• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Far-red light: A regulator of plant morphology and photosynthetic capacity

    2022-03-30 08:50:10TingtingTanShenglanLiYuanfangFanZhonglinWangMuhammadAliRazaIramShafiqBeibeiWangXiaolingWuTaiwenYongXiaochunWangYushanWuFengYangWenyuYang
    The Crop Journal 2022年2期

    Tingting Tan, Shenglan Li, Yuanfang Fan, Zhonglin Wang, Muhammad Ali Raza,Iram Shafiq, Beibei Wang, Xiaoling Wu, Taiwen Yong, Xiaochun Wang, Yushan Wu,Feng Yang,*, Wenyu Yang

    a College of Agronomy, Sichuan Agricultural University, Chengdu 611130, Sichuan, China

    b Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu 611130, Sichuan, China

    c Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu 611130, Sichuan, China

    Keywords:Far-red light Photosynthetic capacity Photosystem Photosynthetic electron transport

    ABSTRACT Plant photosynthetic capacity directly determines crop yield. Light quality regulates photosynthetic capacity. This review discusses plant responses to far-red light from the phenotypic to the molecular level, focusing specifically on the improvement of photosynthetic capacity by adjustment of photosynthetic electron transport and the path of light energy. Far-red light can also regulate leaf angle and increase plant height and leaf area, via expression of associated genes, to capture more light energy.Thus, far-red light regulates plant morphology and photosynthetic capacity. Identifying the mechanism of this regulation may lead to increased crop yields.

    Contents

    1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

    2. Effect of far-red light on plant morphology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

    2.1. Plant height. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

    2.2. Leaf morphology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

    2.3. Stomata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

    2.4. Plant biomass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

    3. Effect of far-red light on leaf structure and chloroplast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

    3.1. Leaf structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

    3.2. Chloroplast. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

    4. Effect of far-red light on plant photosynthetic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

    4.1. Photosynthetic pigments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

    4.2. Chlorophyll fluorescence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

    5. Effect of far-red light on the photosystem and photosynthetic electron transport in plant leaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

    5.1. Photosystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

    5.2. Photosynthetic electron transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

    6. The effect of far-red light on carbon assimilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

    7. Effect of far-red light on photosynthate products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

    8. Conclusion and perspectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

    Declaration of competing interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

    Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

    References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

    1. Introduction

    Photosynthesis is a process by which plants use light energy to convert carbon dioxide (CO2) and water (H2O) into organic matter and release oxygen (O2) [1]. Light quality strongly influences photosynthesis[2].Because light with a wavelength of 400–700 nm is the most photosynthetically effective [3], most studies of photosynthesis have been performed in this wavelength range [4,5].However, far-red light (700–800 nm) mediates plant growth and developmental processes, especially in shaded environments [6–9].Only a few studies on the influence of far-red light on the morphological and photosynthetic parameters of plants have been reported. A shaded environment (such as strip intercropping) is well known [10] to reduce the red-to-far-red ratio of light (R/Fr)in the plant canopy, ultimately changing plant morphology, physiology, and biochemistry. Increasing far-red light increases plants’internodal length, petiole length, plant height, and gibberellin(GA) content [11–13], and adding far-red light increases the canopy gross photosynthetic rate in C3and C4plants[14].To date,most studies have focused on the effect of far-red light on plant morphological characteristics, photosynthetic pigment content,chlorophyll fluorescence, and other indicators in field cultivation and facility agriculture [15,16]. Only a few studies [17,18] have investigated the effect of far-red light on the photosystem and photosynthetic electron transport.Identifying the physiological mechanisms by which far-red light influences the photosynthetic capacity of plants could lead to increases in crop yield.This review summarizes research progress on the effect of far-red light on plant morphology and photosynthetic capacity, including height, leaf morphology, chloroplast ultrastructure, photosystem, and photosynthetic electron transport.

    2. Effect of far-red light on plant morphology

    2.1. Plant height

    The light-harvesting ability and carbon assimilation of plants are linked closely to their architectural features. For example,variations in far-red light change plant height, especially under shaded conditions [19]. Plants possess photoreceptors that monitor red and far-red light. These photoreceptors are known as phytochromes, which are composed of chromophores and apoproteins [20]. Phytochromes can be classified into phytochrome A (phyA), a far-red light photoreceptor, and phytochrome B (phyB), a red-light photoreceptor [21]. Earlier study [22] have shown that phyB also influences the manner in which plants respond to far-red light. A decrease in the R/Fr ratio of the plant canopy slightly changes the chromophore structure. Some phytochromes change from a biologically active far-red-light-absorbing state (Pfr) to a biologically inactive redlight-absorbing form (Pr) in an environment with a low R/Fr ratio [23,24]. Pfr and Pr are present simultaneously in plants.When far-red light increases in the plant canopy, the negative regulator of plant photomorphogenesis SPA1 (suppressor of phyA-105) interacts with COP1 (constitutive photomorphogenesis 1) to form E3 ubiquitin ligase [25,26]. This ligase inhibits plant photomorphogenesis and promotes hypocotyl elongation by degrading phosphorylated phyA and the positive regulator HY5 (long hypocotyl 5) [22,27–30]. The low R/Fr environment also reduces the activity of phyB. However, this environment regulates the expression of PIF7 (phytochrome interacting factor 7), which interacts with phyB in Arabidopsis leaves, leading to the increased binding of PIF7 to downstream target genes. The expression of flavin monooxygenase (YUC), the rate-limiting enzyme in the auxin synthesis pathway, is up-regulated,increasing the content of auxin (indole-3-acetic acid, IAA). IAA is transported from leaves to stems, elongating the internodes and increasing the plant height (Fig. 1) [31–33]. Expression of kaurenoic acid oxidase genes in the biosynthetic pathway of GA is up-regulated in a low-R/Fr environment [34], increasing GA content, accelerating cell division and cell elongation in the stem, and ultimately increasing plant height [35–37]. In summary, a low-R/Fr environment can regulate the endogenous hormone levels of plants via expression of related genes to regulate plant morphogenesis and capture more light energy[38–42].

    Fig. 1. Regulation of plant height by far-red light.

    2.2. Leaf morphology

    Photosynthesis is one of the main physiological functions of leaves.The effect of far-red light on leaves strongly influences plant photosynthetic capacitys [43,44]. An abundance of far-red light in the canopy environment increases leaf length and reduces leaf width, making leaves narrower than those under normal light[45,46]. A high R/Fr ratio inhibits leaf expansion, resulting in a smaller leaf area. By contrast, a low R/Fr ratio increased leaf area by 1.31-fold compared with a control by increasing the extensibility of the cell wall in the plant cells (Fig. 2). Thus, leaf area influences radiation use efficiency. Far-red light is beneficial to plant radiation use efficiency [46–50].

    Like leaf area, leaf angle directly affects light interception. The petiole can control the orientation of the leaf relative to the incident light by changing the angle of its adaxial side.A low R/Fr ratio may change petiole length and leaf angle by promoting the elongation of the cells on this adaxial side,thereby increasing the area of the leaf intercepting light [12,51–53]. The increased abundance of far-red light also optimizes light interception by reducing the overlap area of leaves [54,55].

    2.3. Stomata

    Stomata on the leaf epidermis are the main channels for water and gas exchange[56].The stomata of different plants respond distinctly to far-red light.High far-red light increased the numbers of stomata in chrysanthemum and Rotala hippuris leaves but reduced the number in tobacco leaves and the stomatal conductance of cucumber leaves [45,57–59]. Far-red light also reduced stomatal density in leaves of Arabidopsis thaliana, cucumber, and wheat[57,60,61].Red and blue light promote stomatal opening.However,far-red light does not necessarily promote stomatal opening. In response to blue light, the C3and C4guard cells of plants synthesize ATP by photophosphorylation, activating H+-ATPase on the plasma membrane and driving K+flux into the guard cells. The accumulation of K+increases the water potential of guard cells,facilitating the entrance of water into them and inducing stomatal opening [62–64]. In contrast, far-red light can reverse stomatal opening caused by blue light [65]. However, the influence of farred light on the regulation of stomata is controversial. Karlson[66] believed that far-red light does not affect stomatal opening.Talbott et al. [65] found that far-red light at 700 nm promoted stomatal opening but that far-red light at 720 nm reversed this process.

    Our picture of the influence of far-red light on stomata remains inconclusive.Far-red light affected intracellular Ca2+concentration by reducing the phytochrome Pfr content,regulating the entry and exit of K+and thereby controlling stomatal opening [67]. But in another study[68],a low-R/Fr environment changed stomatal density by changing the ratio of the biologically active form of phytochrome, phyB, and the expression of stomatal development genes.

    2.4. Plant biomass

    In one study [69], red, blue, and green light showed no significant effect on dry or fresh weight of lettuce, but supplementation with far-red light significantly increased both. Ai et al. [70]reported that the dry and fresh biomass of tomatoes increased significantly by 28.46% and 33.26% under a low-R/Fr environment.The biomass of soybean and lettuce increased significantly under high far-red light conditions [50,71]. Thus, supplementing with far-red light (low R/Fr ratio) can increase plant biomass. Reducing the R/Fr ratio also promotes the distribution of plant dry matter to the stem [72,73].

    3. Effect of far-red light on leaf structure and chloroplast

    3.1. Leaf structure

    The leaf is the main organ of photosynthesis in higher plants.Inside the leaf, the mesophyll tissue regulates light transmission for photosynthesis. It can form palisade and spongy tissues to reduce the difference between light reception on the dorsiventral surface of the leaf. Plant leaves can change the mesophyll tissue structure to adjust the capture of light energy and exchange gases to acclimatize to different environments [74]. Many studies[6,46,75–77] have shown that the addition of far-red light increases net photosynthetic rate and leaf area but reduces leaf thickness. The explanation of this phenomenon may be that low R/Fr conditions reduce the thickness of palisade tissue by reducing its cell size and cell number,thereby reducing the thickness of the leaf (Fig. 3) [78,79].

    Fig. 2. Effect of far-red light on plant leaf area. Low-R/Fr ratio treatment significantly increased leaf area under the same light intensity.

    3.2. Chloroplast

    Fig.3. Effects of far-red light on leaf anatomical structure and leaf thickness.(A)Low light treatment;(B)low light plus far-red light treatment;(C)compared with low light,the addition of far-red light reduced the thickness of palisade tissue, spongy tissue, and the leaf.

    Photosynthesis occurs in the chloroplast. The distribution and internal structure of the chloroplast strongly influence the capture and transmission of light energy. Far-red light is essential for chloroplast development. Its absence impairs chloroplast structure,resulting in irregularly arranged grana thylakoids[80].Under a combination of blue,green,red,and far-red light,the long side of the chloroplast tends to be vertical to the incident direction of the far-red light.This phenomenon indicates that chloroplast distribution is closely related to far-red light [81]. Far-red instead of red light received at the end of the day increased chloroplast length but reduced chloroplast width in tobacco leaves,leading to the formation of an oblong-shaped chloroplast [82]. A low R/Fr ratio increased the number of chloroplasts in pepper leaves,the number of chloroplast grana in maize and tobacco leaves,and grana stacking in soybean leaves compared with a control. However, the stacks of thylakoids in maize and tobacco leaves decreased in a low-R/Fr environment [79,82–84]. Thus, the effect of far-red light on plant leaf chloroplast structure is still uncertain.Some researchers [85] believe that high far-red light increases the density of granum and the grana stacking, while others [82] believe that the number of granum thylakoid layers is reduced, resulting in a decrease in grana stacking under high far-red light environments.Studies of the response of chloroplasts to far-red light have focused mainly on the structure of chloroplast DNA, proton motive force,and photosystem II (PSII) content in the thylakoid membrane[86–88]. Only a few studies have investigated how far-red light regulates the number and structure of chloroplasts. In Arabidopsis,FHY3 (far-red elongated hypocotyls3)/ CPD45 (chloroplast division45) controls chloroplast division by regulating the expression of ARC5 and FHY1, thereby affecting the number of chloroplasts[89]. A lack of chlorophyll b (Chl-b) reduces the level of LHC II(light-harvesting complex II) protein,leading in turn to a decrease in grana stacking[90].Whether far-red light affects the structure of the chloroplast by regulating chlorophyll content awaits further research. In addition to reshaping plant morphology, far-red light affects plant photosynthetic characteristics (Table 1).

    Table 1Effects of far-red light on plant morphology and photosynthesis.

    4.Effect of far-red light on plant photosynthetic characteristics

    4.1. Photosynthetic pigments

    Chlorophyll functions in the absorption,transmission,and conversion of light energy,and the content and composition of chlorophyll directly affect leaf photosynthetic capacity. The chlorophyll content of tomato, maize, and tobacco leaves decreased in a low-R/Fr environment [45,75,99]. However, the contents in soybean and chrysanthemum leaves were negatively correlated with R/Fr ratio [100,101]. The ratio of Chl a to Chl b affects the photosynthetic activity of chloroplasts. High far-red light reduces this ratio in most plants [51,88,92,93,101]. A decrease in Chl a/Chl b increased the reducing ability of 2,6-dichlorophenolindophenol,increasing the photophosphorylation activity of chloroplasts[102].

    Carotenoids can transfer energy to chlorophyll for photosynthesis and protect the chlorophyll from photooxidation [103]. Like chlorophyll content,carotenoid content varies among plants whenfar-red light increases.The carotenoid contents of chrysanthemum,strawberry, and Dipterocarpaceae leaves increased [100,104,105]but those in soybean and tomato leaves decreased[106,107].Given the influence of far-red light on carotenoid content, studies[108,109] have shown that high far-red light can lead to overexpression of the mRNA and protein levels of phytoene synthase,enriching carotenoids in tissues.Pfr can prevent the loss of carotenoids, whereas far-red light reduces the relative content of Pfr[110].The decrease in Pfr reduced the number of lipid globules that prevent carotenoid degradation, resulting in a decrease in carotenoid content.

    The photosynthetic pigment content represents the photosynthetic ability of plants. The responses of plant photosynthetic pigments to light intensity are not consistent among species [111].Like the effect of far-red light on these pigments, the effects of intensity and quality of light on the content of these pigments vary among plant species.

    4.2. Chlorophyll fluorescence

    When leaves absorb light,solar energy is converted by the plant into chemical energy, heat, and chlorophyll fluorescence. The pigment molecules are excited by red light,and the electrons in these molecules are transferred to the lowest excited state. Given the instability of the excited state, the state quickly changes to the ground state, and the energy is either consumed in the form of light or released as heat. Light emitted from the lowest excited state back to the ground state is called fluorescence[112]. Chlorophyll fluorescence is produced by energy-level changes in pigment molecules.This characteristic reflects the absorption,transmission,dissipation,and distribution of solar energy called a probe of photosynthesis [113,114]. The quantum yield of PSII (ΦPSII) is also known as the actual photosynthetic capacity of PSII. However,the nonphotochemical quenching coefficient (NPQ) reflects the ability of plants to turn excess light energy into heat.

    After the long-term addition of far-red light to white light,ΦPSIIincreases and NPQ decreases (Fig. 4). This phenomenon indicates that high far-red light reduces the heat dissipation of PSII and increases the light energy available for photosynthesis in the leaves. The increase in ΦPSIIand decrease in NPQ occur as far-red light increases photosystem I (PSI) activity, leading to faster reoxidation of plastoquinone and promoting the reopening of the PSII reaction center [77,95].

    Studies [115–117] have investigated chlorophyll fluorescence technology in a stable light environment. Real-time fluorescence technology has been applied to investigate changes in the photosystem in a dynamic light environment [118,119]. The shortterm addition of far-red light increased the ΦPSIIand reduced the NPQ of the leaf [94], a result consistent with that in a stable light environment(Fig.4).After addition of far-red light to red or white light, the quantum yield of fluorescence immediately drops and reaches a steady-state minimum within 10–15 s [77]. A decrease in the fluorescence yield may be due to the increase in photochemical efficiency or heat dissipation according to the path of light energy captured by plants. Heat dissipation depends on the xanthophyll cycle involving a series of enzymatic reactions that usually take a few minutes. The photochemical efficiency regulated by the redox signal can change on a time scale of milliseconds.Thus, the decrease in fluorescence yield is due to the increase in PSII photochemical efficiency [77,120–122].

    Fig. 4. Influence of far-red light on the fate of light energy.

    5.Effect of far-red light on the photosystem and photosynthetic electron transport in plant leaves

    5.1. Photosystem

    The light reaction in the thylakoid membrane converts light energy into chemical energy in NADPH and ATP, as the first step of photosynthesis. The photosynthetic electron transport chain with PSI and PSII as the primary members functions in the light reaction [123]. Light-harvesting complex I (LHC I) and LHC II are associated with PSI and PSII, respectively, and transfer captured light energy to antenna pigments in the reaction center [124].Far-red light preferentially excites PSI and increases its activity in C3and C4plants [125]. However, owing to the unbalanced distribution of light energy between PSI and PSII, plants regulate the distribution of light energy by state transition, photosystem stoichiometry, or the light-harvesting complex [92,94,126].

    First, far-red light increases the relative content of the chlorophyll protein complex in the PSII reaction center by upregulating the gene expression of Lhcb1, Lhcb2, and Lhcb4[101,127]. Second, far-red light excites PSI preferentially, causing the oxidation of plastoquinones and then inhibiting LHC II kinase activity.LHC II is dephosphorylated and combined with PSII to promote light energy distribution to PSII [128–130]. Finally, far-red light can reshape the photosynthetic structure [131]. PSI is distributed on the non-stacked stromal thylakoid membrane,whereas PSII is distributed on the stacked grana thylakoid membrane[84,127]. High far-red light increases the stoichiometric ratio of PSII/PSI because of thylakoid stacking changing [88,93]. Far-red light increases the number of grana formed by thylakoid stacks,leading to a high PSII/PSI ratio[132].However,the responses of different plant leaf chloroplasts to a high far-red light environment are inconsistent.High far-red light may adjust the structure of thylakoids by affecting chlorophyll, thereby increasing the ratio PSII/PSI [125].

    5.2. Photosynthetic electron transport

    Cyclic electron transport is one of the modes of photosynthetic electron transport.An abundance of far-red light accelerates cyclic electron transport through the PSI [133]. After addition of far-red light, PSI is preferentially excited, and the chlorophyll dimer P700 in PSI is oxidized to P700+. It then transfers electrons to the electron acceptor ferredoxin. The limitation of electrons in P700+promotes the transfer of electrons from plastocyanin to PSI,thereby accelerating the re-oxidation of plastoquinone. Thus, the cyclic electron transport around PSI is accelerated (Fig. 5) [96–98,134].

    Fig. 5. Effects of far-red light on the photosystem and photosynthetic electron transfer.

    D1 is one of the polypeptides that PSII binds to the electron transfer body, and PsbA is the first identified D1 polypeptideencoding gene.High far-red light promotes the expression of PsbA,increasing the content of D1 protein and the ability of PSII to bind electrons [63].

    6. The effect of far-red light on carbon assimilation

    Carbon assimilation is the fixation of CO2and formation of sugars using ATP and NADPH [135]. This process is divided into three stages: carboxylation, reduction, and regeneration. Carboxylation is the rate-limiting reaction of carbon assimilation [136].Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the carboxylation reaction of ribulose 1,5-bisphosphate(RuBP) in the Calvin cycle [137]. An influence of red or blue light on Rubisco has been reported [138,139], but only a few studies have investigated the effect of far-red light on Rubisco or carbon assimilation. Spinach leaves grown under low R/Fr showed higher Rubisco enzyme activity than those grown under high R/Fr under the same light intensity. Far-red light has been inferred [140] to promote carbon assimilation and increase the efficiency of CO2conversion into carbohydrates. However, study [141] has shown that light intensity, not light quality, regulates changes in Rubisco levels.

    7. Effect of far-red light on photosynthate products

    Types of photosynthate products vary among plants. Starch is the main photosynthate produced in most higher plants. The primary photosynthetic product of wheat is sucrose, in contrast to glucose and fructose in onions [142]. Sucrose is the main form of transportation of photosynthate products,and starch is the storage form of photosynthate products for most plants [143]. In comparison with normal light, increased far-red light increased sucrose and starch contents in soybean [50] and chrysanthemum leaves[144].However,strawberry and peach leaves showed high sucrose and reduced starch content [145]. The effect of far-red light on plant photosynthesis may be species-dependent. The pathways for the effect of red and blue light on photosynthate production have been elucidated [146–149]. However, the mechanism of the influence of far-red light on photosynthate production and degradation remains unclear and rarely reported. FHY3 and FAR1 (farred-impaired response 1) can activate FHY1 (far-red elongated hypocotyl 1)and FHL(FHY1-like)to participate in the far-red light signal transduction pathway via transcription [150,151]. Far-red light stimulates FHY3 and FAR1 to transcriptionally activate ISA2(ISOAMYLASE 2),thereby promoting starch synthesis by regulating the activity of the starch debranching enzyme [152].

    8. Conclusion and perspectives

    Far-red light accelerates plant flowering, regulates plant nutrition, and shapes plant morphology (Fig. 6) [9,95,153,154]. When far-red light in the canopy increases, plants increase the interception of solar energy by increasing leaf area and adjusting leaf angle(changing the angle of the leaves relative to the incident light),the orientation of the chloroplast, and the distribution of canopy leaves. After sunlight is captured, far-red light increases the proportion of light energy used in the light reaction,reduces heat dissipation, and improves photochemical efficiency (Fig. 4). Far-red light promotes energy transfer from PSII to PSI and increases the cyclic electron transfer rate and photophosphorylation activity(Fig.5).Thus,high far-red light can increase light capture capacity,photosynthetic electron transfer rate,photophosphorylation activity, and plant photosynthetic capacity and biomass.

    Research into the effects of far-red light on the photosynthetic capacity of plants has some shortcomings. The following study areas invite attention:(1)characterization of the difference in photosynthetic capacity between C3and C4plants, grasses and legumes, woody and herbaceous plants, and other types of plants in response to high far-red light; (2) use of transcriptomics, proteomics, metabolomics, and other technologies to further identify the mechanism of action of far-red light in improving plant photosynthesis; and (3) from the perspective of agricultural production,determination of how high far-red light can be used to increase crop yields via optimized configuration of crops.

    CRediT authorship contribution statement

    Tingting Tan:Writing - original draft.Shenglan Li:Formal analysis.Yuanfang Fan:Visualization.Zhonglin Wang:Visualization.Muhammad Ali Raza:Resources.Iram Shafiq:Resources.Beibei Wang:Visualization.Xiaoling Wu:Funding acquisition.Taiwen Yong:Resources.Xiaochun Wang:Funding acquisition.Yushan Wu:Formal analysis.Feng Yang:Writing-review&editing.Wenyu Yang:Supervision.

    Declaration of competing interest

    Authors declare that there are no conflicts of interest.

    Acknowledgments

    This research was supported by the National Natural Science Foundation of China (32071963), the International S & T Cooperation Projects of Sichuan Province (2020YFH0126), and the China Agriculture Research System (CARS-04-PS19).

    国产一区二区三区视频了| 国产一区二区在线av高清观看| 人人妻人人澡欧美一区二区 | 涩涩av久久男人的天堂| ponron亚洲| 夜夜看夜夜爽夜夜摸| 黑人巨大精品欧美一区二区mp4| 午夜免费鲁丝| 两个人看的免费小视频| 亚洲精品国产一区二区精华液| 91麻豆av在线| 欧美国产日韩亚洲一区| 夜夜夜夜夜久久久久| 国产区一区二久久| 91麻豆av在线| 亚洲avbb在线观看| 国内久久婷婷六月综合欲色啪| 欧美国产日韩亚洲一区| 国产精品永久免费网站| 久久伊人香网站| 亚洲精品国产色婷婷电影| 色av中文字幕| 狂野欧美激情性xxxx| 亚洲av电影不卡..在线观看| 亚洲男人的天堂狠狠| 亚洲第一电影网av| 成人18禁在线播放| 久久午夜综合久久蜜桃| 亚洲天堂国产精品一区在线| 亚洲情色 制服丝袜| 人妻丰满熟妇av一区二区三区| 91老司机精品| 国产精品电影一区二区三区| 在线观看舔阴道视频| 看黄色毛片网站| 窝窝影院91人妻| 好看av亚洲va欧美ⅴa在| 亚洲国产日韩欧美精品在线观看 | 亚洲七黄色美女视频| 啪啪无遮挡十八禁网站| 久久亚洲真实| 久久性视频一级片| 好男人在线观看高清免费视频 | 后天国语完整版免费观看| 禁无遮挡网站| 99久久精品国产亚洲精品| 亚洲男人的天堂狠狠| 久久久久精品国产欧美久久久| 色播在线永久视频| 老司机在亚洲福利影院| 999久久久精品免费观看国产| 此物有八面人人有两片| 午夜免费成人在线视频| 久久精品国产亚洲av香蕉五月| 一区福利在线观看| 久久婷婷人人爽人人干人人爱 | 免费看十八禁软件| 大型av网站在线播放| 国产伦人伦偷精品视频| 国产精品久久视频播放| 美女 人体艺术 gogo| 免费在线观看亚洲国产| 99久久综合精品五月天人人| 91大片在线观看| 久久午夜综合久久蜜桃| 色播在线永久视频| 久久久精品欧美日韩精品| 日本a在线网址| 久久精品成人免费网站| 国产精华一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 国产麻豆成人av免费视频| 精品欧美一区二区三区在线| 国产日韩一区二区三区精品不卡| 国产成人精品久久二区二区免费| 日韩国内少妇激情av| 国产视频一区二区在线看| 午夜视频精品福利| 亚洲精品一区av在线观看| 在线观看一区二区三区| 美女高潮喷水抽搐中文字幕| 日韩视频一区二区在线观看| 日本 欧美在线| 亚洲一区高清亚洲精品| 丰满人妻熟妇乱又伦精品不卡| netflix在线观看网站| 精品不卡国产一区二区三区| 亚洲专区中文字幕在线| 国产又爽黄色视频| 亚洲第一青青草原| 免费看美女性在线毛片视频| 男人的好看免费观看在线视频 | 国产男靠女视频免费网站| 午夜福利一区二区在线看| 女性生殖器流出的白浆| 51午夜福利影视在线观看| 午夜福利视频1000在线观看 | 久久国产乱子伦精品免费另类| 黄片小视频在线播放| 嫩草影院精品99| 视频在线观看一区二区三区| 欧美成人性av电影在线观看| 88av欧美| 大型av网站在线播放| 真人一进一出gif抽搐免费| 色av中文字幕| 国产亚洲精品综合一区在线观看 | 一区在线观看完整版| 少妇的丰满在线观看| 精品国内亚洲2022精品成人| 少妇熟女aⅴ在线视频| 一级黄色大片毛片| 国产高清视频在线播放一区| 久久国产乱子伦精品免费另类| 黄片小视频在线播放| 极品教师在线免费播放| 最近最新免费中文字幕在线| 国产精品美女特级片免费视频播放器 | 国产高清激情床上av| 女生性感内裤真人,穿戴方法视频| 视频在线观看一区二区三区| 首页视频小说图片口味搜索| 黄片播放在线免费| 亚洲专区字幕在线| 老司机靠b影院| 亚洲欧美日韩无卡精品| 老汉色av国产亚洲站长工具| 亚洲精华国产精华精| 久久这里只有精品19| 精品久久久久久成人av| 真人做人爱边吃奶动态| 国产亚洲精品久久久久久毛片| www.自偷自拍.com| 一区福利在线观看| 国产一区二区激情短视频| 日韩av在线大香蕉| 中文字幕人妻熟女乱码| 国产精品 欧美亚洲| 窝窝影院91人妻| 一级a爱视频在线免费观看| 亚洲伊人色综图| 精品人妻在线不人妻| 露出奶头的视频| 麻豆av在线久日| 桃色一区二区三区在线观看| 夜夜躁狠狠躁天天躁| 国产精品98久久久久久宅男小说| 女人高潮潮喷娇喘18禁视频| 国产蜜桃级精品一区二区三区| 俄罗斯特黄特色一大片| 亚洲色图 男人天堂 中文字幕| 亚洲第一欧美日韩一区二区三区| 高潮久久久久久久久久久不卡| 国产精品99久久99久久久不卡| 婷婷精品国产亚洲av在线| 在线免费观看的www视频| 午夜亚洲福利在线播放| 波多野结衣一区麻豆| 国产精品 欧美亚洲| 欧美国产日韩亚洲一区| 黑人欧美特级aaaaaa片| av天堂久久9| 可以在线观看毛片的网站| 亚洲五月色婷婷综合| 一级a爱片免费观看的视频| 亚洲精品美女久久av网站| a级毛片在线看网站| 首页视频小说图片口味搜索| 久久午夜综合久久蜜桃| 中文字幕精品免费在线观看视频| 好男人电影高清在线观看| 国产精品久久久人人做人人爽| 91成年电影在线观看| 久久性视频一级片| 性欧美人与动物交配| 免费一级毛片在线播放高清视频 | 免费看美女性在线毛片视频| 香蕉国产在线看| 法律面前人人平等表现在哪些方面| 看黄色毛片网站| 黄色 视频免费看| 久久精品国产亚洲av香蕉五月| 亚洲精品中文字幕一二三四区| 99久久精品国产亚洲精品| 中文字幕久久专区| 亚洲三区欧美一区| 日韩欧美一区视频在线观看| 黄频高清免费视频| 国产成人av教育| 精品国产乱子伦一区二区三区| 中文亚洲av片在线观看爽| 免费少妇av软件| 免费观看人在逋| 免费在线观看亚洲国产| 亚洲在线自拍视频| 9热在线视频观看99| 无遮挡黄片免费观看| 90打野战视频偷拍视频| 免费在线观看黄色视频的| 最近最新中文字幕大全电影3 | 在线播放国产精品三级| 老熟妇乱子伦视频在线观看| 婷婷精品国产亚洲av在线| 琪琪午夜伦伦电影理论片6080| 后天国语完整版免费观看| 免费在线观看日本一区| 精品国产亚洲在线| 国产免费av片在线观看野外av| 大型av网站在线播放| 首页视频小说图片口味搜索| 国产成人精品久久二区二区免费| ponron亚洲| 国产精品九九99| 别揉我奶头~嗯~啊~动态视频| 国产亚洲精品一区二区www| 成人特级黄色片久久久久久久| av在线播放免费不卡| 国产精品久久久久久人妻精品电影| 美女 人体艺术 gogo| 国产精品野战在线观看| 一区二区三区高清视频在线| 日本欧美视频一区| 国内毛片毛片毛片毛片毛片| 国产区一区二久久| 一本综合久久免费| 国产三级在线视频| 国产精品自产拍在线观看55亚洲| 日韩有码中文字幕| 成人欧美大片| 亚洲精品国产区一区二| 88av欧美| 成年人黄色毛片网站| 精品久久久久久久久久免费视频| 一二三四在线观看免费中文在| av欧美777| 老鸭窝网址在线观看| 精品欧美一区二区三区在线| 欧美国产精品va在线观看不卡| netflix在线观看网站| 亚洲欧美日韩另类电影网站| 日本欧美视频一区| 51午夜福利影视在线观看| 国产单亲对白刺激| 美国免费a级毛片| 国产亚洲精品第一综合不卡| 精品久久久久久久毛片微露脸| 国产麻豆成人av免费视频| 看黄色毛片网站| 日韩精品青青久久久久久| 成人亚洲精品一区在线观看| 人人妻人人澡人人看| 亚洲在线自拍视频| 亚洲国产高清在线一区二区三 | 午夜两性在线视频| 欧美黄色片欧美黄色片| 午夜精品在线福利| 一级毛片女人18水好多| 一级a爱视频在线免费观看| 宅男免费午夜| 两性夫妻黄色片| 久久人妻av系列| 精品一区二区三区视频在线观看免费| 国产一卡二卡三卡精品| 色精品久久人妻99蜜桃| 久久久久精品国产欧美久久久| 侵犯人妻中文字幕一二三四区| 色综合亚洲欧美另类图片| 18禁裸乳无遮挡免费网站照片 | 别揉我奶头~嗯~啊~动态视频| 欧美最黄视频在线播放免费| 女人被躁到高潮嗷嗷叫费观| 国产精品日韩av在线免费观看 | 每晚都被弄得嗷嗷叫到高潮| 亚洲精品美女久久av网站| 女警被强在线播放| 亚洲午夜理论影院| 国产亚洲精品第一综合不卡| 免费看美女性在线毛片视频| 99久久综合精品五月天人人| 亚洲色图av天堂| 男女做爰动态图高潮gif福利片 | 美女扒开内裤让男人捅视频| 国语自产精品视频在线第100页| 国产91精品成人一区二区三区| 久久性视频一级片| 成人18禁高潮啪啪吃奶动态图| 精品国产超薄肉色丝袜足j| 啦啦啦 在线观看视频| 精品国产一区二区久久| 免费一级毛片在线播放高清视频 | 午夜精品久久久久久毛片777| 免费一级毛片在线播放高清视频 | 国产麻豆69| 久久精品国产综合久久久| 亚洲成人精品中文字幕电影| 一个人观看的视频www高清免费观看 | 亚洲片人在线观看| 久久精品91无色码中文字幕| 亚洲精品国产色婷婷电影| 侵犯人妻中文字幕一二三四区| 国产私拍福利视频在线观看| 如日韩欧美国产精品一区二区三区| 日日爽夜夜爽网站| 91成人精品电影| av视频在线观看入口| 中文字幕最新亚洲高清| 中文亚洲av片在线观看爽| 国产精品一区二区三区四区久久 | 淫秽高清视频在线观看| 国产成人欧美在线观看| 国产精品乱码一区二三区的特点 | √禁漫天堂资源中文www| 国产亚洲av高清不卡| 男女床上黄色一级片免费看| 非洲黑人性xxxx精品又粗又长| 欧美绝顶高潮抽搐喷水| 婷婷六月久久综合丁香| 久久精品成人免费网站| 国产日韩一区二区三区精品不卡| 国产一级毛片七仙女欲春2 | 男女下面插进去视频免费观看| 成人18禁高潮啪啪吃奶动态图| 12—13女人毛片做爰片一| 成人亚洲精品一区在线观看| 久久久久国产一级毛片高清牌| 亚洲精品一卡2卡三卡4卡5卡| 久久中文看片网| 国产国语露脸激情在线看| 好看av亚洲va欧美ⅴa在| 自线自在国产av| 99国产综合亚洲精品| 欧洲精品卡2卡3卡4卡5卡区| 国产亚洲av高清不卡| 国产精品九九99| 女人被狂操c到高潮| 少妇 在线观看| 一二三四社区在线视频社区8| 国内精品久久久久久久电影| 女性被躁到高潮视频| 他把我摸到了高潮在线观看| 麻豆国产av国片精品| 咕卡用的链子| 午夜福利一区二区在线看| 在线观看日韩欧美| 亚洲午夜理论影院| 国产一区在线观看成人免费| 禁无遮挡网站| 亚洲国产日韩欧美精品在线观看 | 一本综合久久免费| 一区二区日韩欧美中文字幕| 真人一进一出gif抽搐免费| 黑人操中国人逼视频| 国产免费av片在线观看野外av| 欧美日韩福利视频一区二区| 中文字幕精品免费在线观看视频| 18禁国产床啪视频网站| 国产国语露脸激情在线看| 欧美 亚洲 国产 日韩一| 岛国视频午夜一区免费看| 久久久国产成人精品二区| 757午夜福利合集在线观看| 国产精品免费一区二区三区在线| 操出白浆在线播放| 99国产精品一区二区三区| 88av欧美| 十分钟在线观看高清视频www| 久热爱精品视频在线9| or卡值多少钱| 久久这里只有精品19| 精品久久蜜臀av无| 成熟少妇高潮喷水视频| 99久久综合精品五月天人人| 久久久久久亚洲精品国产蜜桃av| 性少妇av在线| 久久精品成人免费网站| 亚洲精品久久国产高清桃花| 制服人妻中文乱码| 超碰成人久久| 亚洲激情在线av| 美女 人体艺术 gogo| 国产精品1区2区在线观看.| 啦啦啦 在线观看视频| 国产区一区二久久| 侵犯人妻中文字幕一二三四区| av有码第一页| 美女扒开内裤让男人捅视频| 亚洲中文字幕一区二区三区有码在线看 | 精品不卡国产一区二区三区| 欧美日韩中文字幕国产精品一区二区三区 | 可以在线观看的亚洲视频| 久久精品国产综合久久久| 午夜福利一区二区在线看| 欧美日韩一级在线毛片| 欧美激情久久久久久爽电影 | 国产av一区在线观看免费| 午夜福利高清视频| а√天堂www在线а√下载| 在线播放国产精品三级| 日韩免费av在线播放| 性色av乱码一区二区三区2| 亚洲在线自拍视频| 亚洲自拍偷在线| 欧美乱妇无乱码| 欧美绝顶高潮抽搐喷水| 十八禁网站免费在线| 夜夜夜夜夜久久久久| 亚洲电影在线观看av| 极品教师在线免费播放| 级片在线观看| 精品人妻1区二区| 免费看十八禁软件| 99精品在免费线老司机午夜| 97人妻精品一区二区三区麻豆 | 中文字幕人成人乱码亚洲影| 久久午夜亚洲精品久久| 国产免费男女视频| 天堂动漫精品| 色综合欧美亚洲国产小说| 精品国产超薄肉色丝袜足j| 男女之事视频高清在线观看| 欧美大码av| 亚洲自拍偷在线| 午夜免费激情av| 亚洲专区字幕在线| 91精品三级在线观看| 91av网站免费观看| 日本三级黄在线观看| 日韩精品青青久久久久久| 精品久久久久久久毛片微露脸| 日本在线视频免费播放| 一本大道久久a久久精品| 欧美黑人欧美精品刺激| 夜夜夜夜夜久久久久| 国产视频一区二区在线看| 俄罗斯特黄特色一大片| 人妻丰满熟妇av一区二区三区| 国产不卡一卡二| 欧美日韩一级在线毛片| 精品福利观看| 俄罗斯特黄特色一大片| 人妻丰满熟妇av一区二区三区| 午夜福利高清视频| 男男h啪啪无遮挡| 久久狼人影院| 美女 人体艺术 gogo| 一边摸一边做爽爽视频免费| 欧美日韩亚洲综合一区二区三区_| 制服人妻中文乱码| 一级a爱片免费观看的视频| 欧美日韩一级在线毛片| 精品少妇一区二区三区视频日本电影| 性色av乱码一区二区三区2| 国产精品电影一区二区三区| 免费av毛片视频| 少妇的丰满在线观看| 嫩草影视91久久| 国产精华一区二区三区| 久久久久国产精品人妻aⅴ院| 日韩视频一区二区在线观看| www.熟女人妻精品国产| 欧美一区二区精品小视频在线| 亚洲aⅴ乱码一区二区在线播放 | 自线自在国产av| 成年人黄色毛片网站| 国产精品1区2区在线观看.| 亚洲av电影在线进入| 亚洲欧美日韩高清在线视频| 两个人免费观看高清视频| 久久草成人影院| 丝袜在线中文字幕| 国产成人影院久久av| 97人妻天天添夜夜摸| 99国产综合亚洲精品| 真人做人爱边吃奶动态| 亚洲成av片中文字幕在线观看| 成熟少妇高潮喷水视频| 久久久久久人人人人人| 两性夫妻黄色片| 亚洲欧美精品综合一区二区三区| 最近最新中文字幕大全免费视频| 黑人操中国人逼视频| 成人亚洲精品一区在线观看| 精品国内亚洲2022精品成人| 午夜免费观看网址| 亚洲国产精品久久男人天堂| 亚洲自拍偷在线| 国产麻豆成人av免费视频| 国产一区二区三区视频了| 久久精品成人免费网站| 亚洲av五月六月丁香网| 丝袜美腿诱惑在线| 久久 成人 亚洲| 一二三四社区在线视频社区8| 欧美久久黑人一区二区| 欧美黑人精品巨大| 老司机午夜福利在线观看视频| 精品人妻1区二区| 18禁黄网站禁片午夜丰满| 亚洲一区二区三区色噜噜| 黄片大片在线免费观看| 黄色成人免费大全| av视频在线观看入口| 搞女人的毛片| 黄色视频,在线免费观看| 成人精品一区二区免费| 国产午夜精品久久久久久| 亚洲精品国产色婷婷电影| 一a级毛片在线观看| 欧美人与性动交α欧美精品济南到| 黄网站色视频无遮挡免费观看| 桃红色精品国产亚洲av| 亚洲欧美日韩另类电影网站| 免费搜索国产男女视频| 不卡av一区二区三区| 精品国产乱码久久久久久男人| 女人爽到高潮嗷嗷叫在线视频| 免费高清在线观看日韩| 热re99久久国产66热| 90打野战视频偷拍视频| 中文字幕最新亚洲高清| 一区二区日韩欧美中文字幕| 精品无人区乱码1区二区| 国产精品影院久久| 精品熟女少妇八av免费久了| 免费在线观看影片大全网站| 国产欧美日韩一区二区精品| 一区二区三区激情视频| 久久久久九九精品影院| 成年版毛片免费区| 国产成人精品无人区| 亚洲午夜理论影院| 成在线人永久免费视频| 亚洲av成人一区二区三| 亚洲av电影在线进入| 欧美日本视频| 丝袜美腿诱惑在线| 丰满人妻熟妇乱又伦精品不卡| 日韩精品免费视频一区二区三区| 国产亚洲欧美精品永久| 嫩草影视91久久| 精品一区二区三区四区五区乱码| 大型黄色视频在线免费观看| 黄色片一级片一级黄色片| 欧美+亚洲+日韩+国产| 国内精品久久久久久久电影| 亚洲精品一区av在线观看| 欧美丝袜亚洲另类 | 久久精品国产99精品国产亚洲性色 | 丁香六月欧美| 美女高潮到喷水免费观看| 看片在线看免费视频| 免费高清在线观看日韩| 精品卡一卡二卡四卡免费| 大陆偷拍与自拍| 国产免费男女视频| 搡老妇女老女人老熟妇| 亚洲一区中文字幕在线| 国产精品 国内视频| 9热在线视频观看99| 午夜福利在线观看吧| 动漫黄色视频在线观看| 一级作爱视频免费观看| 欧美乱码精品一区二区三区| 欧美日韩亚洲综合一区二区三区_| 欧美乱色亚洲激情| 国产伦人伦偷精品视频| 亚洲一区中文字幕在线| 中亚洲国语对白在线视频| 午夜两性在线视频| 久久久国产成人免费| 自线自在国产av| 在线av久久热| 国产又爽黄色视频| 日韩欧美在线二视频| 久久精品国产亚洲av香蕉五月| 最近最新中文字幕大全电影3 | 免费在线观看影片大全网站| 国产精品美女特级片免费视频播放器 | 欧美日本视频| 国产精品精品国产色婷婷| 久久精品亚洲熟妇少妇任你| 老鸭窝网址在线观看| 黄网站色视频无遮挡免费观看| 后天国语完整版免费观看| 纯流量卡能插随身wifi吗| 国产精品秋霞免费鲁丝片| 久久久国产欧美日韩av| 午夜福利成人在线免费观看| 国产免费av片在线观看野外av| 亚洲精品国产色婷婷电影| 深夜精品福利| 看黄色毛片网站| 欧美成人性av电影在线观看| 老熟妇乱子伦视频在线观看| 亚洲精品久久国产高清桃花| 国产99白浆流出| 精品无人区乱码1区二区| 美女大奶头视频| 伦理电影免费视频| 久久精品影院6| 女人爽到高潮嗷嗷叫在线视频| 免费女性裸体啪啪无遮挡网站| 午夜激情av网站| 一区二区三区精品91| 老熟妇仑乱视频hdxx| aaaaa片日本免费| 日韩 欧美 亚洲 中文字幕| 国产人伦9x9x在线观看| АⅤ资源中文在线天堂| 黄片播放在线免费| 19禁男女啪啪无遮挡网站| 咕卡用的链子| 人成视频在线观看免费观看| 免费在线观看视频国产中文字幕亚洲| 午夜亚洲福利在线播放|