• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of layer sliding on the interfacial electronic properties of intercalated silicene/indium selenide van der Waals heterostructure

    2022-03-23 02:21:18MasoodYousafYounisAhmedJbaraJunaidIqbalKhanMurtazaandSaeed
    Communications in Theoretical Physics 2022年3期

    Masood Yousaf, M W Younis, Ahmed S Jbara, M Junaid Iqbal Khan,G Murtaza and M A Saeed

    1 Department of Physics,Division of Science and Technology,University of Education,Lahore,54770,Pakistan

    2 Department of Chemistry,University of Management and Technology,C-II,Johar Town,Lahore,54770,Pakistan

    3 Mathematics Department, College of Education for Pure Science, Al-Muthanna University, Samawah,66001, Iraq

    4 Laboratory of Theoretical and Experimental Physics, Department of Physics, Bahauddin Zakariya University, Multan, 60800, Pakistan

    5 Materials Modelling Lab, Department of Physics, Islamia College Peshawar, KP, Pakistan

    6 Department of Mathematics & Natural Sciences, Prince Mohammad Bin Fahd University, P.O.Box 1664, Alkhobar 31952, Saudi Arabia

    Abstract Methods capable of tuning the properties of van der Waals(vdW)layered materials in a controlled and reversible manner are highly desirable.Interfacial electronic properties of two-dimensional vdW heterostructure consisting of silicene and indium selenide(InSe)have been calculated using density functional theory-based computational code.Furthermore, in order to vary the aforementioned properties,silicene is slid over a InSe layer in the presence of Li intercalation.On intercalation of the heterostructure, the buckling parameter associated with the corrugation of silicene decreases from 0.44 ? to 0.36 ?, whereas the InSe structure remains unaffected.Potential energy scans reveal a significant increase in the sliding energy barrier for the case of intercalated heterostructure as compared with the unintercalated heterostructure.The sliding of the silicene encounters the maximum energy barrier of 0.14 eV.Anisotropic analysis shows the noteworthy differences between calculated in-plane and out-of-plane part of dielectric function.A variation of the planar average charge density difference,dipole charge transfer and dipole moment have been discussed to elucidate the usability spectrum of the heterostructure.The employed approach based on intercalation and layer sliding can be effectively utilized for obtaining next-generation multifunctional devices.

    Keywords: vdW heterostructure, intercalation, tuning of properties, layer sliding, interfacial electronic properties

    1.Introduction

    Since the isolation of graphene [1], numerous investigations[2–4] have focused on strategies for overcoming the intrinsic downside, which is the zero band gap of graphene.The aforementioned drawback along with its confined properties limits potential applications of graphene-based nanoelectronics, regardless of it having excellent charge carrier mobility [5].Recently, researchers have focused on heterostructures(HS)based on two-dimensional(2D)materials such as phosphorene [6, 7], silicene [8], permeable graphitic carbon nitrides[9,10],transition metal dichalcogenides(TMDC)[11, 12], post-transition metal chalcogenides (InSe) [13, 14]as they have non-zero band gap along with many other fascinating properties that are admirable for next generation nanodevices [15].

    Efforts are underway by researchers to develop van der Waals (vdW)-HS by utilizing various available 2D monolayers [16, 17].vdW-HS may offer fascinating tunable physical and chemical properties [18, 19].For example, an isolated GaAs monolayer, which has an indirect band gap,changes its band gap nature to direct band gap in graphene/GaAs HS [20].Both MoSSe/WSSe [21] and ZnO/BSe [22]vdW-HS have demonstrated the continuous separation of photogenerated electron-holes.The heterojunction between MoS2and WSe2layers present the possibility to form photoelectrodes having excellent photocurrent intensity and photo responsivity [23].MoS2/BP vdW-HS having type-II direct band gap has excellent carrier mobility (~20 × 103cm2V-1s-1), which is a superior advantage over TMDC based vdW-HS [24].

    Properties of vdW-HS can be further tuned by employing various strategies.For instance, by the application of an electric-field and biaxial strain on GaTe/CdS vdW-HS changes the band gap nature from indirect to direct and vice versa, respectively.Tunable electronic properties make GaTe/CdS vdW-HS a favorable contender for nanoelectronics and optoelectronics devices [25].The optoelectronic properties of graphene/WSe2vdW-HS can be tuned by the introduction of a variety of vacancies, making it suitable for optical nanodevices [26].The InN and graphene monolayers become electron and hole rich in graphene/InN vdW-HS,respectively, causing a transfer of electrons from graphene to InN, and absorption from the visible to near-infrared region.Under the effect of the electric field,graphene/InN HS is able to switch its character from n-type to p-type Schottky contact and to n-type Ohmic contact making it a suitable candidate for state-of-the-art integrated devices [27].

    In this work, we have cleverly modelled corrugated silicene/InSe vdW-HS to investigate the effect of lithium(Li)intercalation at the interface and layer sliding on the physical properties of vdW-HS.Intercalants can change Bader’s charge and electronic structure by transferring its charge to vdW-HS making it a studiable material for Li-ion batteries[28].Reversible intercalation of vdW-HS is also possible,which is of much importance for energy storage devices.Charge-transfer phenomena between participating layers of vdW-HS have been reported.For lithium intercalated graphene/MoS2vdW-HS,the MoS2monolayer attained 60%more charge from lithium than graphene [29].Intercalation can profoundly alter intrinsic properties and thus provides the opportunity to design the vdW-HS with high limits and astounding cycling performance for energy devices.In addition to Li intercalation,we slid one of the monolayers over the other and reported the variation of the structural and interfacial electronic properties of vdW-HS.The layer sliding technique is found to be a highly controllable method for tuning the properties of vdW-HS[30].This study investigates the idea that the excellent properties for cutting edge devices are achievable through a simultaneous intercalation and layer sliding strategy.

    2.Computational method

    All density functional theory (DFT) calculations are completed using Quantum ESPRESSO (QE) code [31], which utilizes pseudopotentials and plane wave basis sets.Perdew and Wang type functional [32] is selected to calculate exchange and correlation energy.We used norm-conserving type pseudopotentials (Si.pw-mt_fhi.UPF, In.pw-mt_fhi.UPF, Se.pw-mt_fhi.UPF and Li.pw-mt_fhi.UPF) [33], generated by Martins-Troullier method [34].High cut-off energies for the wave function(80 Ry)and charge density(320 Ry)are used.For the supercell,7 × 7 × 1 K points grid is integrated and vacuum spacing of greater than 10 ? is imposed (sufficient to eliminate any electronic interactions due to repetitive copies of supercell generated by QE periodic code).The minimum transition energy of each patch of sliding pathway is calculated by nudged elastic band(NEB) method [35, 36], which is also implemented in QE.

    3.Results and discussion

    3.1.Structural properties

    Firstly, we modelled a vdW-HS using a corrugated indium selenide(InSe)and silicene layer.The lattice constants of silicene and InSe layer are found to be 3.862 ? and 3.860 ?,respectively.The use of a selection of silicene and InSe monolayers to form the stable HS makes sense due to negligible lattice mismatch(0.07%).As a result,the corrugated vdW-HS is obtained by using 2 × 2 × 1 unit cell sized monolayers that can effectively retain intercalants despite having large vdW gap (2.923 ?).The upper and lower plane silicon(Si)atoms of buckled silicene from here on are represented as up-Si and down-Si,respectively.Secondly,to find out the most stable intercalated vdW-HS, Li is inserted at different possible sites between the two layers.Side[subfigures 1(a),(c),(e)and(g)]and top[subfigures 1(b),(d),(f)and(h)]views of various possible interfacial intercalation sites for Li have been identified as shown in the figure 1.After comparing the total energy for each intercalated HS having Li at a specific site, the most stable intercalation site is found i.e., Li atop of Se atom [subfigures 1(a)/(b)].Intercalation of silicene/InSe HS increased the vdW gap to 3.244 ?.Li stability is also checked by placing it atop of In atoms as shown in subfigures 1(c)/(d) but this particular configuration is higher in energy by 0.03 eV than the most stable configuration.Li is not stable under down-Si,so an unoptimized geometry is provided as shown in subfigures 1(e)/(f).In the case of Li insertion under up-Si, the buckling of silicene atoms is affected and adjusted to accommodate the guest Li atoms as shown in subfigures 1(g)/(h).The intercalated configuration 1(g)/(h) is greater in energy than the most stable intercalated HS 1(a)/(b) by 0.21 eV.Li intercalation decreases the buckling parameter (d) from 0.439 ? (for pristine silicene) to 0.364 ? (for silicene present in the intercalated HS),which is defined as the separation between the upper and lower planes containing Si atoms of silicene.The thickness of InSe(5.33 ?), which is defined as the distance between the top-most and bottom-most selenium(Se)atoms,is not affected at all by Li intercalation.

    Figure 1.Side(subfigures(a),(c),(e)and(g))and top(subfigures(b),(d),(f),(h))views of silicene/InSe vdW-HS with lithium as intercalant(red balls) at various possible interfacial sites.The subfigures (a)/(b), in which Li is atop of selenium atom, is the most stable intercalated heterostructure.Subfigure(i)shows relative changes in total energy upon sliding of silicene over InSe monolayer.The subfigures(a)/(b)and(l)/(m)show the side/top view of intercalated HS before and after sliding,respectively.Configuration obtained at halfway of sliding pathway is provided as subfigure (j)/(k).The red colour arrows in subfigures (k) and (m) show the direction of sliding.

    3.2.Energetics and layer sliding

    After obtaining the most stable configuration of silicene/InSe vdW-HS[subfigures 1(a)/(b)],silicene is slid over the InSe layer covering a length of 2.27 ?, which is the bond length between two adjacent silicon atoms of the corrugated silicene.The sliding is carried out in ten equal parts(one part = 2.27 ?/10).The total energy is collected at the end of each sliding portion of the pathway.The subfigure 1(i) shows the relative change in total energy upon sliding of silicene over InSe in the presence of intercalant.A side/top view of the intercalated HS as it appears at the beginning[subfigures 1(a)/(b)],halfway[subfigures 1(j)/(k)]and end point [subfigures 1(l)/(m)] of the sliding pathway are shown in figure 1.The red arrows marked in subfigures 1(k)and(m)show the sliding direction.There is a continuous increase of total energy from the beginning of the sliding until around 80%of the pathway, after that the energy retains a uniform trend.

    A variation of the vdW gap between the two monolayers upon sliding of silicene is also investigated,as shown in figure 2.The calculated vdW gap of most stable intercalated HS is 3.244 ?, which is significantly larger than the vdW gap(2.923 ?) belonging to unintercalated silicene/InSe HS.The vdW gap increases continuously as the sliding proceeds and reaches the maximum value (3.808 ?) at 80% of the sliding pathway.A nudged elastic band (NEB) method is employed to calculate the potential energy barrier (Eb) between two sequential divisions of sliding.Figure 3 provides the calculated Ebvalues indicated by upper case letters A,B,C,D,E,F,G,H,I and J relating to portion of the sliding pathway from 0%to 10%,10%to 20%, 20%to 30%,30%to 40%,40%to 50%, 50% to 60%, 60% to 70%, 70% to 80%, 80% to 90% and 90% to 100%, respectively.The silicene encounters the highest energy barrier (Eb= 144.14 meV) when it slides from 20% to 30% of the sliding pathway.The sliding becomes more difficult due to the hindrance caused by the presence of Li at the vdW gap as compared with the unintercalated system.

    Figure 2.Variation of vdW gap as a function of the percentage of the sliding pathway.

    Figure 3.Calculate potential energy barrier (Eb) appeared between two consecutive divisions of the sliding pathway.Sliding is carried out in ten equal parts (one part = 2.27 ?/10).Calculated Eb values have been shown indicated by upper case letters A,B,C,D,E,F,G,H,I and J relating to portion of the sliding pathway from 0%to 10%,10%to 20%,20%to 30%,30%to 40%,40%to 50%,50%to 60%,60% to 70%, 70% to 80%, 80% to 90% and 90% to 100%,respectively.

    3.3.Interfacial electronic properties

    A study of the interfacial electronic properties offers a significant platform for making functional electronic devices.Various interfacial electronic properties such as planar average charge density difference (Δρ), dipole charge transfer(ΔQ) and interface dipole moment (Δμ) are calculated for intercalated silicene/InSe vdW-HS.Calculated values relating to the aforementioned properties are plotted as a function of vertical length of the supercell collected at the initial,halfway and complete sliding pathway as shown in figure 4.Each subfigure of figure 4 has dotted red and blue vertical lines, which indicate the position of InSe and silicene at the interface of the HS,respectively.Δρ(z)for intercalated HS is calculated as

    where ρ(z)Li/silicene/InSe, ρ(z)silicene/InSeand ρ(z)Liare the planar average charge densities of intercalated vdW-HS,unintercalated vdW-HS, and Li, respectively.Δρ is provided along z-axis(equation (2)), whereas electron density depletion and accumulation is indicated by negative and positive values,respectively.The decrease/increase of the electron density is mainly caused as a result of the formation of heterostructure and intercalation.

    Before sliding, the most stable intercalated vdW-HS has noteworthy values of ρ(z) [subfigure 4(a)] near silicene due to Li intercalation.The midway [subfigure 4(b)] and full length[subfigure 4(c)]sliding of the silicene further increased ρ(z)near the silicene.Sliding increases the internal distance between the participating layers as indicated by the enlarged width between the marked vertical red and blue dotted lines as shown in subfigures 4(b) and (c).

    Figure 4.Calculated planar average charge density difference (Δρ), charge transfer (ΔQ) and interface dipole moment (μ) for intercalated heterostructure at initial[subfigures(a),(d),(g)],midway[(b),(e),(h)]and complete[(c),(f),(i)]coverage of the sliding pathway.Dotted red and blue vertical lines indicate the position of InSe and silicene at the interface, respectively.

    Furthermore, ΔQ and μ are calculated utilizing ρ(z)through the following equations.

    Interfacial electronic property ΔQ describes the direction of charge transference from InSe to silicene for negative values of ΔQ and vice versa.Before the layer sliding[subfigure 4(d)],Li transfers a reasonable amount of ΔQ to InSe.For both the halfway and complete coverage of the sliding pathway a minor decline in the positive values of ΔQ is seen near silicene as shown in subfigure 4(e) and subfigure 4(f), respectively.Interfacial electronic property μ(z) is determined by the integration (equation (4)) along the vertical length (z-axis) of the supercell.For initial [subfigure 4(g)], middle [subfigure 4(h)]and final [subfigure 4(i)] coverage of the sliding pathway,positive values of μ(z) are found near silicene possibly due to presence of Li.Plots for ΔQ and μ(z)show a similar trend with the later quantity having higher values.

    Figure 5 shows band structures of intercalated silicene/InSe vdW-HS along high-symmetry directions for unslided[subfigure 5(a)] and slided [subfigure 5(b)] configurations.The sliding of silicene over InSe monolayer in the presence of Li-intercalant results in the negligible changes in the overall shape of the band structure.There is no significant band gap at Fermi level (indicated by blue horizontal line) for both slided and unslided configurations.It is worth mentioning that very few valence bands are available near fermi level that can be tuned using existing techniques.

    Figure 5.Calculated band structures of intercalated silicene/InSe heterostructure before (a) and after (b)sliding of silicene over InSe layer.The Fermi level is set at 0 eV indicated by a horizontal blue line on the energy scale in band structure plots.

    Figure 6.Calculated in-plane (εx and εy) and out-of-plane (εz) components of the dielectric function.

    The dielectric function(DF)of intercalated silicene/InSe vdW-HS is examined with the help of complex DF[ε(ω) = ε1(ω) + iε2(ω)].The imaginary part [ε2(ω)] can be related to the polarization losses of the material under a symmetrical fields and can be determined as follow [37];Subfigures 6(a)–(c) describe the calculated in-plane (εxand εy) and out-of-plane (εz) dielectric functions (DFs) of Liintercalated vdW-HS at the initial, halfway and full coverage of the sliding pathway, respectively.It is clear from the figure 6 that there is a major difference between the DF along the planar and vertical direction.It is worth mentioning that as a result of the sliding, both in-plane and out-of-plane DFs associated with the intercalated vdW-HS deviates from the DFs of the starting configuration.Also,it is evident that both εxand εyare almost same in case of unslided[subfigure 6(a)]configuration and the trend is repeated for the case of the halfway and completely slided configuration.Sliding causes only minor variations in the resulting in-plane DFs in contrary to out-of-plane DFs.For in-plane DFs, significant absorption peaks are found at 1 eV and 4 eV.In case of out-of-plane DFs,noteworthy absorption region lies between 2 eV and 5 eV for configurations appearing at initial, halfway and full coverage of the sliding pathway.The response of the VdW-HS to external electromagnetic waves can be described with the help of plots (figure 6) that also forecasts electronic optical transitions (represented by peaks) between valence and conduction band giving rise to the absorption region.

    4.Conclusion

    Interfacial electronic properties of a two-dimensional intercalated silicene/InSe van der Waals heterostructure (vdWHS)have been calculated using density functional theory.The most stable intercalated vdW-HS is obtained by comparing energetics of various systems having different interfacial positions for Li.In order to tune the physical properties,silicene is slid over a InSe layer in regular intervals.The vdW gap increases as the sliding proceeds and reaches the maximum value of 3.81 ?.Potential energy scans along the direction of the slide reveals that sliding is required to overcome an order of higher energy due to Li atoms at the interface as compared with the unintercalated vdW-HS.The maximum energy barrier of 0.14 eV is found along the sliding pathway.Li intercalation increases average charge density difference near silicene reaching the maximum value on the completion of sliding.Electronic optical transitions representing the absorption region have been indicated by the inplane and out-of-plane dielectric function.As a result of the sliding, in-plane and out-of-plane components of the dielectric functions (DFs) associated with the intercalated vdW-HS deviates from the dielectric functions of the unslided configuration.The employed approach advocates that the physical properties of layered materials can be tuned effectively in a controlled manner through a combination of intercalation and layer sliding.

    亚洲av电影不卡..在线观看| 在线国产一区二区在线| 变态另类成人亚洲欧美熟女| 日日啪夜夜撸| 丰满的人妻完整版| 亚洲最大成人av| 亚洲精品国产av成人精品| 成年av动漫网址| 日韩成人伦理影院| 成人特级黄色片久久久久久久| 亚洲国产精品sss在线观看| 国产成人福利小说| 日日摸夜夜添夜夜爱| 美女cb高潮喷水在线观看| 毛片女人毛片| 性插视频无遮挡在线免费观看| 能在线免费看毛片的网站| 国产高清有码在线观看视频| a级毛片免费高清观看在线播放| 淫秽高清视频在线观看| 综合色丁香网| 亚洲av熟女| 亚洲最大成人手机在线| 乱系列少妇在线播放| 亚洲国产色片| 99热6这里只有精品| 干丝袜人妻中文字幕| 蜜桃亚洲精品一区二区三区| 亚洲不卡免费看| 蜜桃久久精品国产亚洲av| 啦啦啦韩国在线观看视频| 一级毛片aaaaaa免费看小| 久久精品国产亚洲av香蕉五月| 日日撸夜夜添| 国产精品av视频在线免费观看| 色吧在线观看| 国内揄拍国产精品人妻在线| 欧美精品国产亚洲| 久久婷婷人人爽人人干人人爱| 丰满人妻一区二区三区视频av| 亚洲18禁久久av| 亚洲熟妇中文字幕五十中出| 亚洲无线在线观看| 国产成人精品婷婷| 日本免费a在线| 欧美成人一区二区免费高清观看| 久久精品国产亚洲网站| 国产高清三级在线| 国产成人freesex在线| 亚洲成人久久性| 在线观看免费视频日本深夜| 国产69精品久久久久777片| 91精品国产九色| 乱码一卡2卡4卡精品| 看片在线看免费视频| 精品久久久久久久人妻蜜臀av| 亚洲电影在线观看av| av.在线天堂| 91aial.com中文字幕在线观看| 久久婷婷人人爽人人干人人爱| 一个人免费在线观看电影| 一进一出抽搐动态| av在线老鸭窝| 免费无遮挡裸体视频| 亚洲成人中文字幕在线播放| 最近视频中文字幕2019在线8| 成人性生交大片免费视频hd| 欧美高清性xxxxhd video| 亚洲丝袜综合中文字幕| 日本黄色视频三级网站网址| 美女大奶头视频| 男女边吃奶边做爰视频| 高清毛片免费观看视频网站| 嘟嘟电影网在线观看| 国产在线男女| av在线蜜桃| 亚洲av.av天堂| 日韩av在线大香蕉| 美女高潮的动态| 波多野结衣巨乳人妻| 亚洲中文字幕一区二区三区有码在线看| 午夜a级毛片| 69人妻影院| 欧美xxxx黑人xx丫x性爽| 久久精品久久久久久久性| 国产av麻豆久久久久久久| 午夜福利在线观看免费完整高清在 | 日韩一区二区三区影片| 久久精品国产亚洲网站| 国产v大片淫在线免费观看| 老女人水多毛片| 国产av麻豆久久久久久久| 永久网站在线| 国产真实伦视频高清在线观看| 国产精品日韩av在线免费观看| 六月丁香七月| 夜夜夜夜夜久久久久| 看片在线看免费视频| 国内精品美女久久久久久| 久久久久久伊人网av| 99久久无色码亚洲精品果冻| 中出人妻视频一区二区| kizo精华| 久久久久久九九精品二区国产| 免费av毛片视频| 美女内射精品一级片tv| 国产黄色视频一区二区在线观看 | 99热这里只有是精品50| 亚洲中文字幕日韩| 91aial.com中文字幕在线观看| 国产精品人妻久久久影院| 天美传媒精品一区二区| 欧美色欧美亚洲另类二区| 精品久久久久久久久久免费视频| 岛国毛片在线播放| 欧美日韩综合久久久久久| 午夜福利在线在线| 国产一区二区三区av在线 | 亚洲va在线va天堂va国产| 淫秽高清视频在线观看| 最近视频中文字幕2019在线8| 一边摸一边抽搐一进一小说| 午夜爱爱视频在线播放| 国产在视频线在精品| 白带黄色成豆腐渣| 午夜福利在线在线| 五月玫瑰六月丁香| 男人的好看免费观看在线视频| 女人被狂操c到高潮| 精品久久久久久久久久免费视频| 国产精品国产高清国产av| 色噜噜av男人的天堂激情| 搡老妇女老女人老熟妇| 久久久色成人| 中文字幕制服av| 波多野结衣巨乳人妻| 中文亚洲av片在线观看爽| 国产精品av视频在线免费观看| 天美传媒精品一区二区| 国内精品宾馆在线| 亚洲av电影不卡..在线观看| 久久亚洲国产成人精品v| 人体艺术视频欧美日本| 欧美日韩在线观看h| 国产色婷婷99| 日韩成人伦理影院| 国产精品一区二区性色av| 亚洲真实伦在线观看| 亚洲国产欧美在线一区| 免费搜索国产男女视频| 久久人人爽人人片av| 国产在视频线在精品| 成人高潮视频无遮挡免费网站| 2022亚洲国产成人精品| 又粗又硬又长又爽又黄的视频 | 女人被狂操c到高潮| 在线国产一区二区在线| 亚洲精品自拍成人| 天堂√8在线中文| 久久午夜福利片| 国产单亲对白刺激| 国产色爽女视频免费观看| 亚洲国产精品合色在线| 熟女电影av网| 国产伦精品一区二区三区视频9| 国产一区亚洲一区在线观看| 亚洲婷婷狠狠爱综合网| 1024手机看黄色片| av黄色大香蕉| 一个人看视频在线观看www免费| 在线观看av片永久免费下载| 国产三级在线视频| 亚洲无线在线观看| 国产老妇伦熟女老妇高清| 亚洲第一电影网av| 亚洲色图av天堂| 日本五十路高清| 深夜精品福利| 国产高清有码在线观看视频| 男插女下体视频免费在线播放| 久久久久性生活片| 免费观看精品视频网站| 在线天堂最新版资源| 少妇人妻一区二区三区视频| 国产亚洲91精品色在线| 日本一二三区视频观看| 高清毛片免费看| 国产伦一二天堂av在线观看| 91久久精品电影网| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲av男天堂| 日韩一区二区视频免费看| 九草在线视频观看| 精品一区二区三区人妻视频| 久久久成人免费电影| 亚洲熟妇中文字幕五十中出| 成人性生交大片免费视频hd| 欧美高清成人免费视频www| 亚洲欧美日韩无卡精品| 69人妻影院| 成人亚洲精品av一区二区| 伦精品一区二区三区| 亚洲真实伦在线观看| or卡值多少钱| 国产成人aa在线观看| 又黄又爽又刺激的免费视频.| 在线观看66精品国产| 最新中文字幕久久久久| 国产精品女同一区二区软件| 一级黄片播放器| 国产成人午夜福利电影在线观看| 国产乱人视频| 国产成人福利小说| 熟女人妻精品中文字幕| 99精品在免费线老司机午夜| 国产女主播在线喷水免费视频网站 | 亚洲婷婷狠狠爱综合网| 久久精品国产鲁丝片午夜精品| 亚洲av二区三区四区| 午夜a级毛片| 美女内射精品一级片tv| 日韩欧美国产在线观看| 两个人的视频大全免费| 一级二级三级毛片免费看| 精品99又大又爽又粗少妇毛片| 网址你懂的国产日韩在线| 菩萨蛮人人尽说江南好唐韦庄 | 日韩一本色道免费dvd| 国内揄拍国产精品人妻在线| 亚洲av熟女| 一级av片app| 亚洲无线观看免费| 久久99蜜桃精品久久| 天美传媒精品一区二区| 成人综合一区亚洲| www日本黄色视频网| 亚洲国产色片| 婷婷精品国产亚洲av| 国产精品日韩av在线免费观看| 日本在线视频免费播放| 只有这里有精品99| 日本欧美国产在线视频| 国产成人freesex在线| 麻豆国产97在线/欧美| 久久精品国产亚洲av天美| 日韩精品青青久久久久久| 日韩高清综合在线| 日韩国内少妇激情av| 色哟哟·www| 国产久久久一区二区三区| 男人舔奶头视频| 春色校园在线视频观看| 免费看光身美女| 国产一区二区激情短视频| 日韩 亚洲 欧美在线| 国产精品人妻久久久久久| 国产女主播在线喷水免费视频网站 | 在线观看美女被高潮喷水网站| 亚洲国产色片| 成人美女网站在线观看视频| 精品人妻偷拍中文字幕| 亚洲国产欧洲综合997久久,| 久久久久性生活片| 免费av不卡在线播放| 成人漫画全彩无遮挡| 日韩大尺度精品在线看网址| 国产精品久久久久久久久免| 中国美白少妇内射xxxbb| 亚洲国产欧美在线一区| 日本三级黄在线观看| 国产三级在线视频| 简卡轻食公司| 亚洲电影在线观看av| 卡戴珊不雅视频在线播放| 亚洲欧美成人精品一区二区| 97超视频在线观看视频| 欧美成人免费av一区二区三区| 精品人妻偷拍中文字幕| 男插女下体视频免费在线播放| 少妇熟女aⅴ在线视频| 色哟哟·www| 乱码一卡2卡4卡精品| 26uuu在线亚洲综合色| 免费在线观看成人毛片| 91久久精品电影网| 男人的好看免费观看在线视频| 婷婷亚洲欧美| 免费观看人在逋| 小蜜桃在线观看免费完整版高清| 国产精品人妻久久久影院| 色尼玛亚洲综合影院| 久久国产乱子免费精品| 最近2019中文字幕mv第一页| 寂寞人妻少妇视频99o| 性插视频无遮挡在线免费观看| 国产免费男女视频| 九九热线精品视视频播放| 久久久精品大字幕| 国产伦精品一区二区三区视频9| 一级av片app| 日日啪夜夜撸| 国产精品一区www在线观看| 亚洲经典国产精华液单| 亚洲av男天堂| 中国国产av一级| 国产av不卡久久| 国产美女午夜福利| 91精品一卡2卡3卡4卡| 亚洲欧美日韩无卡精品| 欧美一区二区亚洲| 女的被弄到高潮叫床怎么办| 亚洲成av人片在线播放无| 美女大奶头视频| 亚洲精品影视一区二区三区av| 国产探花极品一区二区| 18禁在线播放成人免费| 亚洲精华国产精华液的使用体验 | 国产成人精品一,二区 | 赤兔流量卡办理| 天堂√8在线中文| 男女那种视频在线观看| 日韩欧美一区二区三区在线观看| 中文字幕制服av| 美女大奶头视频| 日本黄色片子视频| 2022亚洲国产成人精品| 热99re8久久精品国产| ponron亚洲| 男人和女人高潮做爰伦理| 变态另类成人亚洲欧美熟女| 欧美成人a在线观看| 国产精品国产高清国产av| 日本av手机在线免费观看| 日韩在线高清观看一区二区三区| a级毛片免费高清观看在线播放| 国产精品电影一区二区三区| 亚洲av成人av| 亚洲人成网站高清观看| 久久久久久久久大av| 99热这里只有精品一区| www日本黄色视频网| 久久精品国产99精品国产亚洲性色| 自拍偷自拍亚洲精品老妇| 久久人人爽人人片av| 亚洲精品亚洲一区二区| 一进一出抽搐动态| 大型黄色视频在线免费观看| 国产成人aa在线观看| 久久久久久九九精品二区国产| 99在线视频只有这里精品首页| 久久精品91蜜桃| 免费观看的影片在线观看| 精品不卡国产一区二区三区| 国产精品久久视频播放| .国产精品久久| 天天躁日日操中文字幕| 99久久九九国产精品国产免费| 岛国在线免费视频观看| 亚洲国产精品合色在线| 亚洲aⅴ乱码一区二区在线播放| 国产精品乱码一区二三区的特点| 校园人妻丝袜中文字幕| 成人高潮视频无遮挡免费网站| 嫩草影院新地址| 欧美+日韩+精品| 日本免费a在线| 搞女人的毛片| av在线播放精品| 黄色一级大片看看| 夜夜爽天天搞| 人人妻人人澡人人爽人人夜夜 | 久久中文看片网| 级片在线观看| 亚洲av免费在线观看| 久久久久久久亚洲中文字幕| 亚洲18禁久久av| 啦啦啦观看免费观看视频高清| 长腿黑丝高跟| 成人欧美大片| 一级毛片电影观看 | 一个人看的www免费观看视频| 亚洲aⅴ乱码一区二区在线播放| 色综合色国产| av视频在线观看入口| 婷婷亚洲欧美| 精品久久久久久久末码| 一级黄色大片毛片| 国模一区二区三区四区视频| 高清午夜精品一区二区三区 | 自拍偷自拍亚洲精品老妇| 色视频www国产| 日本色播在线视频| 国产精品久久电影中文字幕| 热99在线观看视频| 午夜久久久久精精品| 久久久久久久久久黄片| 成人美女网站在线观看视频| 哪里可以看免费的av片| 99久久精品一区二区三区| 欧美一区二区国产精品久久精品| 亚洲欧美成人精品一区二区| 天美传媒精品一区二区| 免费无遮挡裸体视频| 97热精品久久久久久| 国产熟女欧美一区二区| 国内精品宾馆在线| 日韩人妻高清精品专区| 在线免费观看不下载黄p国产| 久久久午夜欧美精品| 麻豆av噜噜一区二区三区| 深夜a级毛片| 国产91av在线免费观看| 国产私拍福利视频在线观看| 中文字幕久久专区| 欧美一区二区国产精品久久精品| av在线亚洲专区| 狠狠狠狠99中文字幕| 大香蕉久久网| 亚洲va在线va天堂va国产| 国产精品一区二区性色av| 国产黄色视频一区二区在线观看 | 亚洲av第一区精品v没综合| www.av在线官网国产| 国产成人a∨麻豆精品| 熟女电影av网| 国产精品一区www在线观看| 日本五十路高清| 国产v大片淫在线免费观看| 亚洲美女视频黄频| 日本一本二区三区精品| 久久久久久久午夜电影| 91狼人影院| 最近中文字幕高清免费大全6| h日本视频在线播放| 国产精华一区二区三区| 大型黄色视频在线免费观看| 性欧美人与动物交配| 久久精品久久久久久噜噜老黄 | 永久网站在线| 中文字幕精品亚洲无线码一区| 国产亚洲5aaaaa淫片| 亚洲av不卡在线观看| 99久久精品热视频| 免费观看精品视频网站| 黄色视频,在线免费观看| 黄色配什么色好看| 久久久久九九精品影院| 在线观看av片永久免费下载| 国产单亲对白刺激| 亚洲综合色惰| 美女被艹到高潮喷水动态| 青春草亚洲视频在线观看| 熟女电影av网| 麻豆国产av国片精品| 男女啪啪激烈高潮av片| 性欧美人与动物交配| 婷婷六月久久综合丁香| 青春草视频在线免费观看| 国产精品精品国产色婷婷| 少妇高潮的动态图| 男人的好看免费观看在线视频| ponron亚洲| 成人二区视频| 久久久久久久久大av| 成人欧美大片| 最近中文字幕高清免费大全6| 边亲边吃奶的免费视频| 日本一二三区视频观看| av天堂在线播放| 国产91av在线免费观看| 长腿黑丝高跟| 一个人看视频在线观看www免费| 97热精品久久久久久| 国产精品综合久久久久久久免费| 蜜桃亚洲精品一区二区三区| 亚洲一级一片aⅴ在线观看| 成人美女网站在线观看视频| 亚洲一级一片aⅴ在线观看| 久久人妻av系列| 久久99热这里只有精品18| 国产一级毛片在线| 久久99精品国语久久久| 国产精品美女特级片免费视频播放器| 高清午夜精品一区二区三区 | 婷婷精品国产亚洲av| 69av精品久久久久久| 天天一区二区日本电影三级| 青青草视频在线视频观看| 国产精品人妻久久久久久| 97在线视频观看| 精品国内亚洲2022精品成人| 国产精品一及| 日韩欧美国产在线观看| 日韩欧美一区二区三区在线观看| 高清毛片免费看| 热99在线观看视频| 亚洲av电影不卡..在线观看| 18禁黄网站禁片免费观看直播| 日本黄色片子视频| av在线观看视频网站免费| 久久精品国产亚洲网站| 久久欧美精品欧美久久欧美| 国产成人aa在线观看| 男女啪啪激烈高潮av片| 在线免费十八禁| 91午夜精品亚洲一区二区三区| 久久人人爽人人片av| 精品人妻偷拍中文字幕| 国产黄色视频一区二区在线观看 | 亚洲美女视频黄频| 99久久人妻综合| 日韩制服骚丝袜av| 国产亚洲av片在线观看秒播厂 | 亚洲美女搞黄在线观看| 亚洲国产精品sss在线观看| 成年免费大片在线观看| 亚洲乱码一区二区免费版| a级毛色黄片| 日本五十路高清| 国产亚洲欧美98| 国产真实伦视频高清在线观看| 成人二区视频| 黄片wwwwww| 欧洲精品卡2卡3卡4卡5卡区| 久久精品久久久久久噜噜老黄 | 美女被艹到高潮喷水动态| 国产成人福利小说| 一级毛片aaaaaa免费看小| 精品久久久久久久久av| 美女被艹到高潮喷水动态| 成年女人永久免费观看视频| 国产在线男女| 欧美性猛交╳xxx乱大交人| 欧美+日韩+精品| 一夜夜www| .国产精品久久| 午夜激情欧美在线| 精品一区二区免费观看| 91精品一卡2卡3卡4卡| 最后的刺客免费高清国语| 日本五十路高清| 国产综合懂色| 欧美性感艳星| 亚洲人成网站在线播放欧美日韩| 韩国av在线不卡| 99久久中文字幕三级久久日本| 尾随美女入室| 亚洲av免费高清在线观看| 免费观看a级毛片全部| 国产成人a区在线观看| 国产黄片视频在线免费观看| 我的老师免费观看完整版| 亚洲av电影不卡..在线观看| 国产精品日韩av在线免费观看| 黄色日韩在线| 国产中年淑女户外野战色| 日韩制服骚丝袜av| 亚洲无线观看免费| 久久午夜亚洲精品久久| 3wmmmm亚洲av在线观看| 天堂av国产一区二区熟女人妻| 18禁在线无遮挡免费观看视频| 亚洲精品久久久久久婷婷小说 | 久久久久免费精品人妻一区二区| 美女cb高潮喷水在线观看| 日本色播在线视频| 日韩一区二区视频免费看| 精品久久久久久久末码| 国产精品福利在线免费观看| 日韩视频在线欧美| 少妇猛男粗大的猛烈进出视频 | 99国产精品一区二区蜜桃av| av福利片在线观看| 国产精品三级大全| kizo精华| 欧美成人a在线观看| 国产一级毛片七仙女欲春2| 狂野欧美白嫩少妇大欣赏| 深夜a级毛片| 高清在线视频一区二区三区 | 国产av在哪里看| 少妇熟女欧美另类| 久久精品国产自在天天线| 国产综合懂色| 97在线视频观看| 国产精品乱码一区二三区的特点| 一个人免费在线观看电影| 网址你懂的国产日韩在线| 麻豆国产av国片精品| 深夜a级毛片| 老女人水多毛片| 狂野欧美激情性xxxx在线观看| 少妇高潮的动态图| 亚洲欧美日韩高清专用| 久久人人精品亚洲av| 精品人妻一区二区三区麻豆| 久久精品综合一区二区三区| 国产精品国产高清国产av| 午夜精品在线福利| 亚洲精品自拍成人| 精品99又大又爽又粗少妇毛片| 国产高清视频在线观看网站| 尾随美女入室| 欧美成人一区二区免费高清观看| ponron亚洲| 晚上一个人看的免费电影| 国产精品人妻久久久影院| kizo精华| 欧美成人a在线观看| 国产一级毛片七仙女欲春2| 美女 人体艺术 gogo| 自拍偷自拍亚洲精品老妇| 亚洲久久久久久中文字幕| 爱豆传媒免费全集在线观看| 国产午夜精品一二区理论片|