• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of sgRNA length and number on gene editing efficiency and predicted mutations generated in rice

    2022-03-30 08:52:24XiaojingLiuJiangtaoYangYayaSongXiaochunZhangXujingWangZhixingWang
    The Crop Journal 2022年2期

    Xiaojing Liu, Jiangtao Yang, Yaya Song, Xiaochun Zhang, Xujing Wang, Zhixing Wang

    Biotechnology Research Institute, Chinese Academy of Agricultural Sciences/MARA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Beijing 100081, China

    Keywords:CRISPR-Cas9 sgRNA number sgRNA length Editing efficiency

    ABSTRACT CRISPR-Cas9 is a common tool for gene editing,and appropriate sgRNAs are the key factor for successful editing. In this study, the effect of sgRNA length and number on editing efficiency was analyzed in rice using CYP81A6 as the target gene. A series of CRISPR-Cas9 plant expression vectors containing single sgRNAs with different lengths (17, 18, 19, 20, 21, 22, 23 nt) or two sgRNAs were constructed and introduced into rice cultivar Zhonghua11 by Agrobacterium-mediated transformation.Analysis of the editing status of 1283 transgenic rice plants showed that 371 were successfully edited with base preference.Single A or T insertions were the most frequent among the six edited types. The editing efficiency of transgenic rice with two sgRNAs was higher than that with a single sgRNA. Editing efficiency and sgRNA length showed a normal distribution with 20 nt sgRNA(25%)being the most efficient.The editing efficiency decreased slightly with decreases of 1–2 bases (19 nt 20%, 18 nt 21%), but decreased significantly with a decrease of 3 bases (17 nt 4.5%). Editing efficiency was significantly reduced by adding 1 to 3 bases(21 nt 16.8%,22 nt 13%,23 nt 13%)to the sgRNA.These results provide data for successful gene editing or rice by CRISPR-Cas9.

    1. Introduction

    The CRISPR-Cas9 system that includes a CRISPR repeat-spacer array and a Cas protein is an RNA-guided DNA endonuclease system that targets specific genomic sequences [1]. It initiates DNA double strand breaks (DSBs) through the RuvC and HNH nuclease domains in the Cas9 enzyme and repairs occur through natural DNA repair pathways of cells,non-homologous end joining(NHEJ)and homologous recombination(HR)[2].As the most common current gene editing tool, the CRISPR-Cas9 system is low-cost, more precise and easy-to-use allowing targeted genetic manipulation and simultaneous editing at multiple sites across the genome. It is becoming widely used in gene functional analysis and crop breeding following its demonstration in rice, Arabidopsis and tobacco in 2013 [3–5].

    Design of sgRNA is important for gene editing using the CRISPRCas system. There are numerous accessible online bioinformatics tools for designing sgRNA such as CRISPRlnc and sgRNA Scorer 2.0[6].The length and structure of the sgRNA determines the editing efficiency and specificity of CRISPR-Cas editing. Truncation of the 5′end or addition of two G nucleotides at 5′end of the gRNA improves the specificity of RNA-guided Cas9 and decreases editing efficiency [7,8]. Truncation of the length of the sgRNA improved specificity in 293T cells; 17 nt length sgRNA had the same target activity and lower off-target activity than 20 nt sgRNA [9]. However, in mesenchymal stem cells (MSCs) and induced pluripotent stem cells (iPSCs), both off-target activity and target activity of 17 nt sgRNA was lower than that of 20 nt sgRNA [10]. In rice, 20 nt esgRNAs showed higher conversion efficiency than 14- to 19-nt esgRNAs in a plant adenine base editing (ABE) system using OsEV and OsOD as the target genes [11]. To our knowledge, there are few reports on the effects of sgRNA lengths longer than 20 nt on editing efficiency.To evaluate the influence of sgRNA on editing efficiency, we designed sgRNAs of different lengths from 17 to 23 nt and also double sgRNAs to explore the relative effects of sgRNA length, sgRNA number, editing efficiency and off-target activity in rice.

    Gene CYP81A6 (Bel) encodes cytochrome P450 monooxygenase and confers tolerance to bendazone and sulfonylurea herbicides in rice. The recessive mutant bel is sensitive to bendazone and is used as a lethal selective marker in hybrid breeding[12,13].In this study, we constructed seven vectors with sgRNA lengths varying from 17 to 23 nt and two double sgRNA vectors using the Bel gene as the target gene to determine their relative effects on editing efficiency in transgenic rice.The results showed that 20 nt sgRNA had the highest editing efficiency with sgRNA and editing efficiency being normally distributed. The majority of editing sites were single-nucleotide T or A insertions.

    2. Materials and methods

    2.1.sgRNA design and in vitro determination of DNA cleavage activity

    The design of six sgRNA of 20 bp length was based on a sequence located in the first exon of CYP81A6 gene using the CRISPR-P web tool (http://cbi.hzau.edu.cn/cgi-bin/CRISPR) [14].The sgRNA (named Guide 1 to Guide 6) were synthesized using a T7 in vitro transcription kit. The CYP81A6 gene was amplified by PCR from the rice genome using primer pair 3-200F/3-200R. We performed in vitro DNA cleavage assays and cleavage site sequencing according to method reported by Wang et al. [15] and Shan et al. [16].

    Based on the detection results Guide 1 was selected as the target sequence to design sgRNA truncated lengths of 19, 18, and 17 nt and augmented lengths of 21, 22, and 23 nt. The DNA cleavage of these sgRNAs was detected in vitro.

    2.2. Construction of CRISPR-Cas9 plant expression vector

    All sgRNA were synthesized as oligonucleotide pairs. The synthesized sgRNA carrying an extra DNA sequence was inserted between the OsU3 promoter and sgRNA scaffold of the pp1c.3 vector through homologous recombination.The double sgRNAs(Guide 1-Guide 3 and Guide 3-Guide 4)were cloned into the plant binary vector pp1c.7 using the same method.The derived expression vectors were named 17 nt, 18 nt, 19 nt,20 nt, 21 nt, 22 nt,23 nt,1–3 and 4–3, respectively.

    2.3. Rice transformation and growth

    The plant expression vectors were moved into Agrobacterium tumefaciens strain EHA105 by the freeze–thaw method and then transformed into japonica cultivar Zhonghua 11 using the published method [17]. Transgenic rice was grown in the net house of the Chinese Academy of Agricultural Sciences.

    2.4. Detection and analysis of gene edited mutant plants

    Genomic DNA was extracted from leaves of transgenic rice by the CTAB method. Cas9 was amplified from transgenic rice DNA using primer pair RTCas9-F/RTCas9-R with the following reaction conditions: 30 s at 95 °C, followed by 34 cycles of 30 s at 95 °C,30 s at 60 °C, 30 s at 72 °C and finally 72 °C for 10 min.

    Primer pair Guide1-20jianF/Guide1-20jianR and Guide1-3-4F/Guide1-4R were used to amplify the single sgRNA and double sgRNA target site sequences with the following reaction conditions: 95 °C for 30 s, followed by 34 cycles of 95 °C for 30 s, 55–58 °C for 30 s, 70 °C for 1 min, and finally 72 °C for 10 min. PCR products were sequenced through Sanger sequencing method.Sequencing results were compared with wild-type to analyze gene editing mutations.

    2.5. Off-target site detection

    Primers were designed according to the five most likely offtarget gene sequences of Guide 1, Guide 3 and Guide 4 predicted by CRISPR-P. High-fidelity DNA polymerase PCR was performed using two groups of transgenic rice genomic DNA as template.One group contained Cas9 protein for editing the target gene.The other group contained Cas9 protein, but the target gene was not edited. Ten plants from each group were selected to extract genomic DNA. PCR products were sequenced and aligned with the corresponding gene sequence of Zhonghua 11. All predicted off-target sequences are shown in Table S1 and all primers sequences are shown in Table S2.

    3. Results

    3.1. Effect of sgRNA length on DNA cleavage efficiency

    Cas9 protein cleaves the linear DNA of the CYP81A6 gene into two fragments at a predicted site under guidance of the designed sgRNA Guide 1, Guide 2, Guide 3, Guide 4, and Guide 6 (Fig. S1).The length of sgRNA had a significant effect on DNA cleavage efficiency.100%of target DNA was cleaved within 5 min by Cas9 protein under guidance of 18, 19 and 20 nt Guide 1; 62.23%, 62.8%,62.98%and 27%of target DNA was cleaved with 5 min under guidance of 17, 21, 22, and 23 nt Guide 1, respectively, and 72.92%,82.3%, 73.86% and 50.49% of target DNA was cleaved at 30 min,respectively (Fig. 1A, B).

    3.2. Gene-editing efficiency of different sgRNA lengths in transgenic rice

    When A. tumefaciens strain EHA105 containing different vector plasmids was used, 371 of 1283 transgenic rice plants were correctly edited through PCR detection (Fig. S2). Sanger sequencing showed that all Cas9 enzyme activity led to edits at the third base upstream the PAM sequence and there were six edited types,including single nucleotide A,T,C and G insertions,and single base or multiple base deletions (Fig. S3). Single base insertion was the majority form of mutation,and the proportion of single A or T base insertions was highest in transgenic rice plants with different single sgRNAs. For transgenic rice with double sgRNA, the most common editing type was large fragment deletion, followed by single-base T insertion. These results suggest that Cas9-mediated mutation in plants involves a base preference with single base A or T insertions (Fig. 2A–C). Allele editing analysis indicated that heterozygous and biallelic mutations were most common in single sgRNA-targeted editing and double sgRNA-targeted editing,respectively (Fig. 2D, E).

    CRISPR vectors containing sgRNAs with different lengths had different editing efficiencies. In the case of sgRNA with the same length the editing efficiency of double sgRNA was significantly higher than that of single sgRNA. The editing efficiency was 25%,66%and 80% in transgenic rice containing 20 nt,1–3 and 3–4 vectors,respectively(Table 1).sgRNA length also had an obvious effect on editing efficiency. Canonical 20 nt sgRNA length showed the highest editing efficiency (25%). sgRNA length ranging from 17 to 19 nt and 21 to 23 nt showed decreasing editing efficiencies.Truncations of one or two bases (19 or 18 nt) did not significantly decrease editing efficiency, truncation to 17 nt greatly reduced editing activity. Editing efficiency was significantly reduced by adding bases (21, 22, and 23 nt) to the 20 nt sgRNA length. There was a normal distribution of sgRNA length and editing efficiency(Fig. 2F). As for the effect of sgRNA length on editing efficiency,the trend of change in transgenic rice was basically consistent with that in vitro. It is noted that the cleavage efficiency of 17 nt was higher than that of 23 nt in vitro, but the editing efficiency of 17 nt was the lowest in transgenic rice.

    Table 1 Comparison of editing efficiency and editing types between single and double sgRNAs.

    Fig. 2. Editing efficiency of sgRNAs with different lengths in rice and preference analysis of Cas9-mediated mutations. (A) Statistics of editing types of Cas9-mediated mutations by different sgRNA lengths. IA,single-nucleotide A insertion;IT, single-nucleotide T insertion;IC,single-nucleotide C insertion;IG,single-nucleotide G insertion;ITT, TT nucleotide insertion; DG, single-nucleotide G deletion; D >2, polybase deletion. (B) Statistics of editing types of Cas9-mediated mutations with double sgRNAs. DD,large fragment deletion; SD, single-nucleotide deletion; SI, single-nucleotide insertion. (C) Statistics of main insertion types for double sgRNAs. IA, single-nucleotide A insertion; IT, single-nucleotide T insertion; IG, single-nucleotide G insertion. (D) Allele gene editing types of Cas9-mediated mutations in different sgRNA lengths. (E) Allele gene editing types of Cas9-mediated mutations by double sgRNAs. (F) Comparison of editing efficiencies by sgRNAs of different length.

    Fig.1. DNA cutting efficiency by different lengths of sgRNA in vitro.(A)Effects of different lengths of sgRNA in cutting DNA in agarose gels at 5 min.(B)Efficiency of cutting DNA by different lengths of sgRNA at 5, 15, and 30 min.

    3.3. Detection of off-target mutations

    We examined five predicted off-target sites for each of guide sgRNA Guide 1,Guide 3 and Guide 4.Ten plants were selected from each vector for off-target detection. A potential off-target site was detected in mutant plant 4–3–97 with a 5-bp deletion at the target site (Fig. S4). The overall results indicated that the off-target frequency was very low.

    Everyone has a family. We live in it and feel very warm. There are three persons2 in my family, my mother, father and I. We live together very happily3 and there are many interesting stories about my family.

    4. Discussion

    Previous studies showed that sgRNA lengths less than 20 nt reduce editing efficiency in cells and rice [12]. In this study, we found a normal distribution among sgRNA length and editing efficiency with a maximum at 20 nt. This was similar previously reported experience. When the length of sgRNA was more than 20 nt, the editing efficiency decreased with the increasing sgRNA length(20 nt 25%,21 nt 16.8%,22 nt 13.39%,23 nt 13%).The reason could be that the added bases affect the formation of the R-loop created by the Cas9-sgRNA complex and thereby reduce the cutting activity of Cas9. For example, stem loop 1 of sgRNA plays a very important role in the function of the Cas9-sgRNA-DNA complex, whereas stem loops 2 and 3 stabilize the complex. This indicates that all three stem loop structures can affect the editing efficiency of sgRNA [18]. A later study found that the formation of the R loop regulates spCas9 conformation changes in key processes by connecting active nucleic acids. A specifically designed hairpin in the RNA secondary structure can be added at the 5′end of the spacer of the sgRNA,and the resulting hairpin structure can be used as a space and energy barrier similar to the R loop,increasing resistance to off-target nuclease activity and improving the specificity and efficiency of sgRNA editing [19].

    Here,we counted the gene editing types of all 371 edited plants.The edits had a discernible bias with single-base A or T insertionsas the main editing type. Similar results were obtained with K562 cells[20].A possible explanation is that Cas9 binds to the proximal end of the PAM sequence, and the mismatched 1 nt at the distal end of the PAM sequence binds to the DNA polymerase and reconnects through the NHEJ pathway causing many single-nucleotide insertions to occur [21,22]. This effect could increase canonical end-joining activity during NHEJ repair.The prevalence of thymine insertions could indicate that the DNA repair enzymes (especially polymerases) have a specific preference leading to a difference in their demand for triphosphate nucleotides for incorporation.Another explanation is that when thymine is present, Cas9 tends to miscut rather than blunt cut. The most frequent deletion was removal of one or two repeated nucleotides, which depends on the two nucleotides near the cleavage site[14,16,23].These results indicate that we can design precise single-nucleotide insertions and deletions in gene sequences to study gene function. This implies that suitable sgRNAs can eventually be selected to obtain the predicted beneficial mutations affecting key traits in crop species.Here,we designed only three sgRNAs for one gene;many further trials will be needed to verify whether similar results will be achieved with other sgRNAs.

    CRediT authorship contribution statement

    Xiaojing Liu:Writing - original draft.Jiangtao Yang:Writing -review&editing.Yaya Song:Writing-review&editing.Xiaochun Zhang:Writing-review&editing.Xujing Wang:Project administration, Writing- review& editing.Zhixing Wang:Project administration, Writing - review & editing.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgment

    This work was supported by the Central Public-interest Scientific Institution Basal Research Fund.

    Appendix A. Supplementary data

    Supplementary data for this article can be found online at https://doi.org/10.1016/j.cj.2021.05.015.

    av国产久精品久网站免费入址| 在线免费观看不下载黄p国产| 久久久久网色| 亚洲国产看品久久| 菩萨蛮人人尽说江南好唐韦庄| 亚洲图色成人| 欧美亚洲 丝袜 人妻 在线| 国产成人免费无遮挡视频| 自线自在国产av| 精品一区二区免费观看| 成年av动漫网址| 国产片内射在线| 国产av码专区亚洲av| 国产精品一区二区精品视频观看| 日本vs欧美在线观看视频| 成年动漫av网址| 国产一区有黄有色的免费视频| 精品人妻熟女毛片av久久网站| 欧美黑人精品巨大| 国产精品欧美亚洲77777| 制服丝袜香蕉在线| 亚洲精品日本国产第一区| 尾随美女入室| av国产精品久久久久影院| 亚洲国产精品成人久久小说| 国产精品久久久久久人妻精品电影 | 纯流量卡能插随身wifi吗| 国产成人欧美在线观看 | 哪个播放器可以免费观看大片| 人妻一区二区av| 在线 av 中文字幕| 午夜福利视频精品| 国产精品国产三级国产专区5o| 国产成人系列免费观看| 日韩欧美一区视频在线观看| 国产精品秋霞免费鲁丝片| 一区在线观看完整版| 曰老女人黄片| 久久av网站| 91精品伊人久久大香线蕉| 国产伦人伦偷精品视频| 新久久久久国产一级毛片| 一边亲一边摸免费视频| 一本—道久久a久久精品蜜桃钙片| 色婷婷av一区二区三区视频| 日韩中文字幕视频在线看片| 男女国产视频网站| 成人影院久久| 亚洲婷婷狠狠爱综合网| 国产片特级美女逼逼视频| 在线天堂最新版资源| 久久久久久人人人人人| 一级黄片播放器| 亚洲熟女毛片儿| 国产精品国产三级国产专区5o| 亚洲熟女毛片儿| 亚洲国产成人一精品久久久| 悠悠久久av| 嫩草影视91久久| videos熟女内射| 亚洲伊人色综图| 久久久欧美国产精品| 亚洲欧美成人精品一区二区| 午夜福利在线免费观看网站| 久久久久久久久久久免费av| 热99久久久久精品小说推荐| 9191精品国产免费久久| 成人影院久久| xxxhd国产人妻xxx| 99国产综合亚洲精品| 国产精品久久久久成人av| 久久精品久久精品一区二区三区| 亚洲精品国产一区二区精华液| 七月丁香在线播放| 啦啦啦在线观看免费高清www| 国产亚洲欧美精品永久| 亚洲精品乱久久久久久| 免费av中文字幕在线| 国产亚洲午夜精品一区二区久久| 天堂8中文在线网| 嫩草影院入口| 亚洲四区av| 超碰成人久久| 激情视频va一区二区三区| 男人舔女人的私密视频| 国产精品久久久av美女十八| 久久99一区二区三区| av网站在线播放免费| 国产老妇伦熟女老妇高清| 国产xxxxx性猛交| 久久99一区二区三区| 大片电影免费在线观看免费| 亚洲欧美一区二区三区国产| 亚洲精华国产精华液的使用体验| 亚洲精品自拍成人| 国产精品女同一区二区软件| 国产成人欧美| 女性生殖器流出的白浆| e午夜精品久久久久久久| 国语对白做爰xxxⅹ性视频网站| 精品亚洲成a人片在线观看| 老司机影院毛片| av片东京热男人的天堂| 不卡av一区二区三区| 国产免费又黄又爽又色| 亚洲激情五月婷婷啪啪| 久久综合国产亚洲精品| 亚洲av综合色区一区| 亚洲国产日韩一区二区| 精品久久久久久电影网| 老司机深夜福利视频在线观看 | 一二三四中文在线观看免费高清| 高清在线视频一区二区三区| 精品免费久久久久久久清纯 | 免费日韩欧美在线观看| 亚洲国产看品久久| 欧美亚洲 丝袜 人妻 在线| 综合色丁香网| 国产欧美日韩一区二区三区在线| 黑丝袜美女国产一区| 日本一区二区免费在线视频| 一级毛片我不卡| 欧美精品高潮呻吟av久久| 成人毛片60女人毛片免费| 国产精品欧美亚洲77777| 国产乱来视频区| 深夜精品福利| 视频区图区小说| netflix在线观看网站| 欧美精品高潮呻吟av久久| 男的添女的下面高潮视频| 黑人猛操日本美女一级片| 国产日韩欧美视频二区| 在线天堂中文资源库| 性少妇av在线| 久久精品亚洲熟妇少妇任你| 国产午夜精品一二区理论片| 国产一区二区三区av在线| 啦啦啦在线免费观看视频4| 老熟女久久久| 不卡视频在线观看欧美| 纵有疾风起免费观看全集完整版| 亚洲视频免费观看视频| 国产亚洲最大av| 精品第一国产精品| 亚洲国产精品一区三区| 咕卡用的链子| 国产成人a∨麻豆精品| 一级a爱视频在线免费观看| 啦啦啦啦在线视频资源| 天天影视国产精品| 国产免费现黄频在线看| 免费高清在线观看日韩| 天堂中文最新版在线下载| 中文天堂在线官网| 亚洲美女视频黄频| 欧美精品av麻豆av| av卡一久久| 久久久久网色| 男人舔女人的私密视频| 精品人妻一区二区三区麻豆| 亚洲国产看品久久| 一区福利在线观看| 国产av码专区亚洲av| 久久这里只有精品19| 啦啦啦中文免费视频观看日本| 伦理电影大哥的女人| 亚洲自偷自拍图片 自拍| 一级a爱视频在线免费观看| 亚洲图色成人| a级片在线免费高清观看视频| 午夜福利网站1000一区二区三区| 亚洲av男天堂| 最近中文字幕高清免费大全6| 国产 精品1| 日韩制服丝袜自拍偷拍| 精品视频人人做人人爽| 久久女婷五月综合色啪小说| 成人国产av品久久久| 精品久久蜜臀av无| av天堂久久9| 久久97久久精品| 婷婷色麻豆天堂久久| svipshipincom国产片| 麻豆精品久久久久久蜜桃| 精品人妻熟女毛片av久久网站| 欧美日韩一级在线毛片| 精品少妇内射三级| 搡老岳熟女国产| 亚洲av中文av极速乱| 久久午夜综合久久蜜桃| 三上悠亚av全集在线观看| 精品国产露脸久久av麻豆| 午夜福利乱码中文字幕| 男人添女人高潮全过程视频| 男女下面插进去视频免费观看| 交换朋友夫妻互换小说| 亚洲综合色网址| 老司机在亚洲福利影院| 亚洲第一av免费看| 亚洲精品一二三| 女的被弄到高潮叫床怎么办| 老熟女久久久| 男女床上黄色一级片免费看| 日韩,欧美,国产一区二区三区| 99热国产这里只有精品6| 亚洲国产av新网站| 国产成人免费观看mmmm| 熟女少妇亚洲综合色aaa.| 男男h啪啪无遮挡| 成年人午夜在线观看视频| videos熟女内射| 性高湖久久久久久久久免费观看| 日韩一本色道免费dvd| 看非洲黑人一级黄片| 精品午夜福利在线看| 校园人妻丝袜中文字幕| av不卡在线播放| 欧美日韩精品网址| 精品视频人人做人人爽| 香蕉丝袜av| 国产精品秋霞免费鲁丝片| 亚洲国产欧美网| 国产亚洲精品第一综合不卡| 免费看不卡的av| 电影成人av| 久久久国产一区二区| 精品少妇内射三级| 另类精品久久| 精品人妻熟女毛片av久久网站| 香蕉丝袜av| 最黄视频免费看| 国产免费视频播放在线视频| 女人被躁到高潮嗷嗷叫费观| 最近最新中文字幕大全免费视频 | 国产女主播在线喷水免费视频网站| 天堂8中文在线网| 97在线人人人人妻| 如日韩欧美国产精品一区二区三区| 国产精品久久久久成人av| 亚洲国产精品999| 日本午夜av视频| av不卡在线播放| 亚洲,欧美精品.| 成人国产麻豆网| 2021少妇久久久久久久久久久| 久久久久久久大尺度免费视频| 国产深夜福利视频在线观看| 国产亚洲欧美精品永久| 日本av手机在线免费观看| 黄色视频在线播放观看不卡| 国产精品麻豆人妻色哟哟久久| 欧美在线黄色| 香蕉丝袜av| 哪个播放器可以免费观看大片| 亚洲国产中文字幕在线视频| 久久 成人 亚洲| 黄色视频在线播放观看不卡| 伊人久久大香线蕉亚洲五| 熟女av电影| 色精品久久人妻99蜜桃| 免费不卡黄色视频| 国产精品欧美亚洲77777| 色播在线永久视频| 日韩制服丝袜自拍偷拍| 男女床上黄色一级片免费看| 18在线观看网站| 视频区图区小说| 80岁老熟妇乱子伦牲交| 99国产精品免费福利视频| 国产精品久久久久久人妻精品电影 | 一区二区三区激情视频| av在线老鸭窝| www.av在线官网国产| 国产女主播在线喷水免费视频网站| 亚洲av中文av极速乱| 亚洲欧洲国产日韩| 国产视频首页在线观看| 女性被躁到高潮视频| 国产精品久久久av美女十八| 亚洲精品,欧美精品| 亚洲精品久久午夜乱码| 国产免费又黄又爽又色| 男人操女人黄网站| 亚洲欧美精品综合一区二区三区| 国产高清不卡午夜福利| 黄色怎么调成土黄色| 久久狼人影院| 久久这里只有精品19| 麻豆乱淫一区二区| 美女大奶头黄色视频| av电影中文网址| 日本黄色日本黄色录像| 久久影院123| 十八禁高潮呻吟视频| 免费观看性生交大片5| 欧美精品高潮呻吟av久久| 免费观看a级毛片全部| 国产 精品1| 成人亚洲欧美一区二区av| 成人影院久久| 免费少妇av软件| 日本色播在线视频| 侵犯人妻中文字幕一二三四区| 成人亚洲欧美一区二区av| 精品第一国产精品| 在线观看一区二区三区激情| 欧美日韩一级在线毛片| 韩国高清视频一区二区三区| 男的添女的下面高潮视频| 欧美日韩国产mv在线观看视频| 人人妻人人爽人人添夜夜欢视频| 免费久久久久久久精品成人欧美视频| 亚洲精品一区蜜桃| 欧美日韩一级在线毛片| 婷婷色综合www| 考比视频在线观看| 老汉色∧v一级毛片| 伊人久久国产一区二区| 亚洲成人国产一区在线观看 | av国产久精品久网站免费入址| 一二三四在线观看免费中文在| 狂野欧美激情性xxxx| 国产激情久久老熟女| 久久精品国产综合久久久| 黑人巨大精品欧美一区二区蜜桃| 久久精品aⅴ一区二区三区四区| 中文字幕人妻丝袜制服| 免费不卡黄色视频| 亚洲欧美中文字幕日韩二区| kizo精华| 国产一区二区三区av在线| 精品国产国语对白av| 午夜福利影视在线免费观看| 一二三四在线观看免费中文在| 最近2019中文字幕mv第一页| 国产不卡av网站在线观看| 欧美亚洲 丝袜 人妻 在线| 我的亚洲天堂| 欧美亚洲日本最大视频资源| 成人亚洲精品一区在线观看| 啦啦啦在线观看免费高清www| 亚洲欧美日韩另类电影网站| 久久精品人人爽人人爽视色| 色综合欧美亚洲国产小说| 啦啦啦啦在线视频资源| 波野结衣二区三区在线| 成人影院久久| 国产免费又黄又爽又色| 母亲3免费完整高清在线观看| 精品第一国产精品| 麻豆精品久久久久久蜜桃| 国产一区二区三区综合在线观看| 亚洲精品,欧美精品| 国产精品欧美亚洲77777| 国产亚洲一区二区精品| 久久鲁丝午夜福利片| 十分钟在线观看高清视频www| 国产黄色视频一区二区在线观看| 欧美激情 高清一区二区三区| 一区在线观看完整版| 欧美乱码精品一区二区三区| 蜜桃在线观看..| 日韩精品有码人妻一区| 久久久久国产精品人妻一区二区| 在线精品无人区一区二区三| 日韩不卡一区二区三区视频在线| 欧美精品亚洲一区二区| 久久亚洲国产成人精品v| 一级毛片 在线播放| 一二三四在线观看免费中文在| 国产成人精品在线电影| 多毛熟女@视频| 亚洲欧美中文字幕日韩二区| 大片免费播放器 马上看| 中文乱码字字幕精品一区二区三区| 国产成人系列免费观看| 亚洲第一区二区三区不卡| 18禁裸乳无遮挡动漫免费视频| 久久久精品区二区三区| 国产午夜精品一二区理论片| 美女主播在线视频| 99久国产av精品国产电影| 在线精品无人区一区二区三| av片东京热男人的天堂| 国产精品国产三级国产专区5o| 午夜福利免费观看在线| 国产片内射在线| 国产爽快片一区二区三区| 久久久久久久久久久久大奶| 久久久精品94久久精品| 十八禁高潮呻吟视频| 亚洲精品视频女| 久久韩国三级中文字幕| 亚洲精品一二三| 久久久久精品久久久久真实原创| 欧美 亚洲 国产 日韩一| 人妻一区二区av| 最黄视频免费看| 超碰成人久久| 日韩中文字幕视频在线看片| 亚洲精品av麻豆狂野| 亚洲av国产av综合av卡| 在线观看国产h片| 国产成人欧美| 丝袜美腿诱惑在线| av天堂久久9| 亚洲 欧美一区二区三区| a级毛片黄视频| 国产精品香港三级国产av潘金莲 | 男人爽女人下面视频在线观看| 日本欧美视频一区| 免费人妻精品一区二区三区视频| 国产视频首页在线观看| 妹子高潮喷水视频| 中文字幕人妻丝袜一区二区 | 中文字幕最新亚洲高清| 国产亚洲av高清不卡| 欧美日本中文国产一区发布| av片东京热男人的天堂| 老司机深夜福利视频在线观看 | 搡老乐熟女国产| 纯流量卡能插随身wifi吗| 狠狠婷婷综合久久久久久88av| 精品少妇久久久久久888优播| 国产成人午夜福利电影在线观看| √禁漫天堂资源中文www| 久久天堂一区二区三区四区| svipshipincom国产片| 亚洲四区av| 亚洲中文av在线| 日韩欧美精品免费久久| 欧美最新免费一区二区三区| 久久韩国三级中文字幕| 一级毛片黄色毛片免费观看视频| 精品一区二区三区av网在线观看 | 精品午夜福利在线看| 欧美黑人精品巨大| 久久这里只有精品19| 国产爽快片一区二区三区| 满18在线观看网站| 国产成人免费无遮挡视频| 国产男人的电影天堂91| 天天躁日日躁夜夜躁夜夜| 亚洲第一青青草原| 中文欧美无线码| 久久久久国产精品人妻一区二区| 夫妻性生交免费视频一级片| 一区二区三区四区激情视频| avwww免费| 亚洲一级一片aⅴ在线观看| 国产乱来视频区| 欧美激情高清一区二区三区 | 一个人免费看片子| av片东京热男人的天堂| 久久精品熟女亚洲av麻豆精品| 久久久国产一区二区| a级片在线免费高清观看视频| 成人18禁高潮啪啪吃奶动态图| 欧美激情极品国产一区二区三区| 丝袜美足系列| 永久免费av网站大全| 国产在视频线精品| 久久久久久久久久久久大奶| 亚洲一区中文字幕在线| 欧美亚洲 丝袜 人妻 在线| 99热国产这里只有精品6| 在线免费观看不下载黄p国产| 国产有黄有色有爽视频| 亚洲一区中文字幕在线| 满18在线观看网站| 一边摸一边做爽爽视频免费| 91国产中文字幕| 国产无遮挡羞羞视频在线观看| 国产精品秋霞免费鲁丝片| 狠狠精品人妻久久久久久综合| 亚洲成av片中文字幕在线观看| 国产成人免费无遮挡视频| 波野结衣二区三区在线| 国产 精品1| 国产av码专区亚洲av| 国产 精品1| 国产熟女午夜一区二区三区| 热re99久久精品国产66热6| 男女下面插进去视频免费观看| 午夜日韩欧美国产| 亚洲成色77777| 亚洲色图综合在线观看| 国产精品二区激情视频| 大片电影免费在线观看免费| av在线老鸭窝| 亚洲av成人精品一二三区| 狠狠精品人妻久久久久久综合| 麻豆av在线久日| 国产精品久久久久成人av| 亚洲,欧美,日韩| 美女扒开内裤让男人捅视频| 国产日韩欧美在线精品| 精品一区二区免费观看| 午夜激情av网站| 男女下面插进去视频免费观看| 91精品国产国语对白视频| 大香蕉久久网| 国产亚洲最大av| av在线老鸭窝| 久久精品久久久久久噜噜老黄| 欧美日韩av久久| 在线天堂最新版资源| 亚洲欧美一区二区三区久久| 久久精品国产亚洲av涩爱| 午夜久久久在线观看| 欧美97在线视频| av片东京热男人的天堂| 一区二区三区激情视频| 亚洲精品自拍成人| 亚洲精品日本国产第一区| 精品一品国产午夜福利视频| 精品国产一区二区三区久久久樱花| 天堂8中文在线网| 亚洲国产精品999| 国产精品三级大全| 亚洲美女搞黄在线观看| 国产野战对白在线观看| 婷婷色综合大香蕉| 国产欧美日韩一区二区三区在线| 日韩av不卡免费在线播放| 欧美精品亚洲一区二区| 免费女性裸体啪啪无遮挡网站| 日日摸夜夜添夜夜爱| 人人妻人人澡人人爽人人夜夜| 久久97久久精品| 久久久国产精品麻豆| 亚洲成人手机| 欧美xxⅹ黑人| 亚洲自偷自拍图片 自拍| 欧美老熟妇乱子伦牲交| 日本猛色少妇xxxxx猛交久久| 日韩制服丝袜自拍偷拍| 日本午夜av视频| 青春草国产在线视频| 亚洲国产精品一区二区三区在线| 人妻人人澡人人爽人人| 狠狠婷婷综合久久久久久88av| 亚洲成人手机| 精品视频人人做人人爽| www.精华液| 免费黄频网站在线观看国产| 黑人猛操日本美女一级片| 亚洲,欧美精品.| 一本久久精品| 电影成人av| 久久精品国产a三级三级三级| 一级毛片 在线播放| 一区福利在线观看| 99久久综合免费| 人成视频在线观看免费观看| 国产一级毛片在线| 国产成人免费观看mmmm| 欧美人与善性xxx| 王馨瑶露胸无遮挡在线观看| 欧美xxⅹ黑人| 飞空精品影院首页| 99热网站在线观看| 国产成人一区二区在线| 亚洲国产欧美网| 国产成人精品久久久久久| 悠悠久久av| 亚洲一级一片aⅴ在线观看| 亚洲在久久综合| 色播在线永久视频| 人体艺术视频欧美日本| 色婷婷久久久亚洲欧美| 91aial.com中文字幕在线观看| 在线观看一区二区三区激情| 中国国产av一级| 51午夜福利影视在线观看| 麻豆乱淫一区二区| 哪个播放器可以免费观看大片| 丁香六月天网| 日韩av免费高清视频| 久久天堂一区二区三区四区| 人妻人人澡人人爽人人| 麻豆av在线久日| 在线观看人妻少妇| 国产人伦9x9x在线观看| 国产欧美亚洲国产| 国产黄色视频一区二区在线观看| 99热国产这里只有精品6| 大香蕉久久成人网| 午夜日韩欧美国产| 女性生殖器流出的白浆| 一区二区三区四区激情视频| 女性生殖器流出的白浆| 亚洲精品av麻豆狂野| 亚洲精华国产精华液的使用体验| 欧美国产精品一级二级三级| 亚洲精华国产精华液的使用体验| 国产视频首页在线观看| 欧美变态另类bdsm刘玥| 男女边吃奶边做爰视频| 国产淫语在线视频| 一级毛片电影观看| 久久av网站| 亚洲av日韩在线播放| 国产精品人妻久久久影院| videos熟女内射| 99热网站在线观看| 观看美女的网站| 国产精品国产av在线观看| 午夜av观看不卡| 蜜桃国产av成人99| 只有这里有精品99| 国产日韩欧美视频二区| 1024视频免费在线观看| 久久精品久久久久久久性|