• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于碳納米薄膜/砷化鎵范德華異質(zhì)結(jié)的高性能自驅(qū)動(dòng)光電探測(cè)器研究

    2022-03-29 13:04:50霍婷婷張冬冬施祥蕾孫利杰蘇言杰
    中國(guó)光學(xué) 2022年2期

    霍婷婷,張冬冬,施祥蕾,潘 宇,孫利杰 ,蘇言杰

    (1.上海交通大學(xué) 電子信息與電氣工程學(xué)院 微納電子學(xué)系薄膜與微細(xì)技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室,上海 200240;2.上海航天技術(shù)研究院,上海 201109;3.上??臻g電源研究所空間電源技術(shù)國(guó)家重點(diǎn)實(shí)驗(yàn)室,上海 200245)

    1 Introduction

    As a typical quasi-one-dimensional nanomaterial, Single-Walled Carbon NanoTubes (SWCNTs)can exhibit semiconduct or metallic according to their diameter and chirality.Moreover, the semiconducting SWCNT has a direct bandgap that is inversely proportional to its diameter[1-2].SWCNT is widely applied to construct high-performance photoelectric devices owing to its ultra-high carrier mobility (105cm2/Vs), high absorption coefficient(104-105/cm) and long exciton diffusion length[3-5].However, strong Coulomb interaction results in the existence of photogenerated electron/hole pairs in the form of excitons after the SWCNT absorbs photons.The exciton binding energy of several hundred meV is directly affected by the SWCNT diameter[6-8].In order to promote effective exciton separation, the application of strong electric fields or the fabrication of heterojunctions is usually pursued to establish strong built-in electric fields.In particular, the strategy of building heterojunctions with other materials, such as bulk semiconductors, nanomaterials and polymers, is widely used to enhance exciton separation and carrier transport[9-16].

    With the advantages such as simple structure,simple process and easy interface control, the SWCNT/n-type bulk semiconductor vdW heterojunction, a type of SWCNT-based heterojunction, can fully utilize the ultrahigh carrier mobility of SWCNT and the excellent photoelectric properties of bulk semiconductors[12-18].More importantly, this novel device has broken through the limitation of lattice matching in the growth process of traditional p-n junctions.It can also avoid the disorder interface structure caused by mutual atom diffusion during the formation of vdW heterojunctions, thus facilitating the separation and transport of photogenerated carriers at the interface[19-20].Therefore, the photoelectric devices based on SWCNT/bulk semiconductor vdW heterojunctions are expected to exhibit higher photoelectric response[17-18].In addition,the novel mixed-dimensional vdW heterojunctions with atomic-level interfaces, whose bandgaps are matched with those of bulk semiconductors, can be formed by controlling the diameter/chirality and Fermi level of SWCNTs to facilitate the development of new wide-spectrum photoelectric devices with higher performance.

    Different from indirect bandgap semiconductor silicon, gallium arsenide (GaAs) is a direct bandgap semiconductor with better photoelectric performance, more suitable bandgap and higher carrier mobility, and has been widely used in high-efficiency space solar cells.Therefore, the photoelectric devices based on SWCNT/GaAs vdW heterojunctions are expected to exhibit higher photoelectric response than those based on silicon vdW heterojunctions.Liang et al[21].first proved the existence of strong rectification performance in a single SWCNT/n-GaAs heterojunction, and observed obvious photovoltaic effect under irradiation condition.This has laid a foundation for the development of high-performance self-powered SWCNT/GaAs photodetectors.Li et al[22].reported the photovoltaic response of a single SWCNT/n-type GaAs heterojunction.They found that the carrier transport was dominated by thermoelectron emission at low forward bias, while the hole tunneling in the pass interband state mainly contributed to electric current at low reverse bias.Behnam et al[23].studied the Metal-Semiconductor-Metal (MSM) photodetector based on SWCNT film/GaAs Schottky contact, and found that thermoelectron emission was the main transmission mechanism in the SWCNT film/GaAs heterojunction at a temperature above 260 K.The detector exhibited 0.161 A/W photoresponsivity and high switching ratio under 633 nm laser irradiation and 10 V bias.

    However, the presence of the SWCNTs with different diameters or mixed conductive properties can easily lead to the non-radiative recombination of carriers in the films, and reduce the separation and transmission efficiency of photogenerated carriers.Therefore, we fabricated a self-powered photodetector based on the p-n vdW heterojunctions by combining (6, 5) enriched SWCNT film with n-type GaAs, and graphene is used to reduce the probability of carrier recombination in SWCNT film and to promote the carrier transport.We tested in detail the wide-spectrum response characteristics of the device in the visible-near infrared band at zero bias.Our results also verify the feasibility of fabricating highefficiency solar cells based on the vdW heterostructures.

    2 Experiment

    2.1 SWCNT film preparation

    SWCNT film has been prepared by vacuum extraction and filtration[24].The specific steps are described as follows.Firstly, 0.5 mg (6, 5)-enriched SWCNT powder (purchased from Sigma-Aldrich)was dispersed into aqueous sodium dodecyl sulfate(SDS) solution (0.01 g/mL) using low-temperature ultrasonic treatment for 2 h.The mixed solution was centrifuged at 14 000 r/min for 20 min to remove the inadequately dispersed SWCNT powder.Then,10 mL centrifuged supernatant was gradually added to the vacuum filtration device with cellulose film(0.22 μm) for filtration and membrane formation.After the mixed solution was filtered, excessive deionized water was added to clean the excess SDS in SWCNT film to reduce its influence on the conductivity of SWCNT film.Finally, the (6, 5)-enriched SWCNT film on cellulose film was dried in a 40°C vacuum oven for 2 h.

    2.2 Fabrication of graphene/SWCNT/GaAs vdW heterojunction photodetectors

    In this paper, a photoelectric device with vdW heterojunctions was fabricated on a single-side polished n-type GaAs substrate (10 mm×10 mm,20 μm) with AuGeNi eutectic alloy (4 μm) electrode deposited on its back.Firstly, the GaAs substrate was cleaned with acetone, isopropyl alcohol and deionized water successively to remove surface oil stains.Then, an 80 nm Al2O3insulation layer was deposited on the significant surface of GaAs substrate by atomic layer deposition technology, and a 3 mm×3 mm window was opened in its middle.Subsequently, the GaAs substrate was immersed in(NH4)2S solution for 30 min to passivate the GaAs surface within the window, and excess (NH4)2S solution was removed with deionized water.Later,the prepared SWCNT film (7 mm×7 mm) was transferred above the patterned window and directly contacted with GaAs to form the SWCNT/GaAs vdW heterojunctions, and the cellulose film was dissolved and removed by slowly dripping acetone.The graphene was then transferred to the upper surface of SWCNT film by wet process.Finally, the graphene /SWCNT/GaAs vdW heterojunction photodetector was obtained by applying silver paste on the graphene surface around the window to form ohmic contact.

    2.3 Testing and characterization

    The surface morphologies of the graphene/SWCNT film/GaAs vdW heterojunction were characterized by Scanning Electron Microscopy (SEM)(Zeiss Ultra Plus, Germany).The Raman peak shift of the heterojunction was performed Via Renishaw Raman spectroscopy with an excitation wavelength of 514 nm.The photoelectric performance of the device was evaluated using Agilent 4156C semiconductor parameter analyzer at room temperature, and the current-voltage (I-V) curve and current-time (IT) curve were measured by irradiation with 405-1 064 nm laser and AM1.5G standard solar simulator.The frequency response curve of the device was measured by a chopper (4-400 Hz) and a digital oscilloscope (Tektronix, TDS 3052C).

    Fig.1 (a) Schematic diagram of graphene/SWCNT film/GaAs vdW heterojunction photodetector structure; (b) SEM image of graphene/SWCNT film圖1 (a)石墨烯/SWCNT膜/GaAs vdW異質(zhì)結(jié)光電探測(cè)器結(jié)構(gòu)示意圖;(b)石墨烯/SWCNT薄膜的SEM圖片

    3 Result and discussion

    The structure of the fabricated graphene/SWCNT film/GaAs vdW heterojunction photodetector is shown in Figure 1(a).It can be clearly seen that this is a p-n heterojunction structure directly formed by(6, 5)-enriched SWCNT film and n-type GaAs, significantly different from the previous SWCNT network/graphene/GaAs heterojunction photodetector,which is a Schottky heterojunction[25].In this paper,the use of (6, 5)-enriched SWCNT film can improve the absorption of photons in bands smaller than GaAs bandgap.On the other hand, the Fermi level of SWCNT film can be later regulated by doping to better facilitate the fabrication of high-performance wide-spectrum photodetectors.Here, graphene mainly plays a role in promoting the transport of photogenerated carriers in the SWCNT film.Figure 1(b) shows a typical SEM image of graphene/SWCNT film/GaAs vdW heterojunction surface in the window area.It can be clearly seen that SWCNT and graphene forms a uniform meshed film on the GaAs surface, and no obvious residue of surfactant SDS is observed, indicating that the SDS removal is relatively thorough in the process of SWCNT film filtration.This will help improve the photoelectric performance of vdW heterojunction devices.

    We first tested theJ-Vcurve of the graphene/SWCNT film/GaAs vdW heterojunction photodetector in dark state and AM1.5G light condition, as shown in Figure 2.It can be clearly seen from theJVcurve for dark state that the device has an obvious rectification effect, indicating that the (6, 5)-enriched SWCNT film is combined with GaAs into a good p-n junction in the device.It should be noted that the current density of device in the first quadrant is low.Under the AM1.5G standard solar radiation, theJ-Vcurve obviously moves downward,and the short-circuit current density (Jsc) of device rises up to 19 mA/cm2, an indicator of excellent photovoltaic performance.This indicates that the device has the potential to build efficient solar cells.The rectification performance of the device is analyzed based on the classical thermoelectron emission principle:

    Fig.2 Typical J-V curves of graphene/SWCNT film/GaAs vdW heterojunction photodetector in (a) dark state and (b) AM 1.5G condition圖2 石墨烯/SWCNT膜/GaAs vdW異質(zhì)結(jié)光電探測(cè)器在(a)暗態(tài)和(b)AM 1.5G條件下的J-V曲線

    whereJstis the reverse saturation current density,Tis the absolute temperature,k0is Boltzmann constant,A* is the effective Richardson constant, andΦnsis the barrier height.From theJ-Vcurve for dark state, it can be concluded that the saturation current density (Jst) is 9.93×10-7A/cm2, and that the thermoelectron emission plays a dominant role in carrier diffusion and generation recombination.However,the increase of current density drops sharply in the first quadrant, which may be related to the existence of the reverse junction.As a result, theJ-Vcurve of the device is different from the existing result, but the open-circuit voltage is not significantly affected and is still 0.63 V.Therefore, the graphene/SWCNT film/GaAs vdW heterojunction is mainly viewed as a self-powered photoelectric device and is evaluated in terms of detection performance.

    In order to evaluate the detection performance of the graphene/SWCNT film/GaAs vdW heterojunction devices as self-powered photodetectors, we measured the photoelectric response at different laser wavelengths at room temperature, as shown in Figure 3 (Color online).Figure 3(a)~(b) shows the typicalJ-Vcurves of the graphene/SWCNT film/GaAs vdW heterojunction photodetectors under laser irradiation at different wavelengths.It can be clearly seen that allJ-Vcurves move downward at different laser wavelengths, indicating that the vdW heterojunction devices exhibit obvious photovoltaic effect.In particular, the maximum short-circuit current density (Jsc) of the device can reach 22.48 mA/cm2under the irradiation of 405 nm laser with 30 mW/cm2optical power density.It is worth noting that the device can still produce a relatively obvious photovoltaic effect under 1 064 nm laser irradiation.The downward shift ofJ-Vcurve to break through the 860 nm absorption limit of GaAs is mainly caused by the existence of (6, 5)-enriched SWCNT film in the heterojunction.Thus, the photoinduced carriers generated by (6, 5)-enriched SWCNT film after absorbing photons can be separated into electron-hole pairs at the heterojunction interface and exported to the external circuit to form a photocurrent dominating the photoelectric response process of the device.The introduction of graphene can help enhance the transport of holes in the SWCNT film and improve the ability of charge collection.Therefore, the subsequent optimization of graphene, the thickness and Fermi level of SWCNT film, bandgap and the SWCNT-GaAs interface contact will be expected to further improve the photoelectric response characteristics in long-wave band.Figure 3(c)~(d) shows the stability curves of the graphene/SWCNT film /GaAs vdW heterojunction photodetector irradiated at different laser wavelengths.It can be clearly seen that the photocurrent density increases or decreases rapidly with the laser on or off, and the device exhibits fast photoelectric response and excellent photoelectric response stability under 405-1 064 nm laser illumination.Moreover, the device shows a high switching ratio, which is greater than 1.1×103under 406~860 nm laser illumination and is 2.5 even when irradiated by 1 064 nm laser.

    Fig.3 (a) (b) J-V curves of the graphene/SWCNT film/GaAs vdW heterojunction photodetector irradiated at different laser wavelengthes.(c) (d) Photoelectric response repeatability curves when irradiated by laser with different laser wavelengthes at zero bias圖3 (a)和(b) 不同激光波長(zhǎng)輻照下石墨烯/SWCNT膜/GaAs vdW異質(zhì)結(jié)光電探測(cè)器的J-V曲線;(c)和(d) 零偏壓時(shí)不同激光波長(zhǎng)輻照下的光電響應(yīng)重復(fù)性曲線

    In addition, we tested the transient light re- sponse of the device at 200 Hz frequency and 405 nm laser wavelength, as shown in Figure 4.It can be seen that the photodetector shows a fast response speed when switching the on/off state.The photoelectric response curve is still complete at the frequency of 200 Hz.When the frequency is further increased, the photoelectric response of the photodetector begins to decline before reaching a maximum.Thus, the maximum response frequency of the selfpowered photoelectric device based on graphene/SWCNT film/GaAs vdW heterojunction is 200 Hz.In addition, the photoelectric response time of the device can be extracted from the photoelectric response curve.In general, the response (tr)/recovery(tf) time of the device is defined as the time required for the photoelectric current to rise/fall to 90%/10% of the maximum photocurrent, respectively.From Figure 4, the response (tr)/recovery (tf)time can be determined as 60 μs and 910 μs, respectively.The response time of tens of microseconds indicates the ultra-fast carrier separation efficiency at the SWCNT/GaAs interface and the ultra-high charge transport efficiency of the whole graphene/SWCNT film/GaAs vdW heterojunction photodetector.

    Fig.4 Transient light response curve of the device under 405 nm laser irradiation圖4 405 nm激光輻照條件下器件的瞬態(tài)光響應(yīng)曲線

    We further evaluated the photoelectric responsivity (R) and specific detectivity (D*) of the graphene/SWCNT film/GaAs vdW heterojunction photodetector.TheRandD* values at different laser wavelengthes can be obtained according to the following formula:

    whereIpis the photocurrent,Idis the dark current,Pinis the incident light power, andAis the effective area (9 mm2).By changing the laser wavelength and incident power density, the change values ofRandD* values of the graphene/SWCNT film/GaAs vdW heterojunction photodetector are obtained, as shown in Figure 5.It can be seen from the photoelectric response curves in Figure 5(a)-(b) that the photoelectric responsivity of the device increases as a whole with decreasing the incident power density.This change trend basically accords with the general law of photo detector, this is because the incident light can be absorbed by the device and be fully converted into current with the decrease of the incident power.From Figure 5(a), the maximumRvalue of the self-powered photodetector under 405 nm laser irradiation can reach 1 214 mW/cm2, which is higher than the values reported in previous studies[24].Although the photoelectric response of the device at 980-1 064 nm is 3 orders of magnitude lower than that at 405-860 nm, this result still demonstrates the feasibility that the graphene/SWCNT film/GaAs vdW heterojunctions fabricated in this paper can further broaden the spectral response range.Subsequently, high photoelectric responsivity can be expected at 405-1 064 nm by optimizing the relative thickness of SWCNT and GaAs until their light absorption is of the same order of magnitude.Figure 5(c)~(d) shows the specific detectivity curves of the device under different laser wavelengths and optical power densities.Similar to the photoelectric responsivity, the specific detectivity also increases as a whole with decreasing incident power density,and the maximum specific detectivity of 2×1012Jones can be obtained at 405 nm laser wavelength with the power density of 5 mW/cm2.

    In order to better understand the working mechanism of the graphene/SWCNT film/GaAs vdW heterojunction photodetector, we analyze the energy band structure and charge transfer process at the interface.Since the SWCNTs used in this paper is a (6, 5)-enriched semiconducting SWCNTs, the energy band structure of (6, 5) SWCNTs is used to analyze the energy band structure of SWCNT/GaAs heterojunction and its working mechanism is discussed.As we know, the Dirac point of graphene is 4.6 eV, and (6, 5) SWCNT exhibits a weak p-type with a conduction band of 3.9 eV and a valence band of 5.1 eV.The Fermi level of n-type GaAs is close to its 4.07 eV conduction band, and the energy band structure of the vdW heterojunction is shown in Figure 6.When (6, 5) SWCNT contacts with n-type GaAs, a II-type heterojunction can be formed due to the difference between their conduction bands and valence bands.According to the band theory, the static electron transfer from n-type GaAs to (6, 5) SWCNT happens after the contact,which can be confirmed by Raman spectrum[24].A built-in electric field is formed between graphene/(6,5) SWCNT and n-type GaAs, resulting in the bending of their energy bands.When the excitation wavelength is shorter than 860 nm, the electron/hole pairs are generated in (6, 5) both SWCNT and ntype GaAs, and then will be separated and transported to the external circuit under the action of the built-in electric field at the interface.The photogenerated holes in n-type GaAs drift towards the (6, 5)SWCNT side, and then are collected by electrodes and transported to the external circuit.However,when the excitation wavelength of laser exceeds the absorption limit of n-type GaAs, the optical absorption of the device mainly comes from (6, 5) SWCNT film, the photo-induced electron-hole pairs are separated by the built-in electric field at the SWCNT/GaAs heterojunction interface, and the photoinduced electrons are transferred to the external circuit through n-type GaAs.The existence of graphene is conducive to reduce the probability of photo-generated carrier combination during the transport in SWCNT film so that more holes will be transport to the external circuit.Therefore, when the excitation wavelength is larger than 860 nm, the graphene/(6, 5) SWCNT film dominates the photoelectric response process.

    Fig.5 The responsivity (a~b) and specific detectivity (c~d) of graphene/SWCNT film/GaAs vdW heterojunction photodetectors as a function of incident light power density under zero bias conditions圖5 零偏壓條件下石墨烯/SWCNT膜/GaAs vdW異質(zhì)結(jié)光電探測(cè)器的(a~b)光電響應(yīng)度和(c~d)比探測(cè)率隨入射光功率密度改變而變化的曲線

    Fig.6 Schematic diagram of the energy band structure of graphene/SWCNT film/GaAs vdW heterojunction exposed to light irradiaton圖6 石墨烯/SWCNT膜/GaAs vdW異質(zhì)結(jié)在光照時(shí)的能帶結(jié)構(gòu)示意圖

    4 Conclusion

    In conclusion, we report a self-powered photodetector based on graphene/SWCNT film/GaAs vdW heterojunction, in which, the p-n junction formed by (6,5)-enriched SWCNT film and n-type GaAs plays a dominate role, while graphene is used to reduce the probability of carrier recombination in SWCNT film and promote the carrier transport.The experimental results show that the self-powered photodetector based on graphene/SWCNT film/GaAs vdW heterojunction exhibits a sensitive photoelectric response to 405-1 064 nm visible-near infrared light, breaking through the absorption limit of GaAs, and demonstrating the feasibility of further broadening the spectral response range of a GaAsbased photodetector based on vdW heterojunction.The photoelectric responsivity and specific detectivity of the device under 405 nm laser irradiation can reach 1.214 A/W and 2×1012Jones respectively.It may be attributed mainly to the light absorption of n-type GaAs and the formation of vdW heterojunction.By further optimizing the structure and parameters, the devices based on graphene/SWCNT film/GaAs vdW heterojunctions are expected to be used as high-efficiency solar cells and wide-spectrum photodetectors.

    ——中文對(duì)照版——

    1 引 言

    作為典型的準(zhǔn)一維納米材料,單壁碳納米管(SWCNT)根據(jù)其直徑和手性表現(xiàn)出半導(dǎo)體型和金屬型,而且半導(dǎo)體型SWCNT為直接帶隙且其帶隙與直徑成反比例關(guān)系[1-2],超高的載流子遷移率(105cm2/ Vs)、高吸收系數(shù)(104-105/cm)和長(zhǎng)激子擴(kuò)散長(zhǎng)度使得SWCNT被廣泛應(yīng)用于構(gòu)筑高性能光電器件[3-5]。但是,較強(qiáng)的庫(kù)侖相互作用導(dǎo)致SWCNT吸收光子后所形成的光生電子/空穴對(duì)以激子的形式存在,其數(shù)百meV的激子結(jié)合能受SWCNT直徑直接影響[6-8]。為了促進(jìn)激子的有效分離,通常采用施加強(qiáng)電場(chǎng)或構(gòu)建異質(zhì)結(jié)的方式以便形成較強(qiáng)的內(nèi)建電場(chǎng)。尤其是,通過(guò)與其他材料(例如體半導(dǎo)體、納米材料和聚合物)構(gòu)建異質(zhì)結(jié)的策略被廣泛用于增強(qiáng)激子分離和載流子輸運(yùn)[9-16]。

    在SWCNT基異質(zhì)結(jié)中,SWCNT /n型體半導(dǎo)體范德華(van der Waals, vdW)異質(zhì)結(jié)可以同時(shí)利用SWCNT的超高載流子遷移率以及體半導(dǎo)體的優(yōu)異光電性能,具有結(jié)構(gòu)簡(jiǎn)單、工藝簡(jiǎn)便、易于調(diào)控界面等優(yōu)點(diǎn)[12-18]。更重要的是,這種新型器件結(jié)構(gòu)突破了傳統(tǒng)pn結(jié)在生長(zhǎng)工藝中所受晶格匹配的限制,而且還可以避免vdW異質(zhì)結(jié)形成過(guò)程中原子相互擴(kuò)散導(dǎo)致的界面無(wú)序結(jié)構(gòu),進(jìn)而有利于光生載流子在界面處的分離和輸運(yùn)[19-20]。因此,基于SWCNT /體半導(dǎo)體vdW異質(zhì)結(jié)的光電器件有望表現(xiàn)出更高的光電響應(yīng)特性[17-18]。另外,通過(guò)調(diào)控SWCNT的直徑/手性、費(fèi)米能級(jí)等參數(shù)可以與體半導(dǎo)體形成能帶匹配、具有原子級(jí)界面的新型混合維度vdW異質(zhì)結(jié),有利于開(kāi)發(fā)更高性能的新型寬光譜光電器件。

    與間接帶隙半導(dǎo)體硅不同,砷化鎵(GaAs)是一種具有更優(yōu)異光電性能的直接帶隙光電半導(dǎo)體,其具有更合適的帶隙和更高的載流子遷移率,并已經(jīng)被廣泛用于高效空間太陽(yáng)能電池。因此,基于SWCNT/GaAs vdW異質(zhì)結(jié)的光電器件有望比硅基vdW異質(zhì)結(jié)光電器件表現(xiàn)出更高的光電響應(yīng)特性。Liang等[21]首先證明了在單根SWCNT/n-GaAs異質(zhì)結(jié)中有很強(qiáng)的整流性能,并且在光照下觀察到了明顯的光伏效應(yīng),這為高性能自供電SWCNT/GaAs光電探測(cè)器奠定了基礎(chǔ)。Li等[22]報(bào)道了單根SWCNT/n型GaAs異質(zhì)結(jié)的光伏響應(yīng)。發(fā)現(xiàn)載流子傳輸在低正向偏壓下由電子熱電子發(fā)射占主導(dǎo),而通過(guò)帶間狀態(tài)的空穴隧穿主要在低反向偏壓下貢獻(xiàn)電流。Behnam等[23]研究了基于SWCNT薄膜/GaAs肖特基接觸的金屬-半導(dǎo)體-金屬(MSM)光電探測(cè)器,并發(fā)現(xiàn)在260 K以上的溫度條件下,熱電子發(fā)射是SWCNT膜/ GaAs異質(zhì)結(jié)中的主要傳輸機(jī)制。該探測(cè)器在633 nm激光輻照和10 V偏壓條件下表現(xiàn)出0.161 A/W的光電響應(yīng)度和高開(kāi)關(guān)比。

    但是,不同直徑或混合導(dǎo)電屬性碳納米管的存在導(dǎo)致SWCNT薄膜中的載流子極易發(fā)生非輻射復(fù)合,從而降低了光生載流子的分離和傳輸效率。因此,本論文采用以(6,5)手性為主的SWCNT薄膜與n型GaAs構(gòu)建p-n結(jié),并利用石墨烯降低SWCNT薄膜內(nèi)載流子的復(fù)合幾率和促進(jìn)載流子傳輸,構(gòu)筑了基于這種新型 vdW異質(zhì)結(jié)的自驅(qū)動(dòng)光電探測(cè)器,詳細(xì)研究了該器件在零偏壓條件對(duì)可見(jiàn)-近紅外波段的寬光譜響應(yīng)特性。本文研究驗(yàn)證了基于該vdW異質(zhì)結(jié)構(gòu)筑高效太陽(yáng)能電池的可行性。

    2 實(shí)驗(yàn)部分

    2.1 SWCNT薄膜制備

    SWCNT薄膜采用真空抽濾的方法制備[24],具體步驟如下:首先將0.5 mg (6,5)手性為主的SWCNT粉體(購(gòu)自Sigma-Aldrich)分散到十二烷基硫酸鈉(SDS)水溶液(0.01 g/mL)中低溫超聲處理2 h,并將混合溶液以14 000 r/min的速度離心20 min,去除未充分分散的SWCNT。然后,取10 mL離心后的上清液逐步滴加到放置有纖維素膜(0.22 μm)的真空抽濾裝置中進(jìn)行抽濾成膜,待混合溶液濾過(guò)后添加過(guò)量的去離子水清洗SWCNT膜中多余的SDS,以降低其對(duì)SWCNT薄膜導(dǎo)電性的影響。最后,將纖維素膜上(6,5)手性為主的SWCNT薄膜放入40 °C真空烘箱中干燥2 h備用。

    2.2 石墨烯/SWCNT/砷化鎵vdW異質(zhì)結(jié)光電器件構(gòu)筑

    本論文選用背面已沉積AuGeNi共晶合金(4 μm)電極的單面拋光n型GaAs襯底(10 mm×10 mm,20 μm)構(gòu)筑vdW異質(zhì)結(jié)光電器件。首先將GaAs襯底依次用丙酮、異丙醇和去離子水清洗去除表面油污。然后利用原子層沉積技術(shù)在GaAs襯底正表面上沉積一層厚度為80 nm的Al2O3絕緣層,并且中間開(kāi)有3 mm×3 mm的窗口。隨后,將GaAs襯底浸入(NH4)2S溶液中,放置30 min,以鈍化窗口內(nèi)的GaAs表面,并用去離子水清洗去除多余的(NH4)2S溶液。最后,將上述制備的SWCNT薄膜(7 mm×7 mm)轉(zhuǎn)移到圖案化窗口上方,直接與GaAs直接接觸形成SWCNT /砷化鎵vdW異質(zhì)結(jié),并緩慢滴加丙酮浸泡溶解去除纖維素膜。隨后將石墨烯通過(guò)濕法轉(zhuǎn)移方式轉(zhuǎn)移到SWCNT薄膜上表面。最后,在窗口周?chē)氖┍砻嫱扛层y漿以形成歐姆接觸,獲得石墨烯/SWCNT/GaAs vdW異質(zhì)結(jié)光電探測(cè)器。

    2.3 測(cè)試與表征

    本文使用掃描電子顯微鏡(SEM,Zeiss Ultra Plus, Germany)表征石墨烯/ SWCNT膜/砷化鎵范德華異質(zhì)結(jié)表面的微觀形貌;使用inVia Renishaw拉曼光譜儀測(cè)試異質(zhì)結(jié)的Raman峰偏移,其中激發(fā)波長(zhǎng)是514 nm;器件的光電性能則使用安捷倫4156C半導(dǎo)體參數(shù)分析儀在室溫條件下進(jìn)行測(cè)量,在405~1 064 nm激光和AM1.5G標(biāo)準(zhǔn)太陽(yáng)光模擬器輻照下測(cè)得電流電壓(I-V)曲線和電流時(shí)間(I-T)曲線。器件的頻率響應(yīng)曲線則采用斬波器(4~400 Hz)和數(shù)字示波器(Tektronix,TDS 3052C)進(jìn)行測(cè)試。

    3 結(jié)果與討論

    所構(gòu)筑的石墨烯/SWCNT薄膜/GaAs vdW異質(zhì)結(jié)光電器件的結(jié)構(gòu)示意圖如圖1(a)所示。可以清楚看出,在該異質(zhì)結(jié)結(jié)構(gòu)中(6,5)手性為主的SWCNT薄膜直接與n型GaAs形成p-n結(jié),這與之前的SWCNT網(wǎng)絡(luò)/石墨烯/GaAs異質(zhì)結(jié)光電器件有顯著區(qū)別,后者所形成的是肖特基異質(zhì)結(jié)[25]。采用(6,5)手性為主的SWCNT薄膜一方面有利于提高器件對(duì)小于GaAs帶隙的波段光子的吸收,另一方面,后續(xù)可通過(guò)摻雜來(lái)調(diào)控SWCNT薄膜費(fèi)米能級(jí)從而更有利于制備高性能的寬光譜光電探測(cè)器。本文中,石墨烯主要起到促進(jìn)光生載流子在SWCNT薄膜傳輸?shù)淖饔?。圖1(b)為窗口區(qū)域內(nèi)石墨烯/SWCNT膜/GaAs vdW異質(zhì)結(jié)表面的SEM圖片,可以清楚地看到,GaAs表面SWCNT與石墨烯一起形成均勻的網(wǎng)狀薄膜,并且沒(méi)有觀察到明顯的表面活性劑SDS殘余,說(shuō)明SWCNT薄膜抽濾過(guò)程中SDS去除較為干凈,這將有助于提高vdW異質(zhì)結(jié)器件的光電性能。

    首先測(cè)試了石墨烯/SWCNT膜/GaAs vdW異質(zhì)結(jié)光電探測(cè)器在暗態(tài)和AM1.5G光照條件下的J-V曲線,結(jié)果如圖2所示。從暗態(tài)J-V曲線可以清楚地看出,器件具有明顯的整流效應(yīng),表明該器件中(6,5)手性為主的SWCNT薄膜與GaAs形成了較好的p-n結(jié),需要說(shuō)明的是器件在第一象限時(shí)的電流密度較低。當(dāng)采用AM1.5G標(biāo)準(zhǔn)太陽(yáng)光輻照時(shí),J-V曲線發(fā)生明顯向下移動(dòng),器件的短路電流密度Jsc可達(dá)19 mA/cm2,顯示出優(yōu)異的光伏特性,由此說(shuō)明,器件具有構(gòu)筑高效太陽(yáng)電池的潛力?;诮?jīng)典的熱電子發(fā)射原理來(lái)分析器件的整流性能:

    其中,Jst是反向飽和電流密度,T是絕對(duì)溫度,k0是玻爾茲曼常數(shù),A*是有效理查森常數(shù),?ns是勢(shì)壘高度。從暗態(tài)的J-V曲線可以得出飽和電流密度Jst為9.93×10-7A/cm2,并且熱電子發(fā)射在載流子擴(kuò)散和生成復(fù)合機(jī)制中起主導(dǎo)作用。但是需要指出的是,在第一象限時(shí)器件的電流密度增加急劇下降,這可能與反向結(jié)的存在有關(guān)系,最終導(dǎo)致該器件的J-V曲線不同于已有結(jié)果,但開(kāi)路電壓并未受到較大影響,仍有0.63 V。因此,對(duì)于本文所構(gòu)筑的石墨烯/SWCNT膜/GaAs vdW異質(zhì)結(jié),主要用作自驅(qū)動(dòng)光電器件,并詳細(xì)評(píng)價(jià)其探測(cè)性能。

    為了評(píng)估石墨烯/SWCNT膜/GaAs vdW異質(zhì)結(jié)器件作為自驅(qū)動(dòng)光電探測(cè)器的探測(cè)性能,測(cè)量了室溫條件下不同激光波長(zhǎng)輻照下的光電響應(yīng)曲線,結(jié)果如圖3所示(彩圖見(jiàn)期刊電子版)。圖3(a)和圖3(b)展示了不同波長(zhǎng)激光輻照條件下的石墨烯/SWCNT膜/ GaAs vdW異質(zhì)結(jié)光電探測(cè)器的典型J-V曲線??梢郧宄乜闯觯蠮-V曲線在不同波長(zhǎng)激光輻照下均向下移動(dòng),表明該vdW異質(zhì)結(jié)器件均可產(chǎn)生明顯的光伏效應(yīng)。尤其是,在光功率密度為30 mW/cm2的405 nm激光輻照條件下,器件的最大短路電流密度Jsc可達(dá)到22.48 mA/cm2。值得注意的是,該器件在1 064 nm激光輻照下仍然能夠產(chǎn)生較為明顯的光伏效應(yīng),J-V曲線下移,突破了砷化鎵860 nm的吸收極限,這主要是由異質(zhì)結(jié)中(6,5)手性為主的SWCNT薄膜引起的。由此說(shuō)明,(6,5)手性為主的SWCNT薄膜吸收光子后產(chǎn)生的光生載流子可以在異質(zhì)結(jié)界面處被分離成電子-空穴對(duì),并被導(dǎo)出到外電路形成光電流,主導(dǎo)了器件的光電響應(yīng)過(guò)程。而石墨烯的引入則有利于增強(qiáng)SWCNT薄膜內(nèi)空穴的傳輸,提高電荷收集能力。因此,后續(xù)通過(guò)優(yōu)化石墨烯和SWCNT薄膜厚度和費(fèi)米能級(jí)、SWCNT帶隙及其與GaAs之間的界面接觸,將有望進(jìn)一步提高長(zhǎng)波波段的光電響應(yīng)特性。圖3(c)和圖3(d)展示了在不同激光波長(zhǎng)輻照條件下石墨烯/SWCNT膜/GaAs vdW異質(zhì)結(jié)光電器件的穩(wěn)定性曲線??梢郧宄乜闯?,光電流密度隨著激光打開(kāi)或關(guān)閉迅速增加或降低,器件對(duì)405~1 064 nm波段的激光表現(xiàn)出快速的光電響應(yīng)和優(yōu)異的光電響應(yīng)穩(wěn)定性。而且器件具有較高的開(kāi)關(guān)比,對(duì)406~860 nm激光輻照時(shí)開(kāi)關(guān)比均大于1.1×103,即便采用1 064 nm激光輻照時(shí)器件的開(kāi)關(guān)比仍有2.5。

    此外,還測(cè)試了器件在200 Hz頻率和405 nm激光輻照條件下的瞬態(tài)光響應(yīng)曲線,如圖4所示??梢钥闯?,光電探測(cè)器在開(kāi)/關(guān)狀態(tài)切換時(shí)表現(xiàn)出較快的響應(yīng)速度;當(dāng)頻率為200 Hz時(shí),光電響應(yīng)曲線仍然是完整的,當(dāng)進(jìn)一步增大頻率時(shí),光電探測(cè)器的光電響應(yīng)未達(dá)到最大值便開(kāi)始下降。由此說(shuō)明,石墨烯/SWCNT膜/GaAs vdW異質(zhì)結(jié)自驅(qū)動(dòng)光電器件的最大響應(yīng)頻率是200 Hz。另外,根據(jù)這個(gè)光電響應(yīng)曲線,可以提取器件的光電響應(yīng)時(shí)間。通常情況下,器件的響應(yīng)(tr)/恢復(fù)(tf)時(shí)間分別被定義為光電電流上升/下降到最大光電流90%/10%時(shí)所需的時(shí)間,從圖4曲線可知,該器件的(tr)/(tf)分別為60 μs和910 μs。數(shù)十μs級(jí)的光電響應(yīng)時(shí)間再次表明SWCNT/GaAs異質(zhì)結(jié)界面處的超快載流子分離效率以及整個(gè)石墨烯/SWCNT膜/GaAs vdW 異質(zhì)結(jié)光電器件的超高電荷輸運(yùn)效率。

    進(jìn)一步評(píng)估了石墨烯/SWCNT膜/GaAs vdW異質(zhì)結(jié)光電器件的光電響應(yīng)度(R)和比探測(cè)率(D),其在不同激光波長(zhǎng)輻照條件下的光電響應(yīng)度和比探測(cè)率數(shù)值為:

    其中,Ip是光電流,Id是暗電流,Pin是入射光功率,A是有效面積(9 mm2)。通過(guò)改變激光波長(zhǎng)和入射功率密度,石墨烯/SWCNT膜/GaAs vdW異質(zhì)結(jié)光電器件的光電響應(yīng)度和比探測(cè)率曲線分別如圖5(彩圖見(jiàn)期刊電子版)所示。從圖5(a)~5(b)中的光電響應(yīng)度曲線可以看到,器件的光電響應(yīng)度隨著入射功率密度的增加而降低,這一變化趨勢(shì)基本符合光電探測(cè)器的一般規(guī)律,其原因在于隨著入射光功率密度的降低,入射光可以被器件吸收并被充分轉(zhuǎn)換成光電流。由圖5(a)可以得到該自驅(qū)動(dòng)光電探測(cè)器在405 nm激光輻照條件下的光電響應(yīng)度最大可達(dá)1 214 mW/cm2,高于已有研究報(bào)道的數(shù)值[24]。盡管器件在980~1 064 nm波段的光電響應(yīng)度比405~860 nm波段低了3個(gè)數(shù)量級(jí),但這一結(jié)果仍然說(shuō)明了本文所構(gòu)筑的石墨烯/SWCNT膜/GaAs vdW異質(zhì)結(jié)具有進(jìn)一步拓寬光譜響應(yīng)范圍的可行性,后續(xù)通過(guò)優(yōu)化SWCNT與GaAs的相對(duì)厚度可使兩者的光吸收具有相同的數(shù)量級(jí),將有望在405~1 064 nm波段實(shí)現(xiàn)較高的光電響應(yīng)度。圖5(c)~5(d)為器件在不同激光波長(zhǎng)和光功率密度條件下的比探測(cè)率曲線??梢郧宄乜闯?,比探測(cè)率與光電響應(yīng)度相似,也隨著入射光功率密度的降低而整體上增加,并且在405 nm激光以5 mW/cm2的功率密度輻照下獲得了最大比探測(cè)率,為2×1012Jones。

    為了更好地理解石墨烯/SWCNT膜/GaAs vdW異質(zhì)結(jié)光電探測(cè)器件的工作機(jī)理,從能帶結(jié)構(gòu)和界面電荷轉(zhuǎn)移的角度進(jìn)行分析。由于本文中所采用的SWCNT是以(6,5)手性為主的純半導(dǎo)體性SWCNT,因此分析SWCNT/GaAs異質(zhì)結(jié)的能帶結(jié)構(gòu)時(shí)采用(6,5)SWCNT的能帶結(jié)構(gòu)來(lái)討論該器件的工作機(jī)理。石墨烯的狄拉克點(diǎn)為4.6 eV,而(6, 5) SWCNT表現(xiàn)出弱p型,其導(dǎo)帶為3.9 eV,價(jià)帶為5.1 eV。n型GaAs費(fèi)米能級(jí)接近其4.07 eV的導(dǎo)帶,因此,該vdW異質(zhì)結(jié)的能帶結(jié)構(gòu)示意圖如圖6所示。當(dāng)(6, 5) SWCNT和n型GaAs接觸時(shí),由于兩者的導(dǎo)帶和價(jià)帶差異而形成Ⅱ型異質(zhì)結(jié)。根據(jù)能帶理論,接觸后會(huì)發(fā)生從n型砷化鎵到 (6, 5) SWCNT靜態(tài)電子轉(zhuǎn)移,這可以通過(guò)拉曼光譜獲得證實(shí)[24]。在石墨烯/(6, 5) SWCNT和n型砷化鎵之間產(chǎn)生了內(nèi)建電場(chǎng),并使(6, 5) SWCNT和n型GaAs的能帶彎曲,當(dāng)激發(fā)波長(zhǎng)小于860 nm時(shí),(6, 5) SWCNT和n型GaAs中均會(huì)生成電子/空穴對(duì),然后在界面處內(nèi)建電場(chǎng)的作用下分離傳輸?shù)酵怆娐?,n型GaAs中的光生空穴向(6, 5) SWCNT側(cè)漂移,然后被電極收集并傳輸?shù)酵怆娐?。但是,?dāng)激光的激發(fā)波長(zhǎng)超過(guò)n型GaAs的吸收極限時(shí),器件的光吸收主要源自(6, 5) SWCNT薄膜,所產(chǎn)生的光生電子空穴對(duì)在SWCNT/GaAs異質(zhì)結(jié)界面處由于內(nèi)建電場(chǎng)的作用而發(fā)生分離,光生電子通過(guò)n型GaAs被傳輸?shù)酵怆娐?。石墨烯的存在有利于降低光生空穴在SWCNT薄膜傳輸過(guò)程中的復(fù)合幾率。使得更多的光生空穴傳輸?shù)酵怆娐?。因此,?dāng)激發(fā)波長(zhǎng)大于860 nm時(shí),石墨烯/(6, 5) SWCNT薄膜主導(dǎo)光電響應(yīng)過(guò)程。

    4 結(jié) 論

    本文報(bào)道了一種基于石墨烯/SWCNT膜/GaAs vdW異質(zhì)結(jié)的自驅(qū)動(dòng)光電探測(cè)器件,其中由(6,5)手性為主的SWCNT薄膜與n型GaAs所形成的p-n結(jié)起主導(dǎo)作用,石墨烯起到降低SWCNT薄膜內(nèi)載流子復(fù)合幾率和促進(jìn)載流子傳輸作用。實(shí)驗(yàn)結(jié)果表明,基于石墨烯/SWCNT膜/GaAs vdW異質(zhì)結(jié)的自驅(qū)動(dòng)光電探測(cè)器對(duì)405~1 064 nm波段的可見(jiàn)-近紅外光具有較為靈敏的光電響應(yīng),突破了GaAs的吸收極限,驗(yàn)證了基于該vdW異質(zhì)結(jié)進(jìn)一步拓寬GaAs基光電器件光譜響應(yīng)范圍的可行性。器件在405 nm激光輻照下的光電響應(yīng)度和比探測(cè)率分別可達(dá)1.214 A/W和2×1012Jones,這主要?dú)w因于n型砷化鎵的光吸收和vdW異質(zhì)結(jié)的形成。通過(guò)進(jìn)一步優(yōu)化器件結(jié)構(gòu)和參數(shù),基于石墨烯/SWCNT膜/GaAs vdW異質(zhì)結(jié)的器件有望被用于構(gòu)筑高效太陽(yáng)電池和寬光譜光電探測(cè)器。

    中文字幕av电影在线播放| 亚洲精品一卡2卡三卡4卡5卡| 一区二区三区国产精品乱码| 久久婷婷成人综合色麻豆| 久久精品国产清高在天天线| 大型av网站在线播放| 欧美丝袜亚洲另类 | 国产私拍福利视频在线观看| 亚洲国产精品成人综合色| 99久久精品国产亚洲精品| 高潮久久久久久久久久久不卡| 黄色成人免费大全| 亚洲精品一区av在线观看| 久久久久久久午夜电影| 非洲黑人性xxxx精品又粗又长| 人妻丰满熟妇av一区二区三区| 国产视频一区二区在线看| 中文字幕人成人乱码亚洲影| 极品教师在线免费播放| 性少妇av在线| 丝袜美足系列| 涩涩av久久男人的天堂| 黄频高清免费视频| 国产亚洲欧美精品永久| 色老头精品视频在线观看| 精品人妻1区二区| 久久精品国产清高在天天线| 久久九九热精品免费| 多毛熟女@视频| 国产精品国产高清国产av| 国产在线观看jvid| 亚洲黑人精品在线| 国产精品永久免费网站| 九色亚洲精品在线播放| 18禁国产床啪视频网站| tocl精华| 久久国产亚洲av麻豆专区| 国产高清视频在线播放一区| 成人免费观看视频高清| 97超级碰碰碰精品色视频在线观看| 看片在线看免费视频| 免费在线观看影片大全网站| 一个人免费在线观看的高清视频| 国产单亲对白刺激| 手机成人av网站| 亚洲国产看品久久| 一级,二级,三级黄色视频| √禁漫天堂资源中文www| 成人国产综合亚洲| 他把我摸到了高潮在线观看| 午夜精品在线福利| 精品久久久久久久人妻蜜臀av | 老鸭窝网址在线观看| 人妻久久中文字幕网| 色婷婷久久久亚洲欧美| 两个人免费观看高清视频| 69av精品久久久久久| 成人亚洲精品av一区二区| 欧美日韩瑟瑟在线播放| 色综合亚洲欧美另类图片| 老鸭窝网址在线观看| 多毛熟女@视频| 一级黄色大片毛片| 国产精品一区二区三区四区久久 | 老司机午夜十八禁免费视频| 亚洲自偷自拍图片 自拍| 精品久久久久久,| 搡老妇女老女人老熟妇| 欧美国产日韩亚洲一区| 侵犯人妻中文字幕一二三四区| 国产av一区二区精品久久| 最近最新中文字幕大全免费视频| tocl精华| 亚洲情色 制服丝袜| 成人国产综合亚洲| 国产精品影院久久| 满18在线观看网站| 91大片在线观看| 黄网站色视频无遮挡免费观看| 亚洲第一青青草原| 国产欧美日韩综合在线一区二区| 亚洲自偷自拍图片 自拍| 丁香欧美五月| 十八禁人妻一区二区| 两个人看的免费小视频| 身体一侧抽搐| 香蕉丝袜av| 欧美一级毛片孕妇| 欧美成人午夜精品| 久久香蕉国产精品| 久久久国产成人精品二区| 超碰成人久久| 午夜a级毛片| 久久精品91无色码中文字幕| 可以在线观看毛片的网站| 伊人久久大香线蕉亚洲五| 露出奶头的视频| 最新在线观看一区二区三区| 一二三四在线观看免费中文在| 久久精品国产清高在天天线| 精品一区二区三区四区五区乱码| 亚洲av五月六月丁香网| 亚洲精品美女久久久久99蜜臀| 午夜精品久久久久久毛片777| 久久热在线av| 一进一出抽搐gif免费好疼| 91成年电影在线观看| e午夜精品久久久久久久| 亚洲自偷自拍图片 自拍| 亚洲精品久久成人aⅴ小说| 免费看十八禁软件| 一级毛片高清免费大全| 美女大奶头视频| 免费人成视频x8x8入口观看| 国产精品电影一区二区三区| av天堂在线播放| 制服丝袜大香蕉在线| 大码成人一级视频| 精品国产超薄肉色丝袜足j| 欧美激情极品国产一区二区三区| 亚洲成a人片在线一区二区| 老司机深夜福利视频在线观看| 国产真人三级小视频在线观看| 久久久久久久精品吃奶| 中文字幕久久专区| 亚洲国产精品999在线| 69av精品久久久久久| 欧美大码av| 黄色 视频免费看| 国产成人精品在线电影| 少妇的丰满在线观看| 欧美精品亚洲一区二区| 美女高潮到喷水免费观看| e午夜精品久久久久久久| 成人国产综合亚洲| 国产午夜精品久久久久久| 日本撒尿小便嘘嘘汇集6| 亚洲最大成人中文| 国产精品久久久久久精品电影 | 精品国产乱子伦一区二区三区| 成人国产一区最新在线观看| 一级片免费观看大全| 两个人看的免费小视频| 精品久久久久久,| 麻豆av在线久日| 啦啦啦观看免费观看视频高清 | √禁漫天堂资源中文www| 妹子高潮喷水视频| 极品教师在线免费播放| 在线播放国产精品三级| 精品一区二区三区视频在线观看免费| 极品教师在线免费播放| 国产激情久久老熟女| 激情视频va一区二区三区| 色综合站精品国产| 亚洲国产精品久久男人天堂| 此物有八面人人有两片| 99riav亚洲国产免费| 看免费av毛片| av在线播放免费不卡| 午夜免费激情av| 一区二区三区国产精品乱码| 在线视频色国产色| 午夜福利视频1000在线观看 | 欧美在线一区亚洲| 久久 成人 亚洲| 丁香欧美五月| 99香蕉大伊视频| 搞女人的毛片| 91精品三级在线观看| e午夜精品久久久久久久| av免费在线观看网站| 十八禁网站免费在线| 老司机午夜十八禁免费视频| 精品一区二区三区视频在线观看免费| а√天堂www在线а√下载| 国产人伦9x9x在线观看| 国产av在哪里看| 亚洲国产欧美一区二区综合| 可以在线观看毛片的网站| 亚洲第一av免费看| 中文字幕人妻熟女乱码| 亚洲午夜精品一区,二区,三区| 午夜福利,免费看| 性少妇av在线| 精品国产超薄肉色丝袜足j| 免费高清在线观看日韩| av天堂久久9| 亚洲av成人不卡在线观看播放网| 一区二区三区精品91| 精品久久久久久久人妻蜜臀av | 国内精品久久久久久久电影| 手机成人av网站| 91精品三级在线观看| 久久精品国产99精品国产亚洲性色 | 丝袜在线中文字幕| 制服丝袜大香蕉在线| xxx96com| 男女下面进入的视频免费午夜 | 久久精品国产99精品国产亚洲性色 | 国产私拍福利视频在线观看| 婷婷丁香在线五月| 亚洲成人久久性| 国产高清有码在线观看视频 | 午夜精品久久久久久毛片777| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲成人免费电影在线观看| 亚洲av熟女| 亚洲 欧美一区二区三区| 午夜福利欧美成人| 久久香蕉激情| 一边摸一边做爽爽视频免费| 丝袜美腿诱惑在线| 久久热在线av| 97人妻精品一区二区三区麻豆 | 十分钟在线观看高清视频www| 欧美成人午夜精品| 欧美在线一区亚洲| 国产精品亚洲美女久久久| 欧美激情极品国产一区二区三区| 天堂影院成人在线观看| 国产一区在线观看成人免费| 中文字幕人妻熟女乱码| 亚洲三区欧美一区| 一个人观看的视频www高清免费观看 | 婷婷精品国产亚洲av在线| 日韩高清综合在线| 国产精品乱码一区二三区的特点 | 天天一区二区日本电影三级 | 国产精品乱码一区二三区的特点 | www日本在线高清视频| 免费高清视频大片| 黄色丝袜av网址大全| av天堂在线播放| 大香蕉久久成人网| 国产精品一区二区精品视频观看| 日本免费a在线| 欧美一级a爱片免费观看看 | av在线播放免费不卡| 操出白浆在线播放| 激情视频va一区二区三区| 久久精品国产亚洲av高清一级| 一级毛片女人18水好多| 90打野战视频偷拍视频| 亚洲欧美日韩高清在线视频| 免费av毛片视频| 久久久久久亚洲精品国产蜜桃av| 亚洲全国av大片| 久久天躁狠狠躁夜夜2o2o| 国产亚洲精品av在线| 岛国视频午夜一区免费看| 精品日产1卡2卡| ponron亚洲| 在线观看午夜福利视频| 成人国产综合亚洲| 国内毛片毛片毛片毛片毛片| 麻豆一二三区av精品| 一a级毛片在线观看| 国产精品久久久久久人妻精品电影| 精品久久久久久久久久免费视频| 午夜免费成人在线视频| 亚洲一码二码三码区别大吗| 最近最新中文字幕大全电影3 | 国产精品,欧美在线| 在线av久久热| 免费看a级黄色片| 99在线视频只有这里精品首页| 欧美精品亚洲一区二区| 人成视频在线观看免费观看| 国产免费男女视频| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲色图av天堂| 国产一区二区三区在线臀色熟女| 91精品国产国语对白视频| 午夜免费观看网址| 国产av一区在线观看免费| 美女大奶头视频| 久久这里只有精品19| 一区二区三区激情视频| 亚洲精品久久国产高清桃花| 少妇 在线观看| 男女之事视频高清在线观看| 午夜福利影视在线免费观看| 天天添夜夜摸| 亚洲午夜理论影院| 视频区欧美日本亚洲| 制服人妻中文乱码| 在线观看一区二区三区| 精品日产1卡2卡| 国产男靠女视频免费网站| 久久香蕉激情| 少妇粗大呻吟视频| 亚洲色图 男人天堂 中文字幕| 9热在线视频观看99| 叶爱在线成人免费视频播放| 国产熟女xx| 久久久水蜜桃国产精品网| 国产aⅴ精品一区二区三区波| 欧美在线黄色| 91麻豆av在线| 美女免费视频网站| 亚洲欧美精品综合久久99| 午夜免费成人在线视频| 热99re8久久精品国产| 精品一区二区三区视频在线观看免费| 国产精华一区二区三区| 黄网站色视频无遮挡免费观看| 老鸭窝网址在线观看| 日韩国内少妇激情av| 大陆偷拍与自拍| 看片在线看免费视频| www.999成人在线观看| 黄色丝袜av网址大全| avwww免费| 狂野欧美激情性xxxx| 日韩精品青青久久久久久| 波多野结衣一区麻豆| 国产亚洲精品久久久久久毛片| 免费搜索国产男女视频| 国语自产精品视频在线第100页| 亚洲av第一区精品v没综合| 热re99久久国产66热| 19禁男女啪啪无遮挡网站| 午夜免费鲁丝| 老汉色av国产亚洲站长工具| 久久青草综合色| 久久天堂一区二区三区四区| 最近最新中文字幕大全电影3 | 久久久国产精品麻豆| 精品国产乱子伦一区二区三区| 黄片小视频在线播放| 高清在线国产一区| 在线永久观看黄色视频| 黄色丝袜av网址大全| 一区二区日韩欧美中文字幕| 久久伊人香网站| 日韩 欧美 亚洲 中文字幕| 可以免费在线观看a视频的电影网站| 日本五十路高清| 国产成人av教育| 精品电影一区二区在线| 日本一区二区免费在线视频| 波多野结衣高清无吗| 18禁黄网站禁片午夜丰满| 成人av一区二区三区在线看| 一进一出抽搐动态| 日本五十路高清| x7x7x7水蜜桃| 亚洲精品一区av在线观看| 免费在线观看亚洲国产| 色在线成人网| 成熟少妇高潮喷水视频| 欧美黑人精品巨大| 伦理电影免费视频| 欧美黄色片欧美黄色片| 黄色a级毛片大全视频| 国产成年人精品一区二区| 中文字幕最新亚洲高清| 午夜福利,免费看| 国产精品一区二区免费欧美| 欧美黑人欧美精品刺激| 日日爽夜夜爽网站| 天天添夜夜摸| 天天一区二区日本电影三级 | 动漫黄色视频在线观看| 欧美人与性动交α欧美精品济南到| 麻豆久久精品国产亚洲av| 后天国语完整版免费观看| 久久婷婷成人综合色麻豆| 波多野结衣一区麻豆| 亚洲成人久久性| 69精品国产乱码久久久| 男人舔女人的私密视频| aaaaa片日本免费| 亚洲精品一区av在线观看| 夜夜夜夜夜久久久久| 国产男靠女视频免费网站| 亚洲成a人片在线一区二区| 午夜福利18| 中文字幕色久视频| 欧美黑人精品巨大| 久久热在线av| 女生性感内裤真人,穿戴方法视频| 日日爽夜夜爽网站| 亚洲性夜色夜夜综合| 国产亚洲精品av在线| 丝袜美腿诱惑在线| 美女国产高潮福利片在线看| 国产精品 国内视频| 777久久人妻少妇嫩草av网站| 亚洲黑人精品在线| 日韩中文字幕欧美一区二区| 99精品久久久久人妻精品| 18禁观看日本| 欧美色欧美亚洲另类二区 | 天堂影院成人在线观看| 99国产精品免费福利视频| 啦啦啦韩国在线观看视频| 女生性感内裤真人,穿戴方法视频| 麻豆一二三区av精品| 亚洲人成77777在线视频| 欧美乱码精品一区二区三区| 狠狠狠狠99中文字幕| 激情在线观看视频在线高清| 亚洲人成电影观看| 国产高清视频在线播放一区| 两人在一起打扑克的视频| 久久国产乱子伦精品免费另类| www国产在线视频色| 欧美在线黄色| 国内久久婷婷六月综合欲色啪| 丰满的人妻完整版| 看免费av毛片| 国产av精品麻豆| 亚洲自偷自拍图片 自拍| 高清黄色对白视频在线免费看| 欧美日韩精品网址| 嫁个100分男人电影在线观看| 老汉色∧v一级毛片| 人人妻人人澡人人看| 男女午夜视频在线观看| 一卡2卡三卡四卡精品乱码亚洲| 在线永久观看黄色视频| 免费在线观看日本一区| or卡值多少钱| 亚洲午夜精品一区,二区,三区| 免费看十八禁软件| 午夜视频精品福利| 首页视频小说图片口味搜索| av视频免费观看在线观看| 国产日韩一区二区三区精品不卡| 国产精品日韩av在线免费观看 | 欧美成人一区二区免费高清观看 | tocl精华| 国产男靠女视频免费网站| 精品欧美一区二区三区在线| 精品国产美女av久久久久小说| 国产成人av激情在线播放| 亚洲成人国产一区在线观看| 久久国产亚洲av麻豆专区| 久久人妻福利社区极品人妻图片| 精品福利观看| 两性夫妻黄色片| 成人国产一区最新在线观看| 91麻豆av在线| 在线免费观看的www视频| 看免费av毛片| 制服丝袜大香蕉在线| 国产精品一区二区精品视频观看| 两性夫妻黄色片| 日韩精品青青久久久久久| 十分钟在线观看高清视频www| 日韩精品免费视频一区二区三区| 亚洲一区高清亚洲精品| 国产又爽黄色视频| 国产人伦9x9x在线观看| 国产三级黄色录像| 欧美性长视频在线观看| 午夜福利视频1000在线观看 | 亚洲avbb在线观看| 男女床上黄色一级片免费看| 咕卡用的链子| 久久亚洲真实| 黄色 视频免费看| 99久久精品国产亚洲精品| av在线播放免费不卡| 欧美久久黑人一区二区| 亚洲人成77777在线视频| 日韩精品中文字幕看吧| 成人手机av| 人人妻,人人澡人人爽秒播| 成人亚洲精品av一区二区| 日韩欧美三级三区| 久久精品国产综合久久久| 大型av网站在线播放| 亚洲国产高清在线一区二区三 | www.精华液| 十八禁网站免费在线| 搡老熟女国产l中国老女人| 国产成人精品久久二区二区91| 一区二区三区激情视频| 99久久精品国产亚洲精品| 日本 av在线| 夜夜躁狠狠躁天天躁| av在线天堂中文字幕| 国语自产精品视频在线第100页| 波多野结衣一区麻豆| 亚洲美女黄片视频| 91大片在线观看| 久久精品人人爽人人爽视色| 岛国在线观看网站| 制服诱惑二区| 国产精品久久久av美女十八| 久久热在线av| 亚洲九九香蕉| 精品不卡国产一区二区三区| 午夜老司机福利片| 久久亚洲精品不卡| 免费一级毛片在线播放高清视频 | 亚洲精品中文字幕在线视频| 女人被狂操c到高潮| 久久精品国产清高在天天线| 精品国产国语对白av| 亚洲精华国产精华精| 黄网站色视频无遮挡免费观看| 国内精品久久久久久久电影| 色综合亚洲欧美另类图片| 91精品国产国语对白视频| 久久久久久久精品吃奶| 一区二区三区高清视频在线| 成人亚洲精品av一区二区| 亚洲av成人av| 又黄又爽又免费观看的视频| 99香蕉大伊视频| 国产xxxxx性猛交| 人人澡人人妻人| 香蕉丝袜av| 夜夜看夜夜爽夜夜摸| 精品乱码久久久久久99久播| 国产1区2区3区精品| 亚洲av第一区精品v没综合| 国产99白浆流出| 欧美中文日本在线观看视频| 99精品欧美一区二区三区四区| 免费在线观看视频国产中文字幕亚洲| 两性夫妻黄色片| 亚洲欧美日韩无卡精品| 50天的宝宝边吃奶边哭怎么回事| 国产亚洲精品久久久久5区| 在线观看www视频免费| 夜夜夜夜夜久久久久| 欧美老熟妇乱子伦牲交| 成人永久免费在线观看视频| 给我免费播放毛片高清在线观看| 日韩成人在线观看一区二区三区| 精品久久久久久久久久免费视频| 一夜夜www| 麻豆久久精品国产亚洲av| 亚洲欧美精品综合久久99| 亚洲精品美女久久av网站| 日韩国内少妇激情av| 后天国语完整版免费观看| 巨乳人妻的诱惑在线观看| 脱女人内裤的视频| 亚洲国产精品成人综合色| 男人舔女人的私密视频| 亚洲第一电影网av| 国产精品爽爽va在线观看网站 | 97碰自拍视频| 黄色丝袜av网址大全| 天天添夜夜摸| 精品国产超薄肉色丝袜足j| 可以免费在线观看a视频的电影网站| 国产av一区二区精品久久| 精品卡一卡二卡四卡免费| 十八禁人妻一区二区| 久久久国产欧美日韩av| 日韩大尺度精品在线看网址 | 黄色 视频免费看| 一卡2卡三卡四卡精品乱码亚洲| 国产一区二区激情短视频| 老司机在亚洲福利影院| 很黄的视频免费| 午夜免费观看网址| 国产免费男女视频| 别揉我奶头~嗯~啊~动态视频| av欧美777| 亚洲av成人一区二区三| 禁无遮挡网站| 午夜福利欧美成人| 男男h啪啪无遮挡| 免费看十八禁软件| 无遮挡黄片免费观看| 怎么达到女性高潮| 母亲3免费完整高清在线观看| 久久久久亚洲av毛片大全| xxx96com| 久久久久久久精品吃奶| 国产精品久久久久久亚洲av鲁大| 99热这里只有是精品50| 丝袜美腿在线中文| 日日啪夜夜撸| 午夜精品一区二区三区免费看| 丝袜美腿在线中文| 久久久午夜欧美精品| 国产综合懂色| 两个人视频免费观看高清| 男女啪啪激烈高潮av片| 中文在线观看免费www的网站| 国产伦人伦偷精品视频| 日本免费一区二区三区高清不卡| 日本在线视频免费播放| 在线观看美女被高潮喷水网站| 成人av一区二区三区在线看| 久久久久久久久久久丰满 | 亚洲中文日韩欧美视频| 日本一二三区视频观看| 少妇丰满av| 亚洲国产日韩欧美精品在线观看| 在现免费观看毛片| 婷婷六月久久综合丁香| 久久久久久久久久成人| 国产淫片久久久久久久久| 丰满的人妻完整版| 免费看光身美女| 在线免费观看不下载黄p国产 | 欧美日韩国产亚洲二区| 别揉我奶头~嗯~啊~动态视频| 免费av毛片视频| 成人高潮视频无遮挡免费网站| 精品无人区乱码1区二区| 五月玫瑰六月丁香| 国产精品98久久久久久宅男小说| 色视频www国产| 有码 亚洲区|