观看的视频www高清免费观看| 精品熟女少妇八av免费久了| 中出人妻视频一区二区| 淫妇啪啪啪对白视频| 黄色一级大片看看| 国产一级毛片七仙女欲春2| 亚洲美女黄片视频| 久久中文看片网| 两个人视频免费观看高清| 午夜激情福利司机影院| 精品久久久久久久久久免费视频| 内地一区二区视频在线| 精品久久久久久久久av| 欧美一区二区国产精品久久精品| 亚洲精品一卡2卡三卡4卡5卡| 国内精品美女久久久久久| 搡老岳熟女国产| 成人特级av手机在线观看| 狂野欧美白嫩少妇大欣赏| av专区在线播放| 日本黄色视频三级网站网址| 此物有八面人人有两片| 精品99又大又爽又粗少妇毛片 | 午夜福利免费观看在线| 性插视频无遮挡在线免费观看| 99国产精品一区二区蜜桃av| 一级作爱视频免费观看| 婷婷丁香在线五月| netflix在线观看网站| 亚洲 欧美 日韩 在线 免费| 无遮挡黄片免费观看| 哪里可以看免费的av片| 亚洲精品久久国产高清桃花| 国产69精品久久久久777片| 脱女人内裤的视频| 伦理电影大哥的女人| 999久久久精品免费观看国产| 少妇丰满av| 午夜福利在线观看吧| 中文字幕久久专区| 最新中文字幕久久久久| 国产麻豆成人av免费视频| 久久精品国产亚洲av涩爱 | 亚洲在线观看片| 欧美日韩综合久久久久久 | 国产毛片a区久久久久| ponron亚洲| 国产成人福利小说| 在线看三级毛片| 亚洲av电影在线进入| 亚洲乱码一区二区免费版| 国产三级黄色录像| 日韩亚洲欧美综合| 人妻丰满熟妇av一区二区三区| 动漫黄色视频在线观看| 丰满的人妻完整版| 久久午夜福利片| 久久久久精品国产欧美久久久| 亚洲精品一卡2卡三卡4卡5卡| 国产伦精品一区二区三区视频9| 99国产精品一区二区蜜桃av| 免费黄网站久久成人精品 | 国产精品女同一区二区软件 | 亚洲天堂国产精品一区在线| 亚洲国产高清在线一区二区三| 欧美黄色片欧美黄色片| 亚洲欧美清纯卡通| 国内精品久久久久精免费| 三级国产精品欧美在线观看| 亚洲熟妇中文字幕五十中出| 精品欧美国产一区二区三| 欧美最黄视频在线播放免费| 国产高清视频在线播放一区| 我的老师免费观看完整版| 国产精品乱码一区二三区的特点| 757午夜福利合集在线观看| 日本黄色片子视频| bbb黄色大片| 国内毛片毛片毛片毛片毛片| 露出奶头的视频| av视频在线观看入口| 亚洲avbb在线观看| 又黄又爽又刺激的免费视频.| 麻豆一二三区av精品| 动漫黄色视频在线观看| 精华霜和精华液先用哪个| 婷婷六月久久综合丁香| 午夜影院日韩av| 午夜福利欧美成人| 亚洲av一区综合| 亚洲精品亚洲一区二区| 一进一出好大好爽视频| 亚洲av熟女| 99热这里只有精品一区| 激情在线观看视频在线高清| 国产精品影院久久| 精品久久国产蜜桃| 免费在线观看成人毛片| 国产伦精品一区二区三区四那| 嫩草影视91久久| 深爱激情五月婷婷| 色综合欧美亚洲国产小说| 看十八女毛片水多多多| 久久精品国产清高在天天线| www.www免费av| 别揉我奶头 嗯啊视频| 女同久久另类99精品国产91| 久久久精品欧美日韩精品| 午夜两性在线视频| 久久亚洲精品不卡| 夜夜爽天天搞| 亚洲精品乱码久久久v下载方式| 黄色日韩在线| 久久中文看片网| 国产真实乱freesex| 赤兔流量卡办理| 亚洲精品在线观看二区| 国产一区二区在线av高清观看| 99精品久久久久人妻精品| 色综合婷婷激情| 日韩欧美精品v在线| 国产高清有码在线观看视频| 最新在线观看一区二区三区| 久久久久久久久久成人| 每晚都被弄得嗷嗷叫到高潮| 国产精品一区二区三区四区久久| 亚洲最大成人手机在线| 国产探花在线观看一区二区| 欧美又色又爽又黄视频| 偷拍熟女少妇极品色| 蜜桃亚洲精品一区二区三区| 在线观看66精品国产| 日本精品一区二区三区蜜桃| 无人区码免费观看不卡| 午夜免费男女啪啪视频观看 | 日韩高清综合在线| 久久久精品大字幕| 日本成人三级电影网站| 国产一区二区激情短视频| 亚洲人成伊人成综合网2020| 亚洲三级黄色毛片| 精品亚洲乱码少妇综合久久| 寂寞人妻少妇视频99o| 欧美日韩视频高清一区二区三区二| 直男gayav资源| 男女啪啪激烈高潮av片| 综合色丁香网| 内地一区二区视频在线| 欧美三级亚洲精品| 综合色av麻豆| 97精品久久久久久久久久精品| 大又大粗又爽又黄少妇毛片口| 秋霞在线观看毛片| 国产伦精品一区二区三区四那| 91久久精品电影网| 在线观看国产h片| 国产精品伦人一区二区| 国产白丝娇喘喷水9色精品| 久久久久久伊人网av| 老司机影院成人| 国产成人午夜福利电影在线观看| 亚洲成人精品中文字幕电影| 欧美一区二区亚洲| 免费黄网站久久成人精品| 国产成人精品久久久久久| 欧美一区二区亚洲| 亚洲国产精品国产精品| 永久免费av网站大全| 青青草视频在线视频观看| 久久精品国产a三级三级三级| 精品国产露脸久久av麻豆| 欧美另类一区| 成人午夜精彩视频在线观看| 又粗又硬又长又爽又黄的视频| 乱码一卡2卡4卡精品| 国产精品av视频在线免费观看| 国产v大片淫在线免费观看| 免费看a级黄色片| 亚洲欧美中文字幕日韩二区| 久久久久久九九精品二区国产| 99久国产av精品国产电影| 国产老妇女一区| 亚洲欧美日韩卡通动漫| 亚洲国产日韩一区二区| 欧美激情在线99| 日本熟妇午夜| 日本爱情动作片www.在线观看| 尾随美女入室| 亚洲av电影在线观看一区二区三区 | 久久精品夜色国产| 亚洲一区二区三区欧美精品 | 2021天堂中文幕一二区在线观| 欧美xxxx性猛交bbbb| 亚洲欧美一区二区三区黑人 | 精品一区二区免费观看| 国语对白做爰xxxⅹ性视频网站| 美女视频免费永久观看网站| 亚洲国产精品999| 久久精品国产自在天天线| 禁无遮挡网站| 人妻一区二区av| 精品一区二区免费观看| 亚洲精品第二区| 免费看光身美女| 免费不卡的大黄色大毛片视频在线观看| 精品人妻熟女av久视频| 十八禁网站网址无遮挡 | 精品视频人人做人人爽| 日韩欧美精品v在线| 春色校园在线视频观看| 中文资源天堂在线| 日本wwww免费看| 99热6这里只有精品| 亚洲成人av在线免费| 国产精品爽爽va在线观看网站| 亚洲不卡免费看| 男女边摸边吃奶| 王馨瑶露胸无遮挡在线观看| 日韩电影二区| 久久久久精品久久久久真实原创| 国内精品宾馆在线| 十八禁网站网址无遮挡 | 国产精品一区二区三区四区免费观看| 各种免费的搞黄视频| 美女视频免费永久观看网站| 永久网站在线| 91在线精品国自产拍蜜月| 联通29元200g的流量卡| 26uuu在线亚洲综合色| 最近2019中文字幕mv第一页| 波野结衣二区三区在线| 综合色av麻豆| 亚洲天堂国产精品一区在线| 2021天堂中文幕一二区在线观| 久久久久九九精品影院| 在线播放无遮挡| 久久99热这里只有精品18| 狂野欧美激情性bbbbbb| 成人亚洲欧美一区二区av| 国产精品精品国产色婷婷| 免费黄频网站在线观看国产| 深夜a级毛片| 中文乱码字字幕精品一区二区三区| 尾随美女入室| av.在线天堂| 欧美性感艳星| 精品视频人人做人人爽| 一级毛片 在线播放| 国模一区二区三区四区视频| 国产午夜精品一二区理论片| 日日撸夜夜添| 久久久久性生活片| 制服丝袜香蕉在线| 亚洲,一卡二卡三卡| 又黄又爽又刺激的免费视频.| av国产免费在线观看| 免费观看的影片在线观看| 麻豆成人av视频| 一级毛片 在线播放| 成人亚洲精品av一区二区| 国产精品一区二区性色av| 久久精品综合一区二区三区| 国产中年淑女户外野战色| av福利片在线观看| 日韩av免费高清视频| 成人鲁丝片一二三区免费| 成人亚洲精品一区在线观看 | 神马国产精品三级电影在线观看| 女人十人毛片免费观看3o分钟| 国产午夜精品一二区理论片| 男女下面进入的视频免费午夜| 下体分泌物呈黄色| 亚洲成人av在线免费| 啦啦啦中文免费视频观看日本| 国产色婷婷99| 少妇人妻一区二区三区视频| 热99国产精品久久久久久7| 18+在线观看网站| 久久久成人免费电影| 超碰97精品在线观看| 日本黄大片高清| 国产av国产精品国产| 另类亚洲欧美激情| 最近最新中文字幕免费大全7| 成年免费大片在线观看| 亚洲精品日韩在线中文字幕| 久久精品国产亚洲网站| 久久精品国产亚洲av天美| 中文字幕av成人在线电影| 丰满少妇做爰视频| 看免费成人av毛片| 精品久久久久久久久av| 亚洲天堂国产精品一区在线| av国产免费在线观看| 国产中年淑女户外野战色| 在线看a的网站| 18禁裸乳无遮挡免费网站照片| 搞女人的毛片| 激情五月婷婷亚洲| 中文字幕久久专区| 色吧在线观看| av线在线观看网站| 在线观看一区二区三区| 国产亚洲一区二区精品| 男女边摸边吃奶| 国产片特级美女逼逼视频| 精品国产露脸久久av麻豆| 午夜福利视频精品| 91狼人影院| 中国国产av一级| 国产毛片a区久久久久| 国产精品一区二区三区四区免费观看| 亚洲精品国产色婷婷电影| 男人添女人高潮全过程视频| 一本色道久久久久久精品综合| 亚洲精品乱码久久久v下载方式| 成人黄色视频免费在线看| 久久久久网色| 午夜精品一区二区三区免费看| 亚洲欧美成人综合另类久久久| 国产精品久久久久久精品古装| 国产黄色免费在线视频| 水蜜桃什么品种好| 国内精品美女久久久久久| 一级毛片我不卡| 久久久久久久久久久免费av| 一级二级三级毛片免费看| 国产伦精品一区二区三区四那| 又粗又硬又长又爽又黄的视频| 丝袜喷水一区| 国产成人91sexporn| 国产v大片淫在线免费观看| 亚洲天堂av无毛| 久热久热在线精品观看| 成人黄色视频免费在线看| 热re99久久精品国产66热6| 国产免费一级a男人的天堂| 大片免费播放器 马上看| 免费大片黄手机在线观看| 天美传媒精品一区二区| 欧美97在线视频| 777米奇影视久久| 国产 一区 欧美 日韩| 色吧在线观看| 国产日韩欧美亚洲二区| 久久久久精品久久久久真实原创| 嘟嘟电影网在线观看| 日产精品乱码卡一卡2卡三| 亚洲欧美一区二区三区国产| 在线天堂最新版资源| 精品少妇久久久久久888优播| 在线精品无人区一区二区三 | 亚洲一级一片aⅴ在线观看| 亚洲人成网站在线播| 看非洲黑人一级黄片| 欧美 日韩 精品 国产| 中文字幕av成人在线电影| 亚洲最大成人手机在线| 国产高清三级在线| 久久久久精品久久久久真实原创| 在线亚洲精品国产二区图片欧美 | 亚洲精品色激情综合| 国产爽快片一区二区三区| 亚洲精品,欧美精品| 熟女人妻精品中文字幕| 国产免费一级a男人的天堂| 国产亚洲av嫩草精品影院| 九九在线视频观看精品| 日本av手机在线免费观看| 欧美激情国产日韩精品一区| 少妇裸体淫交视频免费看高清| 麻豆成人av视频| 午夜免费鲁丝| 99re6热这里在线精品视频| 视频中文字幕在线观看| 黄色配什么色好看| 亚洲精品影视一区二区三区av| 网址你懂的国产日韩在线| 美女内射精品一级片tv| 99精国产麻豆久久婷婷| 日韩免费高清中文字幕av| 美女脱内裤让男人舔精品视频| 日韩欧美精品免费久久| 日本免费在线观看一区| 大香蕉97超碰在线| 国产精品一区二区性色av| 亚洲国产色片| 久久热精品热| 少妇人妻精品综合一区二区| 男女边摸边吃奶| 麻豆精品久久久久久蜜桃| av播播在线观看一区| 国产v大片淫在线免费观看| 视频区图区小说| 中文字幕人妻熟人妻熟丝袜美| 一本色道久久久久久精品综合| 国产成人a区在线观看| 国产精品人妻久久久影院| 免费少妇av软件| 男女边吃奶边做爰视频| 97超碰精品成人国产| 深爱激情五月婷婷| 日韩,欧美,国产一区二区三区| 噜噜噜噜噜久久久久久91| 久久久久久久亚洲中文字幕| 色吧在线观看| 黄色欧美视频在线观看| 亚洲国产av新网站| 国产亚洲一区二区精品| 97人妻精品一区二区三区麻豆| 成年av动漫网址| 我的女老师完整版在线观看| 国产一区有黄有色的免费视频| 亚洲国产欧美在线一区| 精品久久久久久久人妻蜜臀av| 亚洲av电影在线观看一区二区三区 | 天天躁夜夜躁狠狠久久av| 国产视频内射| 亚洲精品日韩av片在线观看| 高清毛片免费看| 国产精品一及| 可以在线观看毛片的网站| 久久影院123| 国产毛片a区久久久久| 精品久久久精品久久久| 国产免费一级a男人的天堂| 国产中年淑女户外野战色| 深夜a级毛片| 久久精品国产鲁丝片午夜精品| 日韩大片免费观看网站| 成人美女网站在线观看视频| 丰满乱子伦码专区| 久久精品国产亚洲av涩爱| 久久午夜福利片| 1000部很黄的大片| 久久精品国产亚洲网站| 黄片wwwwww| 又爽又黄a免费视频| 五月玫瑰六月丁香| 国产精品人妻久久久久久| 久久精品久久精品一区二区三区| 黄色日韩在线| 日韩亚洲欧美综合| 午夜日本视频在线| 18禁动态无遮挡网站| 色吧在线观看| 成人午夜精彩视频在线观看| 午夜免费鲁丝| 99精国产麻豆久久婷婷| 简卡轻食公司| 国产午夜精品久久久久久一区二区三区| 熟妇人妻不卡中文字幕| 少妇人妻久久综合中文| 精品视频人人做人人爽| 美女xxoo啪啪120秒动态图| 久久久久久久久久久免费av| 热99国产精品久久久久久7| 亚洲精品久久久久久婷婷小说| 嘟嘟电影网在线观看| 高清日韩中文字幕在线| a级一级毛片免费在线观看| 精品少妇久久久久久888优播| 美女脱内裤让男人舔精品视频| 国产精品99久久99久久久不卡 | av免费观看日本| 老师上课跳d突然被开到最大视频| 一级a做视频免费观看| 不卡视频在线观看欧美| videossex国产| 日韩av在线免费看完整版不卡| 亚洲av不卡在线观看| 五月玫瑰六月丁香|